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We analyze the resonant linear and nonlinear transmission through a photonic crystal waveguide side-
coupled to a Kerr-nonlinear photonic crystal resonator. First, we extend the standard coupled-mode theory
analysis to photonic crystal structures and obtain explicit analytical expressions for the bistability thresholds
and transmission coefficients which provide the basis for a detailed understanding of the possibilities associ-
ated with these structures. Next, we discuss limitations of standard coupled-mode theory and present an
alternative analytical approach based on the effective discrete equations derived using a Green’s function
method. We find that the discrete nature of the photonic crystal waveguides allows a geometry-driven enhance-
ment of nonlinear effects by shifting the resonator location relative to the waveguide, thus providing an
additional control of resonant waveguide transmission and Fano resonances. We further demonstrate that this
enhancement may result in the lowering of the bistability threshold and switching power of nonlinear devices
by several orders of magnitude. Finally, we show that employing such enhancements is of paramount impor-
tance for the design of all-optical devices based on slow-light photonic crystal waveguides.
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I. INTRODUCTION

It is believed that future integrated photonic circuits for
ultrafast all-optical signal processing require different types
of nonlinear functional elements such as switches, memory
and logic devices. Therefore, both physics and designs of
such all-optical devices have attracted significant research
efforts during the last two decades, and most of these studies
utilize the concepts of optical switching and bistability �1�.

One of the simplest bistable optical devices which can
find applications in photonic integrated circuits is a two-port
device which is connected to other parts of a circuit by one
input and one output waveguide. Its transmission properties
depend on the intensity of light sent to the input waveguide.
Two basic realizations of such a device can be provided by
either direct or side-coupling between the input and output
waveguides to an optical resonator. In the first case, we ob-
tain a system with resonant transmission in a narrow fre-
quency range, while in the second case, we obtain a system
with resonant reflection. Both systems may exhibit optical
bistability when the resonator is made of a Kerr nonlinear
material. The resonant two-port systems of the first type,
with direct-coupled resonator, can be realized in one-
dimensional systems, and they have been studied in great
details in the context of different applications. In contrast,
the resonant systems of the second type, with side-coupled
resonators, can only be realized in higher-dimensional struc-
tures, and their functionalities are not yet completely under-
stood.

Our goal in this paper is to study in detail the second class
of resonant systems based on straight optical waveguides
side-coupled to resonators as shown in Fig. 1. Moreover, we
assume that the waveguide and resonator are created in two-
or three-dimensional photonic crystal �PhC� �2�. Due to a

periodic modulation of the refractive index of PhCs, such
structures may possess complete photonic band gaps, i.e.,
regions of optical frequencies where PhCs act as ideal optical
insulators. Embedding carefully designed cavities into PhCs,
one can create ultracompact photonic crystal devices which
are very promising for applications in photonic integrated
circuits. As an illustration, side-coupled waveguide-resonator

FIG. 1. �Color online� Three types of the geometries of a
straight photonic-crystal waveguide side coupled to a nonlinear op-
tical resonator, A�. Standard coupled-mode theory is based on the
geometry �a� which does not account for discreteness-induced ef-
fects in the photonic-crystal waveguides. For instance, light trans-
mission and bistability are qualitatively different for �b� on-site and
�c� inter-site locations of the resonator along waveguide and this
cannot be distinguished within the conceptual framework of struc-
ture of type �a�.
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systems created in PhCs through arrays of cavities are sche-
matically depicted in Fig. 1�b� and Fig. 1�c�.

Practical applications of such PhC devices are becoming a
reality due to the recent experimental success in realizing
both linear and nonlinear light transmission in two-
dimensional PhC slab structures where a lattice of cylindrical
pores is etched into a planar waveguide. In particular, Noda’s
group have realized coupling of a PhC waveguide to a leaky
resonator mode consisting of a defect pore of slightly in-
creased radius �3–6�; Smith et al. demonstrated coupling of a
three-line PhC waveguide with a large-area hexagonal reso-
nator �7�; Seassal et al. have investigated the mutual cou-
pling of a PhC waveguide with a rectangular microresonator
�8�; Notomi et al. �9� and Barclay et al. �10� have observed
all-optical bistability in direct-coupled PhC waveguide-
resonator systems.

Photonic-crystal based devices offer two major advan-
tages over corresponding ridge-waveguide systems: �i� the
PhC waveguides may have very low group velocities and, as
a result, may significantly enhance the effective coupling be-
tween short pulse and resonators, and �ii� photonic crystals
allow the creation of ultracompact high-Q resonators, which
are essential for the further miniaturization of all-optical
nanophotonic devices. Despite this, many researchers still
believe that the basic properties of devices based on ridge
waveguides or PhC waveguides are qualitatively identical,
and that they can be correctly described by the coupled-mode
theory for continuous systems �see Refs. �11–21� and the
discussion in Sec. II�.

However, an inspection of Figs. 1�a�–1�c� reveals, that a
major difference between the ridge waveguide in �a� and
PhC waveguides in �b, c� is that a PhC waveguide is always
created by an array of coupled small-volume cavities and,
therefore, exhibits an inherently discrete nature. This sug-
gests that in these systems an additional coupling parameter
appears which relates the position of the � resonator to the
waveguide cavities along the waveguide. As a matter of fact,
we may �laterally� place the � resonator at any point relative
to two successive waveguide cavities, thus creating a gener-
ally asymmetric device which �in the nonlinear transmission
regime� should exhibit the properties of an optical diode, i.e.,
transmit high-intensity light in one direction only. This is an
intriguing peculiarity of photonic-crystal based devices
which we will analyze in a future presentation. In this paper,
however, we restrict our analysis to symmetric structures and
study the cases of either on-site coupling of the � resonator
to the PhC waveguide, shown schematically in Figs. 1�b�, or
inter-site coupling, as shown in Fig. 1�c�.

To address these issues, we employ a recently developed
approach �22–24� and describe the photonic-crystal devices
via effective discrete equations that are derived by means of
a Green’s function formalism �25–29�. This approach allows
us to study the effect of the discrete nature of the device on
its transmission properties. In particular, we show that the
transmission depends on the location of the resonance fre-
quency �� of the � resonator with respect to the edges of the
waveguide passing band. If �� lies deep inside the passing
band, all devices shown in Figs. 1�a�–1�c� are qualitatively
similar, and can adequately be described by the conventional
coupled-mode theory. However, if the resonator’s frequency

�� moves closer to the edge of the passing band, standard
coupled-mode theory fails �30�. More importantly, we show
that in this latter case the properties of the devices shown in
Figs. 1�b� and Fig. 1�c� become qualitatively different: light
transmission vanishes at both edges of the passing band, for
the cases shown in Fig. 1�a� and Fig. 1�b�, but for the case
shown in Fig. 1�c� it remains perfect at one of the edges.
Moreover, the resonance quality factor for the structure �c�
grows indefinitely as �� approaches this latter band edge,
accordingly reducing the threshold intensity required for a
bistable light transmission. This permits to achieve a very
efficient all-optical switching in the slow-light regime.

The paper is organized as follows. In Sec. II we summa-
rize and extend the results of standard coupled-mode theory
which accurately describes the system shown in Fig. 1�a�.
Then, in Sec. III A we derive a system of effective discrete
equations �25,26� and utilize a recently developed approach
for its analysis �22,23�. Specifically, in Sec. III B and Sec.
III C, respectively, we study the two geometries of the
waveguide-resonator coupled systems schematically de-
picted in Fig. 1�b� and Fig. 1�c�. In Sec. IV we illustrate our
main findings for several examples of optical devices based
on a two-dimensional photonic crystal created by a square
lattice of Si rods. Finally, in Sec. V we summarize and dis-
cuss our results. For completeness as well as for justification
of the effective discrete equations employed, we include in
Appendix A an analysis of simpler cases of uncoupled cavi-
ties and waveguides. The effects of nonlocal waveguide dis-
persion and nonlocal waveguide-resonator couplings are
briefly summarized in Appendix B.

II. COUPLED-MODE THEORY

In this section, we first summarize the results of standard
coupled-mode theory and other similar approaches devel-
oped for the analysis of continuous-waveguide structures
similar to those displayed in Fig. 1�a�. Then, we extend these
results in order to obtain analytical formulas for the descrip-
tion of bistable nonlinear transmission in such devices.

A. Linear transmission

Transmission of light in waveguide-resonator systems is
usually studied in the linear limit using a coupled-mode
theory based on a Hamiltonian approach. This approach has
been pioneered by Haus and co-workers �11,12� and is simi-
lar to that used by Fano �13� and Anderson �14� for describ-
ing the interaction between localized resonances and con-
tinuum states in the context of an effect which is generally
referred to as “Fano resonance.” For the analysis of the trans-
mission of photonic-crystal devices, this approach has been
employed first by Fan et al. �15� and has been elaborated on
by Xu et al. �16�.

Throughout this paper we consider the propagation of a
monochromatic wave with the frequency � lying inside the
waveguide passing band; we assume that the waveguide is a
single moded as well as that the resonator � is nondegenerate
and losses can be neglected. In this case, the complex trans-
mission and reflection amplitudes, t��� and r���, can be
written in the form
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t��� =
����

���� − i
, r��� =

ei�r���

���� − i
, �1�

with a certain real-valued and frequency-dependent function
���� and the reflection phase �r���. Accordingly, the abso-
lute values of the transmission coefficient T= �t�2 and reflec-
tion coefficient R= �r�2 are

T��� =
�2���

�2��� + 1
and R��� =

1

�2��� + 1
, �2�

and it is easy to see that T+R=1 for any ����.
If the frequency �� of the resonator � lies inside the

waveguide passing band, Fano-like resonant scattering with
zero transmission at the resonance frequency �res, lying in
the vicinity of the resonator’s frequency, ��, should be ob-
served �13,22�. This corresponds to the condition ���res�=0
and, based on the terminology developed in Refs. �17,18�,
���� may be interpreted as the detuning of the incident fre-
quency from resonance.

The results of standard coupled-mode theory analysis �for
instance, see Ref. �16�� indicate that in the vicinity of a high-
quality �or high-Q� resonance, the detuning function ����
can be accurately described through the linear function

���� �
�res − �

�
, where � =

�res

2Q
, �3�

which leads to a Lorentzian spectrum. Here, Q is the quality
factor of the resonance mode of the � resonator. From the
Hamiltonian approach �16�, we find that the resonance fre-
quency �res almost coincides with the resonator frequency
�� �see, however, Appendix A in Ref. �19� for a more accu-
rate estimate of �res�, the reflection phase is �r=� /2, and the
resonance width � is determined by the overlap of the mode
profiles of waveguide and resonator:

� �
L

vgr

�res
2

4WkW�
�	 dr����r��E�k

*�r��E���r��
2

. �4�

Here, E���r�� is the normalized dimensionless electric field of

the resonator mode, E�k�r�� is the corresponding field of the
waveguide mode at wave vector k=k��res�, vgr= �d� /dk� is
the group velocity calculated at the resonance frequency, and
L is the length of the waveguide section employed for the
normalizing the modes to

	
wg section

dr��wg�r���E�k�r���2 = Wk,

	
all space

dr����r���E���r���2 = W�. �5�

Furthermore, ���r�� and �wg�r�� are the dielectric functions
that describe the resonator � and waveguide, respectively.
From Eqs. �4� and �5� it is easy to see that the resonance
width � does not depend on the length L.

However, within the Hamiltonian approach, the function
���r�� in Eq. �4� remains undetermined. Generally, it is as-
sumed to be a difference between the total dielectric function

and the dielectric function �0�r�� “associated with the unper-
turbed Hamiltonian” �16� which is an ill-defined quantity. A
different approach based on a perturbative solution of the
wave equation for the electric field �20� sheds some light on
the resolution of this ambiguity and shows explicitly that
�0�r�� can be taken as either �wg�r�� or ���r��.

B. Nonlinear transmission

If the resonator � is made of a Kerr-nonlinear material,
increasing the intensity of the localized mode of the resona-
tor leads to a change of the refractive index and, accordingly,
to a shift of the resonator’s resonance frequency. As a result,
the nonlinear light transmission in this case is described by
the same Eqs. �1� and �2�, with the only difference that the
frequency detuning parameter ���� should be replaced by
the generalized intensity-dependent frequency detuning pa-
rameter �����−J��. Here, J� is a new dimensionless param-
eter which is, as we show below, proportional to the intensity
of the resonator’s localized mode. In particular, Eqs. �2� take
the form

T =
����� − J��2

����� − J��2 + 1
, R =

1

����� − J��2 + 1
. �6�

In order to find an explicit expression for J�, we assume the

following: �i� The dimensionless mode profiles E���r�� and

E�k�r�� introduced in Eqs. �4� and �5� are normalized to their

maximal values �as functions in real space�, i.e., �E���r���max
2

= �E�k�r���max
2 =1; �ii� the physical electric fields are described

by amplitudes, A� and Ak, multiplying the field profiles. Con-
sequently, the maximum intensity of the electric field in the

vicinity of the � resonator, E� �r���A�E���r��, is equal to �A��2;
�iii� the � resonator is made of a Kerr-nonlinear material
with the nonlinear susceptibility 	�

�3� and it covers the area
described by the function 
��r��. This function is equal to
unity for all r� inside the cavities which form the resonator
structure and vanishes outside. In this case, J� takes the
form

J� =
12�Q�

W�
2 	�

�3��A��2, �7�

where � is the dimensionless and scale-invariant nonlinear
feedback parameter �first introduced in similar form in Refs.
�17,18�� which measures the geometric nonlinear feedback of
the system. It depends on the overlap of the resonator’s mode
profile with spatial distribution 
��r�� of nonlinear material
according to

� =
3

W�
2 � c

�res

d	

all space
dr�
��r�����r���E���r���4, �8�

where d is the system dimensionality.
The dependence of J� on the power of the incoming light

has already been studied analytically in Refs. �18,20,21�.
Here, we suggest a simpler form for this dependence
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Jin = J������� − J��2 + 1� , �9�

where we have introduced the dimensionless intensity Jin
which is proportional to the experimentally measured power
of the incoming light

Pin =
c2k���
2��

Iin = P0Jin. �10�

In this expression, we have abbreviated the incoming light
intensity as Iin= �Ak�2 and introduced the characteristic power
P0 of the waveguide defined as �see Refs. �17,18,20,21� for
derivation�:

P0 = � c

�res

d−1 ��

Q2��	�
�3� . �11�

Finally, the outgoing light power Pout= P0Jout can be deter-
mined through the dimensionless intensity of the outgoing
light Jout=TJin with the transmission coefficient T defined
by Eq. �6�.

It follows from Eqs. �6� and �9� that the nonlinear trans-
mission problem is completely determined by the value of
���� and the sign of the product ���� ·J�. As is illustrated in
Fig. 2, for frequencies where �����J���0, the transmission
coefficient T and the outgoing light intensity Jout grow
monotonically with Jin for all values of ����.

The situation becomes more interesting for frequencies
lying on the other side of the resonance where �����J��
0. In this case T and, therefore, Jout become nonmonotonic
functions of Jin, as is illustrated in Fig. 3. Moreover, for
�2���3 these functions become multivalued functions of
Jin in the interval Jin

�3,4��Jin�Jin
�1,2�, where

Jin
�1,2� = 2

27��3 + 9� + ��2 − 3�3/2� ,

Jin
�3,4� = 2

27��3 + 9� − ��2 − 3�3/2� , �12�

which are also shown in Fig. 4. In this interval the nonlinear
light transmission becomes bistable: low- and high-
transmission regimes coexist at the same value of the incom-
ing light intensity Jin, as can be seen in Fig. 3 for �23
�intermediate parts of the curves correspond to unstable
transmission�. Therefore, by increasing an initially low inten-
sity Jin we obtain a hysteresis where we jump from the point
�1� to �2�, and then upon decreasing Jin, we jump from the

point �3� to �4�. The transmission coefficients at these char-
acteristic points are

T�1,3� =
1

2�2�1 � 1 − 3/�2� − 2
,

T�2,4� =
�1 � 21 − 3/�2�2

5 − 3/�2 � 41 − 3/�2
, �13�

and they are depicted in Fig. 4. For completeness, we also
present the expressions for the resonator’s mode intensity at
these points

J�
�1,3� =

2�

3
�

1

3
�2 − 3,

FIG. 2. �Color online� Dependencies of the transmission coeffi-
cient, T, the outgoing light intensity, Jout, and the resonator’s mode
intensity, J�, on the incoming light intensity, Jin, for �2���=1 and
negative product �����J��.

FIG. 3. �Color online� Dependencies of the transmission coeffi-
cient, T, the outgoing light intensity, Jout, and the resonator’s mode
intensity, J�, on the incoming light intensity, Jin, for several differ-
ent values of �2��� and positive product �����J��.
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J�
�2,4� =

2�

3
±

2

3
�2 − 3. �14�

From a practical point of view, these solutions have impor-
tant consequences. First, the bistability condition �23 cor-
responds to a linear transmission T3/4. That is, the
bistable transmission becomes possible only for frequencies
where �����J�� is positive and linear transmission exceeds
75%. As demonstrated in Fig. 4 and Eq. �12�, when �2

grows, all threshold intensities grow, too, starting with the
minimum threshold intensity Jin

�1,2,3,4�=8/31.5�1.54 at �2

=3.
For ideal nonlinear switching the coefficients T�1� and T�4�

should be close to unity while T�2� and T�3� should vanish.
However, as can be seen from Fig. 4 and the asymptotic �for
large �2� expressions

T�1� � 1 −
9

�2 , T�2� � 1 −
9

4�2 ,

T�3� � 1 −
1

�2 , T�4� �
1

4�2 , �15�

of Eqs. �13�, these conditions cannot be satisfied simulta-
neously. In particular, the transmission coefficient T�2� does
not vanish but approaches unity for large �2. Moreover, there
exists no condition under which T�2� and T�3� vanish simul-
taneously. Therefore, it is impossible to create ideal nonlin-
ear switches in these systems.

A reasonable compromise for realistic nonlinear switching
schemes of this type could be the usage of the frequency
with �2�5, for which the linear light transmission is close to
83%. For this case, the critical transmission coefficients
T�2��3.7% and T�3��7% are sufficiently small, while T�1�

�60% and T�4��74% are large enough for practical pur-
poses. The threshold intensities Jin

�1,2��2.53 and Jin
�3,4�

�2.11 differ about 20% from each other, so that in this case
one can achieve a high contrast and robust switching for
sufficiently small modulation of the incoming power.

The above analysis suggests that the optimal dimension-
less threshold intensities are fixed around Jin

�i��2.5 so that
the real threshold power of the incoming light, Pin

�i�= P0Jin
�i�,

can only be minimized by minimizing the characteristic
power, P0, of the system. An inspection of Eq. �11� shows

that this can be facilitated by increasing the resonator non-
linear feedback parameter, ��, the material nonlinearity, 	�

�3�,
or the resonator quality factor, Q. For small-volume photonic
crystal resonators, it has been established that ��0.2 �see
Refs. �17,18��, and this value can hardly be further increased.

Therefore, only two practical strategies remain that could
lead to an enhancement of nonlinear effects in this system.
The first approach is based on specific material properties:
We should create the resonator � from a material with the
largest possible value of 	�

�3�. In high-index semiconductors,
nearly instantaneous Kerr nonlinearity reaches values of n2
�1.5�10−13 cm2/W �31�, where n2�	�3� /n0 and n0 is the
linear refractive index of the material. Even such relatively
weak nonlinearity is already sufficient for many experimen-
tal observations of the bistability effect in the waveguide-
resonator systems �9,10�. However, using polymers with
nearly instantaneous Kerr nonlinearity of the order of n2
10−11 cm2/W and, at the same time, sufficiently weak two-
photon absorption �32�, one could potentially decrease the
value of P0 by at least two orders of magnitude. Polymers,
however, have a low refractive index which is insufficient for
creating a �linear� photonic band gap required to obtain good
waveguiding and low losses. The solution to this could be
the embedding of such highly nonlinear but low-index mate-
rials into a host photonic crystal made of a high-index semi-
conductor. Optimized waveguiding designs for the basic
functional devices of this kind are available �33–35� and re-
cent experimental progress �36,37� may soon allow a realiza-
tion of corresponding linear and nonlinear devices.

The second approach is based on designing waveguide-
resonator structures with the largest possible quality factor,
Q. Potentially, one can increase Q indefinitely by mere in-
crease of the distance between the waveguide and the reso-
nator. However, this leads to a corresponding increase in the
size of the nonlinear photonic devices. A very attractive al-
ternative possibility for increasing Q is based on the adjust-
ment of the resonator geometry �38�.

In what follows, we suggest yet another possibility to dra-
matically increase Q through an optimal choice of the reso-
nator location relative to the discrete locations of the cavities
that form the photonic-crystal waveguide.

C. Limitations of the coupled-mode theory

Standard coupled-mode theory exhibits a number of limi-
tations. First, it gives analytical expression for the detuning
parameter ���� only near the resonator frequency ��. And
this immediately highlights the second limitation: standard
coupled-mode theory �16–21� cannot analytically describe
resonant effects near waveguide band edges. However, nu-
merical studies �30� have recently demonstrated that the ef-
fects of the waveguide dispersion become very important at
the band edges and may lead to non-Lorentzian transmission
spectra in coupled waveguide-resonator systems.

As a matter of fact, the question “what happens if the
resonator frequency �� lies near the edge of the waveguide
passing band or even outside it?” may be of a great practical
importance due to two reasons. First, in realistic structures it
is not always possible to appropriately tune the frequency

FIG. 4. �Color online� Dependencies of the threshold incoming
light intensity and the corresponding transmission coefficients on
�2��� for the four critical points �1�–�4� indicated by circles in Fig.
3. Here, we assume that �����J��0.
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��, and therefore it is important to understand properties of
the system for any location of the resonance frequency. Sec-
ond, as we have already mentioned in the Introduction, PhC
waveguides can provide us with a very slow group velocity
of the propagating pulses—but in most cases they do it ex-
actly at the passing band edges. Therefore, if we wish to
utilize such a slow light propagation for nonlinearity en-
hancement, we should extend the above analysis to such
cases, too.

In what follows, we describe an alternative analytical ap-
proach to the coupled waveguide-resonator structures which
allows us to correctly analyze both linear and nonlinear
transmission for arbitrary locations of the resonator fre-
quency �� relative to the waveguide passing band, including
the transmission near band edges in the slow light regime.

III. DISCRETE MODEL APPROACH

Having discussed the results obtained for the continuous-
waveguide structure shown in Fig. 1�a�, we now take into
account the discrete nature of the waveguiding structure em-
bedded in photonic crystals. In particular, we analyze what
will change in the system properties when we move the reso-
nator along the waveguide from the on-site location shown in
Fig. 1�b� to the inter-site location shown in Fig. 1�c�. Our
analysis is based on effective discrete equations that have
been derived for the description of photonic crystal devices
�25–29� in combination with a recently developed discrete
model approach to nonlinear Fano resonances �22�.

A. Discrete equation approach

First, we derive an appropriate set of discrete equations
�see Eqs. �24� below�, and show that they can be applied to a
variety of the photonic-crystal devices. We start from the
wave equation in the frequency domain for the electric field

��� � �� � − ��

c

2

�̂�r���E� �r�� = 0� , �16�

where the dielectric function �̂�r��= �̂pc�r��+��̂�r�� consists of
the dielectric function �̂pc�r�� of a perfectly periodic structure
and a perturbation ��̂�r�� that describes the embedded cavi-
ties. It is convenient to introduce the tensorial Green function
of the perfectly periodic photonic crystal,

��� � �� � − ��

c

2

�̂pc�r���Ĝ�r�,r����� = Î��r� − r��� �17�

and to rewrite Eq. �16� in the integral form,

E� �r�� = ��

c

2	 r��Ĝ�r�,r�������̂�r���E� �r��� , �18�

where we assume that the frequency � lies inside a complete
photonic band gap so that the electric field vanishes every-
where except for areas inside and in the vicinity of cavities.
We enumerate the cavities by an integer index n and intro-
duce dimensionless functions 
n�r�� which describe the shape
of the nth cavity. As a result, ��̂�r�� may be represented as

��̂�r�� = �
n

���̂n + 	n
�3��E� �r���2�
n�r� − R� n� , �19�

where R� n, ��̂n, and 	n
�3� are, respectively, position, �linear�

dielectric function, and nonlinear third-order susceptibility of
the nth cavity.

Similar to Sec. II, we describe the electric field of the nth

cavity mode via a dimensionless field profile E�n�r�� and a
complex amplitude An. Taking into account that inside the
cavities the electric field of the system is a superposition

E� �r�� � �
n

AnE�n�r� − R� n� , �20�

Eq. �18� can be rewritten as a set of discrete nonlinear equa-
tions

Dn���An = �
m�n

Vn,m���Am + �n���	n
�3��An�2An, �21�

where Dn���=1−Vn,n��� is the dimensionless frequency de-
tuning from the resonance frequency, �n, of the nth cavity.
Furthermore,

Vn,m��� =
��m

Wn
��

c

2	 dr�	 dr��E�n

*�r���̂n�r��

�
m�r���Ĝ�r� + R� n − R� m,r�����E�m�r��� , �22�

is the dimensionless linear coupling between the nth and the
mth cavity. Similarly,

�n��� =
1

Wn
��

c

2	 dr�	 dr��E�n

*�r���̂n�r��

�
n�r���Ĝ�r�,r������E�n�r����2E�n�r��� , �23�

is the dimensionless and scale-invariant nonlinear feedback
parameter which should be compared with the analogous
parameter �8� introduced in the conventional coupled-mode
theory analysis �17,18�. Finally, Wn is defined in exactly the
same way as W� in Eq. �5�.

We remark that in deriving Eqs. �21� we have neglected
higher-order couplings proportional to the integrals of

E�n
*�r��E�m�r�+R� n−R� m� with n�m but take into account the cou-

pling coefficients which involve integrals of Ĝ�r�+R� n

−R� m ,r�� ��� with n�m. This approximation is sufficiently ac-
curate in most cases, as we demonstrate in Refs. �24,26�. We
would like to mention that in Eqs. �21�–�23� we have used
more accurate definitions of the coupling coefficients than
those that have been introduced earlier in Refs. �26–29�.
They have also a more generic form than those we used in
Ref. �25�.

Typical frequency dependencies of the parameters of the
discrete model, Eq. �21�, are displayed in Figs. 9–11 of Ap-
pendix A, where we also discuss the application of Eqs.
�21�–�23� to simple structures such as linear and nonlinear
photonic crystal resonators and straight waveguides. Here,
we apply Eqs. �21�–�23� to study the more complicated case
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of the nonlinear coupled waveguide-resonator systems
shown in Figs. 1�b� and 1�c�. The set of Eqs. �21� may be
separated in this case according to

Dw���An = �
j=1

L

Vjw����An+j + An−j� + Vn,����A�,

D����A� = �
j

V�,j���Aj + �����	�
�3��A��2A�, �24�

where we assume that all cavities of the photonic-crystal
waveguide are identical and linear, so that we can denote
Dw����Dn��� and Vjw����Vn,n±j��� for any n inside the
waveguide. Furthermore, the index � defines the parameters
of the side-coupled nonlinear resonator. Below we show that
the assumption of linear waveguide cavities may be relaxed
for frequencies near the resonator resonance frequency ��

because then the amplitudes An remain small in comparison
with the amplitude A�.

For the first equation in Eq. �24�, we seek solutions of
standard form

An = �Iin
1/2t���eik���sn for n � 1,

Iin
1/2�eik���sn + r���e−ik���sn� for n � − 1,

� �25�

where s is the distance between the nearest waveguide cavi-
ties and Iin is the intensity of the incoming light. For both
structures shown in Figs. 1�b� and 1�c�, we obtain that the
transmission and reflection coefficients can formally be de-
scribed by the same expressions �1� and �2� as for the struc-
ture depicted in Fig. 1�a�. However, within the discrete equa-
tion approach the expression for the detuning parameter
���� can now be found for the entire frequency range. Be-
low, we discuss results for the structures shown in Fig. 1�b�
and Fig. 1�c� separately.

B. On-site resonator

First, we obtain the solution of this problem for the struc-
ture shown in Fig. 1�b�. For simplicity, we assume that the
only nonvanishing coupling coefficients in Eq. �24� are
V1w���, V�,0���, and V0,���� �see, however, Appendix B for
a more accurate analysis which takes into account additional
coupling coefficients�. As a result, we obtain the transmis-
sion and reflection coefficients described by Eqs. �1� and �2�
with �r=� /2 and a corresponding expression for ����,

���� = 2 sin�k���s�
V1w���
V0,����

A0

A�

, �26�

which should be considered as a generalized intensity-
dependent frequency detuning parameter ����+J� intro-
duced in Eq. �6� above. The amplitude A0 in Eq. �26� is given
by

A0 = t���Iin
1/2, �27�

while the waveguide dispersion relation k��� is determined
by Eq. �A6�.

In the case of a linear � resonator �i.e., 	�
�3��0�, the am-

plitude A�=V�,0���A0 /D���� is proportional to the ampli-

tude A0. Therefore, ���� and, accordingly, the transmission
and reflection coefficients do not depend on the light inten-
sity. Upon introducing the abbreviation

���� =
D����V1w���

V0,����V�,0���
, �28�

the detuning parameter, Eq. �26�, for a linear � resonator
reads as

���� = 2����sin�k���s� . �29�

This implies that ���� vanishes when either D����=0 or
k���=�n /s with an arbitrary integer n. The first condition
reproduces Eq. �3� with �res=�� and the resonance width �
given by

� �
����

sin�k����s�
�

s���w

vgr
���wV0,�V�,0, �30�

where �� and �w are defined by Eq. �A1�,

�� =
V0,�V�,0

2��D��V1w

=
V0,�V�,0

2V1w
��, �31�

and the group velocity

vgr = �d�

dk
�

��

� − 2s�w�wV1w sin�k����s� , �32�

can be found directly from Eq. �A6�. Here and in what fol-
lows, we assume that the values of all frequency-dependent
parameters without explicitly stated frequency dependence
are evaluated at the resonance frequency, �res. Finally, we
notice that the resonance width, Eq. �30�, is very similar to
that described by the coupled-mode theory, Eq. �4�.

It is important that the quality factor Q of the resonance

Q =
��

2�
�

sin�k����s�
2��

�
vgr

s�w

1

2���wV0,�V�,0
, �33�

is multiplied by the factor sin�k����s��vgr, and, therefore,
becomes strongly suppressed near the edges of waveguide
passing band, k����=0, ±� /s. Accordingly, the detuning pa-
rameter �29� vanishes at these edges, too. This means that, in
agreement with the numerical calculations shown in Fig. 5,
the transmission coefficient T��� vanishes not only at the
resonance frequency, but also at both edges of the waveguide
passing band. Such an effect was recently observed by Waks
and Vukovic �30� in their numerical calculations based on
standard coupled-mode theory which takes into account the
waveguide dispersion. Therefore, the effect of vanishing
transmission at the spectral band edges may be attributed
also to the structure shown in Fig. 1�a�.

Obviously, this enhancement of light scattering at the
waveguide band edges should be very important from the
point of view of fabrication tolerances since virtually any
imperfection contributes to scattering losses. Moreover, as
discussed in Sec. IV, this effect is detrimental to the concept
of all-optical switching devices based on slow-light photonic
crystal waveguides.

We support this conclusion by another observation. First,
the light intensity at the 0th cavity, �A0�2=T���Iin, vanishes at
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the resonance frequency for arbitrary large incoming light
intensity, because T�����0. Therefore, the nonlinearity of
this cavity may safely be neglected. In contrast, the light
intensity at the � resonator reaches its maximum value at ��,

�A������2 � 4� V1w

V0,�

2

sin2�k����s�Iin � � vgr

s�w�wV0,�

2

Iin

� �2Q��V�,0�2Iin, �34�

which may significantly exceed the incoming light intensity
Iin when the coupling V0,� between the � resonator and
waveguide becomes small enough relative to the coupling
V1w between the cavities in the waveguide. This strong en-
hancement suggests a physical explanation for the existence
of the rather strong nonlinear effect of light bistability at
relatively low intensities of the incoming light. However,
when the resonance frequency �� lies close to any of the
waveguide band edges, it is seen from Eq. �34� that the light
intensity at the � resonator becomes �strongly� suppressed by
a factor sin2�k����s�.

Details of an extension of the above discussion to the case
of more realistic nonlocal couplings, i.e., more than nearest
neighbors couplings, is presented in Appendix B and here we
only summarize the results. Both, a nonlocality of the inter-
coupling between waveguide cavities as well as a nonlocality
of cross coupling with the � resonator lead to a small shift in
the resonance frequency, �res, but do not change the main
result about the suppression of the detuning ���� and trans-
mission T��� at both edges of the waveguide passing band.
However, we would like to emphasize that for a fully quan-
titative analysis, nonlocal couplings must be taken into ac-
count, for instance, within the framework of the recently de-
veloped Wannier function approach �39�.

We now consider the case when the resonator � is non-
linear, i.e., 	�

�3��0. As has been previously shown in Ref.
�22�, this case, too, can be studied analytically even for non-
local couplings between the cavities and resonator and ef-
fects originating solely from the nonlocality may be expected
when the nonlocal coupling strength exceeds one-half of the
local coupling. Unfortunately, in realistic photonic crystals
this limit may hardly be realized so that here we restrict our
analysis to the local-coupling approximation. In this case, we
obtain from the second equation in Eqs. �24� that the ampli-
tude A� uniquely determines the amplitude A0. Substituting
the latter expression into Eqs. �26� and �27�, we find that the
nonlinear transmission is described by Eqs. �6� and �9� with
the detuning ���� determined by Eqs. �28� and �29� and the
dimensionless intensities J� and Jin given by the expres-
sions

J� � 2Q����	�
�3��A��2,

Jin � 8 sin�k��res�s�V1w� ��0

���

Q2����

2	�
�3�Iin

� −
4vgr

s�w
� ��0��

����w

Q2����	�

�3�Iin, �35�

where Q is determined by Eq. �33�. Therefore, all the results
for the nonlinear light transmission which are displayed in
Figs. 2–4 are directly applicable to the structure of Fig. 1�b�,
too.

In an experiment, one measures not the light intensity in
the waveguide, Iin, but the propagation power, Eq. �10�,
where for the discrete structure of Fig. 1�b�, the characteristic
power P0 is

P0 �
c2k����

16� sin�k����s���V1w
����

��0

 1

Q2����
2	�

�3�

� −
c2k����s

8�vgr
��w����w

����0��

 1

Q2����	�
�3� . �36�

Again, this result is quite similar to Eq. �11� for the continu-
ous structure of Fig. 1�a�. Nevertheless, our more general
analysis explicitly suggests that it should be better to use the
� resonator with the resonance frequency at the center of the
waveguide passing band k������ /2s, where the group ve-
locity reaches its maximum. Notice, however, that this sug-
gestion becomes wrong for the structure of Fig. 1�c� studied
in the next section.

C. Inter-site resonator

In the system where the � resonator is placed symmetri-
cally between two cavities of the waveguide and, therefore,
couples equally to both of them, a qualitatively different type
of resonant transmission occurs. The corresponding structure
is schematically shown in Fig. 1�c�. Assuming that in this
case the nonvanishing coupling coefficients in Eq. �24� are
V1w���, V�,1����V�,0���, and V1,�����V0,����, we seek
solutions to the first equation of the system �24� that are of

FIG. 5. �Color online� Linear transmission through a photonic-
crystal waveguide that is created by removing every second rod in a
row �s�=2a�1� side coupled to a one-site resonator created by remov-
ing a single rod. The underlying 2D photonic crystal is described in
Appendix A 1. We compare exact numerical results �solid line� with
the analytical results based on Eq. �29� �dotted-dashed line� and Eq.
�B1� �dashed line�.
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the form of Eq. �25�. Again, we find that the transmission
and reflection coefficients are given by Eqs. �1� and �2� albeit
with the frequency-dependent phase �r���=� /2+k���s.
Here, k��� is determined by Eq. �A6�, and the generalized
intensity-dependent frequency detuning is

���� + J� = i − i�eik���s − 1�
V1w���
V0,����

Iin
1/2

A�

. �37�

The corresponding amplitudes are

A0 = Iin
1/2 −

1

�1 − e−ik���s�
V0,����
V1w���

A�,

A1 = eik���sIin
1/2 −

1

�1 − e−ik���s�
V0,����
V1w���

A�. �38�

Despite the complex form of Eq. �37�, we would like to
emphasize that the detuning ���� determined by Eq. �37� is
a real-valued function �see also the discussion following Eq.
�1� above�.

In the case of the linear � resonator �i.e., for 	�
�3��0�, we

obtain

���� = �1 + �����tan� k���s
2


 , �39�

where ���� is given by Eq. �28�. For a high-quality � reso-
nator in the vicinity of the resonance frequency this detuning
parameter can be approximated by Eq. �3� with �res����1
−2��� and

� =
2�res��

tan�k��res�s/2�
. �40�

Here, �� is defined by Eq. �31�. In contrast to Eq. �33�, the
corresponding quality factor

Q =
�res

2�
�

tan�k��res�s/2�
4��

�
V1w tan�k��res�s/2�

2��V0,�V�,0
�41�

is now multiplied by the factor tan�ks /2� which does not
vanish and even diverges as k��res� approaches the edge of
the transmission band k= ±� /s. At this band edge, ����
� tan�k���s /2�→� and, therefore, light transmission is al-
ways perfect. This conclusion is supported by the exact nu-
merical calculations presented in Fig. 6. At the other band
edge, i.e., for k���=0, transmission vanishes, similar to the
structures shown in Figs. 1�a� and 1�b�.

The light intensity at the � resonator reaches its maximal
value at the resonance frequency

�A���res��2 � 4� V1w

V0,�

2

sin2� k��res�s
2


Iin

� �4Q��V�,0 cos� k��res�s
2


�2

Iin. �42�

Again, in contrast to the corresponding light intensity �34�
for the on-site coupled structure, Eq. �42� does not vanish at
the edge of the transmission band k= ±� /s. Therefore, we
can expect that for inter-site coupled structure nonlinear ef-

fects at the band edge k= ±� /s should be sufficiently strong
to allow bistable transmission and switching.

To investigate this, we assume that the � resonator is
nonlinear �	�

�3��0� and introduce the same dimensionless
intensities J� and Jin as in Eq. �35�. However, now the qual-
ity factor Q is defined by Eq. �41� and the resonance fre-
quency is �res����1−2���. We find that this nonlinear
problem, too, has a solution of the form given by Eqs. �6�
and �9�. However, now the detuning ���� is given by Eq.
�39�. Therefore, all results presented above in Figs. 2–4 re-
main applicable to this structure, too. The only but very im-
portant qualitative difference of the structure shown in Fig.
1�c� is that the transmission coefficient T��� and the corre-
sponding light intensity �A��2 at the � resonator do not vanish
at the band edge k= ±� /s since the quality factor Q at this
band edge grows to infinity for the inter-site structure of Fig.
1�c�. Therefore, this structure may be utilized for realizing
efficient all-optical switching devices based on slow-light
photonic crystal waveguides. This is in sharp contrast to the
structures shown in Figs. 1�a� and 1�b�.

IV. DISCUSSION OF RESULTS

In this section, we summarize our results and emphasize
their importance by applying them to specific photonic-
crystal structures. We consider a two-dimensional photonic
crystal created by a square lattice of dielectric rods in air.
The rods are made from Si or GaAs ��=11.56� and have
radius r=0.18a.

First, we consider a waveguide created by removing every
second rod �s=2a� in a straight line of rods coupled to a
nonlinear resonator � created by replacing a single rod of the
two-dimensional lattice with a highly nonlinear polymer rod.
The corresponding structure is schematically shown in the
insets in Fig. 7. The resonant frequency of the polymer-rod
resonator lies very close to the edge k= ±� /s of the wave-
guide passing band, and can be tuned by changing the linear
dielectric constant �� of the rod.

FIG. 6. �Color online� Liner transmission through a photonic-
crystal waveguide created by removing every second rod in a row
�s�=2a�1� side coupled to an inter-site resonator created by removing
a single rod. The underlying 2D photonic crystal described in Ap-
pendix A 1. We compare exact numerical results �solid line� with
the analytical results based on Eq. �39� �dashed line�.
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In Figs. 7�a� and 7�b�, respectively, we display the trans-
mission spectra for both on-site and inter-site positions of the
side-coupled resonator for three different values of resonator
dielectric constant ��. We notice that in the case of the on-
site position of the resonator the transmission coefficient
T��� remains below the critical value of T=75% required for
bistable switching operation for all frequencies � below the
resonance frequency �res. The condition ���res corre-
sponds to the condition �����J��0 which should be satis-
fied to realize nonmonotonic dependencies of the nonlinear
transmission shown in Fig. 4. Therefore, this on-site system
cannot exhibit bistability.

On the other hand, bistability may be realized for the
inter-site position of the side-coupled resonator for which, in
a full agreement with our analysis presented above, the trans-
mission remains perfect at the band edge k= ±� /s and the
quality factor Q increases as the resonant frequency ap-
proaches this band edge. In Fig. 8�b� �example A� we show
that in this case bistable transmission indeed occurs for the
frequency marked by a filled circle in Fig. 8�a�. This corre-
sponds to T���=80%, i.e., the choice �2���=4 for the de-
tuning parameter.

We want to emphasize that the large value of the quality
factor �41� for the inter-site structure at k��� close to ±� /s
leads to very low bistability thresholds as compared to the
cases of on-site coupled and continuous waveguide coupled
structures. This is illustrated in examples B and C of Fig. 8:
Relative to the waveguide design in example A, the design in
example B moves the resonance frequency deeper into the
passing band thus decreasing the quality factor �41�. Never-
theless, the inter-site coupled example B still exhibits a much
smaller bistability threshold than the on-site coupled system
with the same waveguide design in example C. This is
caused by �usually� much smaller waveguide-resonator cou-

pling and, accordingly, much larger Q in the inter-site struc-
tures as compared to the on-site structures.

Summarizing, the inter-site structure of the resonant
waveguide-resonator interaction schematically shown in Fig.
1�c� allows to achieve much higher values for the linear qual-
ity factor Q. As a consequence, much smaller bistability
threshold intensities for the nonlinear transmission are ob-
tained. To employ these advantages, the wave vector k��res�
of the guided mode at the resonance frequency �res, Eq. �39�,
should be as close as possible to � /s. This requirement co-
incides with the condition of a very small group velocity in
the waveguide and, in contrast to the continuous-waveguide
and on-site structures depicted in Figs. 1�a� and 1�b�, pro-
vides us with a possibility to create low-threshold all-optical
switching devices based on slow-light photonic crystal
waveguides.

FIG. 7. �Color online� Linear transmission spectrum for a
photonic-crystal waveguide created by removing every second rod
in a row �s�=2a�1� side coupled to a single on-site �a� or inter-site �b�
polymer-rod resonator �marked by the open circle in the insets�. The
underlying 2D photonic crystal is described in Appendix A 1 and
results for three different values of the resonator dielectric constant
�� are shown.

FIG. 8. �Color online� �a� Linear transmission spectrum and
�b� nonlinear bistable transmission for three different side-coupled
waveguide-resonator photonic-crystal structures whose topology is
shown in �c�. The rods consist of Si or GaAs �full black circles�
or polymer �open red circles�. Example A represents a close to
optimal structure with inter-site location of the � resonator whose
resonance frequency lies close to the edge k= ±� /s of the passing
band; example B represents a suboptimal structure with an inter-site
location of the � resonator whose resonance frequency lies near the
center of the passing band; example C represents a suboptimal but
commonly used structure with an on-site location of the � resonator
whose resonance frequency lies near the center of the passing band.
Closed circles in �a� indicate frequencies with T���=80% that are
used for achieving high-contrast bistability in �b�. Red circles in �c�
indicate positions of the nonlinear polymer rods with ��=2.56.
Other parameters of the 2D photonic crystal are described in
Appendix A 1.
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V. CONCLUSIONS

We have presented a detailed analysis of PhC waveguides
side coupled to Kerr-nonlinear resonators which may serve
as a basic element of active photonic-crystal circuitry. First,
we have extended the familiar approach based on standard
coupled-mode theory and derived explicit analytical expres-
sions for the bistability thresholds and transmission coeffi-
cients related to light switching in such structures. Our re-
sults reveal that, from the point of view of bistability contrast
�a small difference between two threshold intensities and ro-
bustness of switching� the best conditions for bistability are
realized for those parameter values for which the dimension-
less detuning parameter ���� is close to 5. Practically, this
corresponds to the choice of operation frequencies for which
the linear light transmission is close to 83%.

We have pointed out that the conventional coupled-mode
theory does not allow to describe the light transmission near
the band edges, and we have developed an improved semi-
analytical approach based on the effective discrete equations
derived in the framework of a consistent Green’s function
formalism. This approach is ideally suited for a qualitative
and semiquantitative description of photonic-crystal devices
that involve a discrete set of small-volume cavities. We have
shown that this approach allows to adequately describe light
transmission in the waveguide-resonator structures near the
band edges. Specifically, we have demonstrated that while
the transmission coefficient vanishes at both spectral edges
for the on-site coupled structure �see Fig. 1�b��, light trans-
mission remains perfect at one band edge for the inter-site
coupled structure �see Fig. 1�c��. These features allow a sig-
nificant enhancement of the resonator quality factor and, ac-
cordingly, a substantial reduction of the bistability threshold.
As a consequence, we refer to this type of nonlinearity en-
hancement as a geometric enhancement. The possibility of
such enhancement is a direct consequence of the discreteness
of the photonic crystal waveguide and is in a sharp contrast
to similar resonant systems based on ridge waveguides. The
potential of this type of the nonlinearity enhancement may be
regarded as an additional argument to support the application
of photonic-crystal devices in integrated photonic circuits.

In addition, we would like to emphasize that the engineer-
ing of the geometry of photonic-crystal-based devices such
as that presented in Fig. 1�c� becomes extremely useful for
developing concepts of all-optical switching in the slow-light
regime of PhC waveguides which may have much wider ap-
plications in nanophotonics and is currently under active ex-
perimental research �40�.

We believe that the basic concept of the geometric en-
hancement of nonlinear effects based on the discrete nature
of photonic-crystal waveguides will be useful in the study of
more complicated devices and circuits and, in particular, for
various slow-light applications. For instance, this concept
may be applied to the transmission of a side-coupled resona-
tor placed between two partially reflecting elements embed-
ded into the photonic-crystal waveguide where sharp and
asymmetric line shapes have been predicted with associated
variations of the transmission from 0% to 100% over narrow
frequency ranges �41�. Similarly, the concept can be ex-
tended to a system of cascaded cavities �42� and three-port

channel-drop filters �43�, optical delay lines �44�, systems of
two nonlinear resonators with a very low bistability thresh-
old �45�, etc.
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APPENDIX A: CALCULATION OF THE MODEL
PARAMETERS AND EXAMPLES

1. Coupling coefficients for two-dimensional photonic crystals

To obtain deeper insight into the basic properties of the
effective discrete equations �21�, we should know how the
coupling coefficients Dn���, �n���, and Vn,m��� depend on
frequency �. As an illustration, we consider a two-
dimensional model of a photonic crystal consisting of a
square lattice �lattice spacing a� of infinitely long dielectric
rods �see Refs. �15,17,18� and also Refs. �7–16� in Ref. �25��.
We study light propagation in the plane of periodicity, as-
suming that the rods have a radius r=0.18a and a dielectric
constant of �rod=11.56 �GaAs or Si at the telecommunication
wavelength ��1.55 �m�. For light with the electric field
polarized along the rods �E-polarized light�, this photonic
crystal exhibits a large �38% of the center frequency� photo-
nic band gap that extends from �=0.303�2�c /a� to �
=0.444�2�c /a�.

Our task is to evaluate the coupling coefficients Dn���,
�n���, and Vn,m��� using Eqs. �22� and �23� with the Green’s

function Ĝ�r� ,r�� ��� calculated by the method described ear-
lier in Refs. �28,29�. The results of these calculations are
displayed in Figs. 9–11.

2. Isolated optical resonators

For the case of an isolated �Vn,m=0� linear �	n
�3�=0� opti-

cal resonator at the site n, Eq. �21� takes a simplest possible
form, Dn���An=0. In this case, we only need to know the
dimensionless frequency detuning coefficient, Dn���. In Fig.
9 we plot Dn��� for two types of resonators: a resonator
created by removing a single rod and a resonator created by
replacing a single rod with a polymer rod of the same radius
and �n=2.56. Introducing the dimensionless frequency
�̃=a /����a /2�c�, we can express these coefficients, with
a very good accuracy in the range 0.36��̃�0.41, by the
following cubic dependencies: Dn���=9.426��̃− �̃n�
−10.889��̃− �̃n�2+840.36��̃− �̃n�3 with �̃n=0.3919, for the
removed rod, and Dn���=9.047��̃− �̃n�−49.555��̃− �̃n�2

+770.14��̃− �̃n�3 with �̃n=0.3744, for the replaced rod.

ALL-OPTICAL SWITCHING, BISTABILITY, AND… PHYSICAL REVIEW E 74, 046603 �2006�

046603-11



The resonator mode can only be excited at the resonator
frequency �n, which is determined by the equation Dn��n�
=0. Figure 9 suggests that changing the dielectric constant of
the resonator �n allows to tune the frequency �n. In all cases,
in the vicinity of the resonator frequency �n, the coupling
coefficient Dn��� can be approximately expanded into the
Taylor series with a linear dependence

Dn��� �
� − �n

�n�n
, �n =

1

�nDn���n�
, �A1�

where we have introduced a dimensionless parameter �n
which describes the resonator sensitivity to a change of the
dielectric constant. For our example of a polymer-rod reso-
nator, we find �n�0.295.

When the nth resonator is nonlinear �i.e., 	n
�3��0�, Eq.

�21� reduces to the equation Dn���An=�n���	n
�3��An�2An with

another important coefficient—nonlinear feedback param-
eter �n���. In Fig. 10, we depict the frequency dependence
of �n��� for the case of a nonlinear polymer resonator. In the
frequency range 0.36��̃�0.41, this behavior can be ap-
proximated as �n���=−0.111+1.005��̃− �̃n�−5.501��̃
− �̃n�2+85.57��̃− �̃n�3 with �̃n=0.3744. Therefore, in the vi-
cinity of the resonator’s frequency, �n, we may assume that
�n����−0.111 is constant and can rewrite Eq. �21� accord-
ing to

�An�2 =
Dn���

�n���	n
�3� �

Dn���n�
�n��n�	n

�3� �� − �n� . �A2�

The solution of the above equation gives us the dependence
of the resonator frequency �res on the resonator’s mode in-
tensity �An�2 as

�res � �n�1 + �n�n	n
�3��An�2� . �A3�

Here, we have used the notation �n=�n��n�. As we see, the
nonlinear sensitivity of the resonator at the site n is a product
of its nonlinear feedback parameter, �n, the sensitivity to a
change of the dielectric constant, �n, and the Kerr suscepti-
bility of material, 	n

�3�. The sign of this product defines the
direction of the resonator frequency shift. In particular, for
the polymer resonator used in Figs. 9 and 10, we obtain a
rather small shift, �n�n�−0.033 which indicates that for
	n

�3�0 the resonator frequency decreases as the light inten-
sity grows. Designing optical resonators with larger �n or �n,
may allow to enhance their nonlinear properties for a given
material with Kerr nonlinearity 	n

�3�.

3. Straight waveguides

Now let us consider an array of identical coupled cavities
separated by the distance s= �s�� which create a straight
photonic-crystal waveguide depicted in Figs. 1�b� and 1�c�.

FIG. 9. �Color online� Frequency dependence of the detuning
coefficient Dn��� for the 2D photonic crystal described in Appendix
A 1, for two types of resonators: Removing a single rod ��n=1.0;
solid line� leads to a localized mode at �n=0.392, while replacing a
single rod by a geometrically identical rod made of polymer ��n

=2.56, dashed line� leads to a localized mode at �n=0.374.

FIG. 10. Frequency dependence of the nonlinear feedback pa-
rameter �n��� for the 2D photonic crystal described in Appendix A
1. The nonlinear resonator is created by replacing a single rod with
a polymer rod of the same radius which supports at �n=2.56 a
localized mode with frequency �n=0.374.

FIG. 11. �Color online� Frequency dependence of the coupling
coefficients Vn,m��� for the 2D photonic crystal described in Ap-
pendix A 1 with a on-site side-coupled waveguide-resonator system
shown in Fig. 1�b�. The notations are the same as those in Eq. �24�
and we assume that the waveguide is created by removing every

second rod in a row �located at R� n=2a�1n� whereas the on-site reso-

nator is created by replacing a single rod at R� �=−2a�2 with a poly-
mer rod ��n=2.56� of the same radius. The dispersion relation for
such a waveguide is displayed in Fig. 12.
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Before proceeding, we would like to emphasize that our
analysis can equally well be applied to the coupled-resonator
optical waveguides �CROWs� suggested in Ref. �46�. If we
neglect nonlinear effects �assuming that either the waveguide
cavities are linear, 	n

�3�=0, or the light intensity in the wave-
guide remains sufficiently small�, Eq. �21� reduces to

Dw���An = �
j=1

�

Vjw����An+j + An−j� . �A4�

Here we have defined, similar to Eq. �24�, Dw����Dn���
and Vjw����Vn,n±j��� which are identical for all n.

In Fig. 11 we plot the frequency dependencies of V1w���
and V2w��� for a photonic-crystal waveguide created by re-
moving every second rod in a row, either with s�=2a�1 or with
s�=2a�2. In the vicinity of the polymer-rod resonator fre-
quency, the coupling coefficients are to lowest order con-
stant, V1w�0.096 and V2w�0.0086. In the general case, our
calculations show that the coefficients Vjw��� decay nearly
exponentially with j. In terms of frequency, they take on a
constant value at the central passing band frequency and
grow rapidly towards the low-frequency band-gap edge.

According to the Floquet-Bloch theorem, Eq. �A4� has a
solution An=A0 exp�±ik���sn� with an arbitrary complex
amplitude A0. The corresponding dispersion k��� is deter-
mined by the equation

Dw��� = �
j=1

L

2Vjw���cos�k���sj� , �A5�

where we assume that the coupling coefficients Vjw��� van-
ish for all j above L. As a matter of fact, our studies indicate
that sufficiently accurate results can be obtained already for
L�4a /s. In Fig. 12 we plot the dispersion relation for a 2D
model photonic-crystal waveguide and compare it with exact
numerical results calculated by the supercell plane-wave
method �47�. For this case, even the simplest tight-binding
approximation �i.e., at L=1� gives quite satisfactory results.

In the tight-binding approximation �L=1� the dispersion
relation can be described by the following simple expression:

cos�k���s� =
Dw���

2V1w���
�

� − �w

�w�w
, �A6�

where �w is the resonance frequency of the waveguide cavi-
ties. Furthermore, we have the dimensionless parameter

�w =
2V1w��w�
�wDw� ��w�

= 2V1w�w, �A7�

with V1w�V1w��w� and �w defined by Eq. �A1�, that equals
half-bandwidth of the waveguide transmission band. This
band extends from �w�1−�w� to �w�1+�w�. For our ex-

ample of photonic crystal waveguide, we find �w�0.052,
i.e., its bandwidth is about 10%.

APPENDIX B: EFFECT OF LONG-RANGE
INTERACTIONS

1. Effects of nonlocal dispersion

As follows from the results of Sec. III B above, the local-
coupling approximation provides us with an excellent quali-
tative analysis of the structure shown in Fig. 1�b�. However,
certain physically important effects may be missed in this
approximation. A detailed analysis of the effects of nonlocal
coupling was performed in Ref. �22�, so that here we may
discuss this issue very briefly, and may specify it directly to
photonic-crystal devices.

In Fig. 5, we provide a comparison of T��� calculated
from Eq. �29� in the local-coupling approximation with the
exact numerical results for the structure shown in Fig. 1�b�
for the model photonic crystal described in Appendix A 1.
The results suggest that the local-coupling approximation in-
troduces a frequency shift for the band edges which agrees
well with the corresponding frequency shift in the dispersion
relation shown in Fig. 12.

In addition, the resonance frequency is also shifted; it is
not equal to �� but is slightly larger. In principle, this shift
can be produced by two effects: �i� a long-range coupling
between cavities inside the waveguide and �ii� a long-range
coupling between the waveguide and the side-coupled reso-
nator. First, we explore the former possibility.

Solving Eqs. �24� and �25� for L=2, we obtain the trans-
mission and reflection coefficients �1� and �2� with the de-
tuning parameter

���� = 2 sin�ks�
D��V1w

3 + 3DwV1wV2w + 3V1wV2w
2 + 2V2w

3 cos�3ks�� − V0,�V�,0V1wV2w

V0,�V�,0�V1w
2 − V2w

2 + DwV2w�
, �B1�

FIG. 12. �Color online� Dispersion relation for a photonic-
crystal waveguide created by removing every second rod in a row
�s�=2a�1� in the 2D photonic crystal described in Appendix A 1.
Numerical exact results �solid line� are calculated with the supercell
plane-wave method �47� and the approximate results are obtained
from Eq. �A5� with L=1 �dotted line� and L=2 �dashed line�, using
the coupling coefficients from Fig. 11.
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where all the coefficients are assumed to be frequency-
dependent analogous to Eqs. �28� and �29�. The waveguide
dispersion k��� is now calculated from Eq. �A5� with L=2.

Figure 5 shows that the transmission calculated from Eq.
�B1� is much closer to the exact numerical results. In fact,
the nominator of Eq. �B1� indicates that, indeed, the reso-
nance frequency is slightly shifted from the value ��, and
that this shift is proportional to V2w. Since V2w is always
much smaller than V1w �see Fig. 11�, we can safely neglect
all the terms proportional to V2w

n with n�2, and obtain the
resonance frequency according to

�res � ���1 +
V0,�V�,0V1wV2w

�V1w
3 + 3DwV1wV2w�

��
 . �B2�

Here, the values of all coefficients are calculated at the fre-
quency ��, and �� is defined by Eq. �A1�.

In addition to the shift of the resonance frequency, a per-
fect transmission may occur at the frequencies for which the
denominator in Eq. �B1� vanishes,

V2w = V1w� cos�ks� ± 1 + cos2�ks� − 2 cos�2ks�
1 − 2 cos�2ks�


 .

�B3�

However, an analysis reveal that Eq. �B3� has solutions only
when �V2w���� exceeds �V1w���� /2, a condition that appears
to be impossible to realize in realistic photonic crystals.

2. Effects of nonlocal coupling

Another possible reason for a shift of the resonance fre-
quency is a nonlocal coupling between the waveguide cavi-
ties and the side-coupled resonator �. Here, we discuss this
effect in the framework of the tight-binding approximation
for the waveguide dispersion �i.e., L=1� to distinguish it
from the other type of nonlocal effects discussed in the pre-
ceding section. We assume that Vj,����=V�,j���=0 for all

j�2, and take into account that, for the symmetric structure
shown in Fig. 1�b�, the coupling coefficients are V−1,����
�V1,���� and V�,−1����V�,1���. Then, we obtain a solution
of Eqs. �24� and �25� in the form of Eqs. �1� and �2� with the
detuning parameter defined as

���� = 2 sin�ks�

�
D�V1w + V0,�V�,1 + V�,0V1,� + 2V�,1V1,� cos�ks�

�V�,0 + 2V�,1 cos�ks���V0,� + 2V1,� cos�ks��
.

�B4�

Here, all coefficients are assumed to be frequency-
dependent, similar to Eqs. �28� and �29�. Furthermore, the
waveguide dispersion k��� is calculated again from Eq.
�A6�.

Equation �B4� suggests that in this case the resonance
frequency becomes slightly shifted from the value ��, and
this shift is proportional to the values of V1,� and V�,1, which
for our example �see Fig. 5� are equal to V�,1=−0.0026 and
V1,�=−0.0022. Assuming that these coupling coefficients are
always much smaller than V0,� and V�,0 �cf. V�,0=0.096 and
V0,�=0.082�, we obtain for the resonance frequency

�res � ���1 −
V0,�V�,1 + V�,0V1,�

V1w
��
 . �B5�

Here, the coefficients are calculated at the resonance fre-
quency ��, and �� is defined by Eq. �A1�. For the example
shown in Fig. 5, this frequency shift is much smaller than
that described by Eq. �B2� because in this case the values of
V�,1 and V1,� are 3.3 times smaller than the value of V2w.

Due to this long-range coupling, there appears a possibil-
ity of perfect light transmission, as discussed in Ref. �22�,
but only in the case when �V�,1���� exceeds �V�,0���� /2
or �V1,����� exceeds �V0,����� /2. Again, such a scenario ap-
pears to be impossible to realize in realistic photonic crystal
structures.
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