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Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma
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High-order harmonic generation due to the interaction of a short ultrarelativistic laser pulse with overdense
plasma is studied analytically and numerically. On the basis of the ultrarelativistic similarity theory we show
that the high-order harmonic spectrum is universal, i.e., it does not depend on the interaction details. The
spectrum includes the power-law part I, n~%3 for n<\8 ay?mx, followed by exponential decay. Here 7y, is
the largest relativistic y factor of the plasma surface and « is the second derivative of the surface velocity at
this moment. The high-order harmonic cutoff at o y:nax is parametrically larger than the 4)/12][lax predicted by the
simple “oscillating mirror” model based on the Doppler effect. The cornerstone of our theory is the new

physical phenomenon: spikes in the relativistic 7y factor of the plasma surface. These spikes define the high-

order harmonic spectrum and lead to attosecond pulses in the reflected radiation.
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I. INTRODUCTION

High-order harmonic generation (HHG) from relativisti-
cally intense laser pulses interacting with solid targets has
been identified as a promising way to generate bright ul-
trashort bursts of x rays [1-3] as well as a powerful tool for
plasma diagnostics, already successfully applied for investi-
gation of the strongest magnetic fields generated in a labora-
tory [4,5]. The power-law spectrum of the high-order har-
monics generated at the boundary of overdense plasma was
recently measured experimentally [6].

For the first time this spectacular phenomenon was ob-
served with nanosecond pulses of long wavelength
(10.6 wm) CO, laser light [8]. Shortly after the experimental
observation in 1981, Bezzerides et al. studied the problem of
harmonic light emission theoretically [9]. Their approach
based on nonrelativistic equations of motion and hydrody-
namic approximation for the plasma predicted a cutoff of the
harmonic spectrum at the plasma frequency.

Ten years later, in 1993, a new approach to the interaction
of an ultrashort, relativistically strong laser pulse with over-
dense plasma was proposed by Bulanov et al. [10]. They
“interpreted the harmonic generation as due to the Doppler
effect produced by a reflecting charge sheet, formed in a
narrow region at the plasma boundary, oscillating under the
action of the laser pulse” [10]. The “oscillating mirror”
model predicts a cutoff harmonic number of 4972, where
Ymax 1S the maximal vy factor of the mirror.

At the beginning of 1996, numerical results of particle-in-
cell simulations of the harmonic generation by femtosecond
laser-solid interaction were presented by Gibbon [11]. He
demonstrated numerically that the high harmonic spectrum
goes well beyond the cutoff predicted in Ref. [9] and also
presented a numerical fit for the spectrum, which approxi-
mated the intensity of the nth harmonic as 7, %n™>. At about
the same time, the laser-overdense plasma interaction was
also studied by Lichters er al. [12].

The same year, the analytical work by von der Linde and
Rzazewski [13] appeared. The authors used the oscillating
mirror model and approximated the oscillatory motion of the
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mirror as a sine function of time without analysis of the
applicability of this approximation. With the explicit form of
the mirror motion an analytical formula for the harmonic
spectrum was obtained.

In the weakly and moderately relativistic regime, when
the laser intensity IN><10'® W um?/cm?, the dynamics of
the reflecting surface can also be influenced by harmonic
resonances [14,15].

An attempt to describe analytically the high-order har-
monics generated at the boundary of overdense plasma by a
short ultraintense laser pulse in a universal way that does not
rely on an explicit formula for the exact plasma mirror mo-
tion was made in Ref. [1]. This work proposed the idea of
universality of the harmonic spectrum. Making use of the
steepest descent method, the authors of Ref. [1] have shown
that the harmonic spectrum follows a slowly decaying power
law [,«<n7P, where the exponent p was expected to be p
=2.5. The analytically predicted power-law spectrum has
found a spectacular independent experimental confirmation
in the recently published paper of Dromey er al. [6]. The
experiment [6] confirmed the power-law spectrum decay
down to the “water window” range that opens a way to a
number of interesting potential applications [7].

In the present work we extend and generalize the physical
results obtained in Ref. [1], present the detailed physical pic-
ture of the HHG, and consolidate the analytical approxima-
tions. For the last couple of years the interest in the process
of HHG from plasmas has enjoyed a revival thanks to the
increasing interest in attoscience. The recent impressive
progress in the physics of attosecond x-ray pulses [16,17]
triggers the fascinating question of whether a range of even
shorter ones is achievable with the contemporary or devel-
oping experimental technology.

Plaja et al. [18] were the first to realize that the simple
concept of the oscillating mirror gives an opportunity to pro-
duce extremely short pulses and presented a numerical proof
that the radiation generated by oscillating plasma surfaces
comes in the form of subfemtosecond pulses. For the first
time the idea to use the plasma harmonics for the generation
of subattosecond pulses (zeptosecond range) was announced
in Ref. [1].
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FIG. 1. (Color online) Geometry of the problem. The laser pulse
is moving towards the overdense plasma slab, x is perpendicular to
the surface, and y and z are parallel to it.

The present paper is based on the physical picture dis-
cussed already in Ref. [1]. Yet, it goes further and studies in
detail the ultrarelativistic plasma-surface motion. We show
that the high-order harmonics are generated due to sharp
spikes in the relativistic vy factor of the plasma surface. This
new physical phenomenon leads to the spectrum cutoff at the
harmonic number 7

Neutoff = \“”8 a’}énax' ( 1 )

The cutoff (1) is much higher than the 47, cutoff predicted
by the simple oscillating mirror model. Here 7., is the
maximum vy factor of the surface and « is a numerical factor
of the order of unity, related to the plasma-surface accelera-
tion. Explicit expressions for the attosecond pulse duration as
a function of the laser-plasma parameters and the filter
threshold are derived.

Our analysis significantly exploits the relativistic plasma-
similarity theory [20,21], which was developed after Ref. [1]
had been published. The similarity theory enables us to con-
solidate our previous results and to present them in a
straightforward and clear way.

In this paper we first discuss the physical picture of HHG.
The production of high-order harmonics is attributed to the
new physical effect of the relativistic spikes. Then, we de-
velop analytical theory describing the spectrum of the high-
order harmonics and show that this spectrum is universal
with slow power-law decay. Finally, the theory is compared
with direct particle-in-cell (PIC) simulations.

II. PHYSICAL PICTURE OF HHG AT
OVERDENSE PLASMA BOUNDARY

In this section we state the problem of HHG at the bound-
ary of overdense plasma and qualitatively describe its main
features, which will find their analytical and numerical con-
firmation in what follows.

Let us consider a short laser pulse of ultrarelativistic in-
tensity, interacting with the sharp surface of an overdense
plasma slab (see Fig. 1). We assume that the incident laser
pulse is short, so that we can neglect the slow ion dynamics
and consider the electron motion only. The electrons are
driven by the laser-light pressure; a restoring electrostatic
force comes from the ions. As a consequence, the plasma
surface oscillates and the electrons gain a normal momentum
component.
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FIG. 2. (a) Electron momentum component parallel to the sur-
face as a function of time. (b) The velocity of the plasma surface v,
is a smooth function of time, unlike the 7 factor of the surface (c).

Since the plasma is overdense, the incident electromag-
netic wave is not able to penetrate it. This means that there is
an electric current along the plasma surface. For this reason,
the momenta of electrons in the skin layer have, apart from
the components normal to the plasma surface, also tangential
components.

According to the relativistic similarity theory [21], both
the normal and tangential components are of the order of the
dimensionless electromagnetic potential a,. Consequently,
the actual electron momenta make a finite angle with the
plasma surface most of the time.

Since we consider a laser pulse of ultrarelativistic inten-
sity, the motion of the electrons is ultrarelativistic. In other
words, their velocities are approximately c. Though the mo-
tion of the plasma surface is qualitatively different, its veloc-
ity v, is not ultrarelativistic most of the time but smoothly
approaches ¢ only when the tangential electron momentum
vanishes [see Fig. 2(b)].

The vy factor of the surface vy, also shows specific behav-
ior. It has sharp peaks at those times when the velocity of the
surface approaches c [see Fig. 2(c)]. Thus, while the velocity
function v, is characterized by its smoothness, the distinctive
features of 7, are its quasisingularities.

When v, reaches its maximum and 7, has a sharp peak,
high-order harmonics of the incident wave are generated and
can be seen in the reflected radiation. Physically this means
that the high-order harmonics are due to the collective mo-
tion of bunches of fast electrons moving towards the laser
pulse [19].
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FIG. 3. The universal high-order harmonic spectrum contains
power-law decay and exponential decay (plotted in a logarithmic
scale).

These harmonics have two very important properties.
First, their spectrum is universal. The exact motion of the
plasma surface can be very complicated, since it is affected
by the shape of the laser pulse and can differ for different
plasmas. Yet the qualitative behavior of v, and v, is univer-
sal, and since it governs the HHG, the spectrum of the high-
order harmonics does not depend on the particular surface
motion.

We show below that the high-order harmonic spectrum
contains two qualitatively different parts: power-law decay
and exponential decay (see Fig. 3). In the power-law part the
spectrum decays as

I, 1/n3, (2)

up to a critical harmonics number that scales as ..., where
I, is the intensity of the nth harmonic (see Sec. V). Here Yiax
is the maximal vy factor of the point, where the component of
the electric field tangential to the surface vanishes (see Sec.
Iv).

The second important feature of the high-order harmonics
is that they are phase locked. This observation is of particular
value, since it allows for the generation of attosecond and
even subattosecond pulses [1].

III. ULTRARELATIVISTIC SIMILARITY
AND THE PLASMA-SURFACE MOTION

The analytical theory presented in this work is based on
the similarity theory developed in Ref. [21] for collisionless
ultrarelativistic laser-plasma regime and is valid both for
under- and overdense plasmas. The ultrarelativistic similarity
theory states that when the dimensionless laser vector poten-
tial ag=eA,/mc? is large (a%>1) the plasma-electron dy-
namics does not depend on a, and the plasma-electron den-
sity N, separately. Instead they merge in the single
dimensionless similarity parameter S defined by

—_— Ne
aoN,’
where N,=wjm/4me? is the critical electron density for the
incident laser pulse with amplitude a, and carrier frequency
.
In other words, when the plasma density N, and the laser
amplitude a, change simultaneously, so that S=N,/ayN,

S

3)
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=const, the laser-plasma dynamics remains similar. In par-
ticular, this basic ultrarelativistic similarity means that for
different interactions with the same S=const, the plasma
electrons move along similar trajectories while their mo-
menta p scale as

P *<agp. (4)

The S similarity corresponds to a multiplicative transfor-
mation group of the Vlasov-Maxwell equations, which ap-
pears in the ultrarelativistic regime. The similarity is valid
for arbitrary values of S. Physically the S parameter separates
relativistically overdense plasmas (S>1) from underdense
ones (§<1).

To apply the key result (4) of the similarity theory to the
plasma-surface motion, we rewrite Eq. (4) for the electron
momentum components that are perpendicular, p,, and tan-
gential, p,, to the plasma surface;

P, > ag, P> ap. (5)

This result is significant. It shows that when we increase the
dimensionless vector potential a, of the incident wave while
keeping the plasma overdense, so that S=const, both p, and
P, grow as a,. In other words the velocities of the skin-layer

electrons
2. 2
pn+p7 -2
v=c\| 55 5 S =cl1-0(q 6
\/m§c2+pﬁ+p2 [ (ag")] (6)

T

are about the speed of light almost at all times. Yet the rela-
tivistic 7y factor of the plasma surface y,(z’) and its velocity
B,(t') behave in a quite different way. To realize this key
fact, let us consider the electrons at the very boundary of the
plasma. The scalings (5) state that the momenta of these
electrons can be represented as

pn(t’) = aOPn(S, th’) 5

(1) = agP (S, wt"), ()

where P, and P, are universal functions, which depend on
the pulse shape and the S parameter rather than on a, or N,
separately. Consequently, for B,(¢") and 7y,(¢') one obtains

. pat") __n)

pL= Vm2 + p2(e) +p2(1) NP2t +PA1) ot

(8)

=t a1+ 2D o 9)
g TN TR T

One sees from Eq. (6) that when a, gets large, the rela-
tivistic y factor of the electrons becomes large too and their
velocities approach the velocity of light. However, the dy-
namics of the plasma boundary is significantly different. For
large ays the plasma-boundary motion does not enter the ul-
trarelativistic regime and its relativistic 7y factor y,(¢') is gen-
erally of the order of unity. Yet there is one exception: if at
the moment 7, it happens that P(S,7,)=0, i..,
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pA(S.7,) =0, (10)
we have
1 P>+ m2c?
o= = o — xq. 11
Y \/1 ~ ,3% mgcz 0 (11)

So the relativistic y factor of the boundary jumps to v,(z,)
«a, and the duration of the relativistic y-factor spike can be
estimated as

At, x l/(aowo). (12)

For the velocity of the plasma boundary one finds analo-
gously that it smoothly approaches the velocity of light as
Bs(t;,)z[l—O(a‘z)]. Figure 2 represents schematically this
behavior. As we will see later, the vy, spikes cause the gen-
eration of high-order harmonics in the form of ultrashort la-
ser pulses.

IV. BOUNDARY CONDITION: ENERGY CONSERVATION
AND THE APPARENT REFLECTION POINT

In this section we introduce the boundary condition de-
scribing the laser-overdense plasma interaction appealing to
physical arguments, just as it was previously done in Refs.
[1,18]. Mathematically rigorous analysis of the boundary
condition is given in Ref. [19]. However, for the purposes of
the present work it is sufficient to treat this problem on a
more intuitive basis [1].

One might expect that the oscillating mirror model could
describe the laser-plasma interaction in our problem. There-
fore we want to explain in detail why it is not the case and
then present the derivation of the correct boundary condition.

The oscillating mirror model implies that the tangential
components of the vector potential are zero at the mirror
surface. As a consequence, if the ideal mirror moves with
y>1 towards the laser pulse with the electric field E; and the
duration 7, the reflected electric field will be E,.; < y*E; and
the pulse duration will be 7% 7,/7?. The energy of the
reflected pulse would then be 77 times higher than that of the
incident one. However, since the plasma surface is driven by
the same laser pulse, this scaling is energetically prohibited
and consequently the plasma cannot be described as an
“ideal mirror.”

To derive the correct boundary condition, let us consider
the tangential vector-potential components of a laser pulse
normally incident onto an overdense plasma slab. These
components satisfy the equation

1 PA (1, PA1, 4,
& aTt(ZtX)_ &;§X)=7’Tj(t,x), (13)

where A (r,x=—2)=0 and j is the tangential plasma-current
density. Equation (13) yields

400
A (t,x) = Zﬂf J(t,x,t" ,x")dt dx’ . (14)

Here J(z,x,1’ ,x")=j(¢',x")(®_-0,), where we have defined
O_=0(t—1t'—|x-x'|/c) and O,=0O[t—1'+(x—x")/c], using
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the Heaviside step function ®(r). Due to this choice of J the
vector potential A (¢,x) satisfies both Eq. (13) and the
boundary condition at x=—% since J(¢,x=—%,¢,x")=0. The
tangential electric field is E =—(1/¢)d,A (t,x). If we denote
the position of the electron fluid surface by X(r) we have

a=+1 _%

Efx0]=""3 a

a=—1 0

jle+ aéle,X(t) + €ldé, (15)

where &=x"-X(1).

Now one has to estimate the parameters characterizing the
skin layer, i.e., the characteristic time 7, of skin-layer evolu-
tion (in the comoving reference frame) and the skin-layer
thickness &. Since the plasma is driven by the light pressure,
one expects that 7,%1/w, The estimation of & is more
subtle. From the ultrarelativistic similarity theory follows
that 8 (c/w,y)S®, where S>1 for strongly overdense plas-
mas and A is an exponent that has to be found analytically. In
this work we do not discuss the exact value of A, but notice
that this quantity does not depend on either S, or a,. On the
other hand, the denser the plasma, the less the value of &.
This condition demands that A<<0 and we get ¢/ wy> & for
S>1.

If the characteristic time 7, of the skin-layer evolution is
long (c7,>0), then we can use the Taylor expansion
jltxélc.x'=X(t)+&]=j(t,x")xe, where e=(&/¢)d,j(t,x'),
and substitute this expression into Eq. (15). The zero-order
terms cancel each other and we get E [7,X(r)]*J,(6/cT)
<E, where J, % cE, is the maximum plasma-surface current.
Thus, as long as the skin layer is thin and the plasma-surface

current is limited, we can use the Leontovich boundary con-
dition [22]

e, X E[£,X(1)]=0. (16)

This condition has a straightforward relation to energy con-
servation. Indeed, if we consider the Poynting vector

c
S=—E X B, (17)
4

we notice that the boundary condition (16) represents a bal-
ance between the incoming and reflected electromagnetic en-
ergy flux at the boundary X(7).

The boundary condition (16) allows for another interpre-
tation. An external observer sees that the electromagnetic
radiation gets reflected at the point xsgp(#), where the normal
component of the Poynting vector S,=cE, XB,/47=0, im-
plied by E_(xsgp)=0. We call the point x,gp(?) the apparent
reflection point (ARP).

The actual location of the ARP can be easily found from
the electromagnetic-field distribution in front of the plasma
surface. The incident laser field in vacuum runs in the nega-
tive x direction, E(x,7)=E/(x+ct), while the reflected field is
translated backwards, E’(x,f)=E’(x—cr). The tangential
components of these fields interfere destructively at the ARP
position xzp(), so that the implicit equation for the apparent
reflection point x,gp(?) is

046404-4



THEORY OF HIGH-ORDER HARMONIC GENERATION IN...

Ei.(xARp+Ct)+E:.(.xARP—Ct):O. (18)

We want to emphasize that Eq. (18) contains the electromag-
netic fields in vacuum. That is why the reflection point x,rp
is apparent. The real interaction within the plasma skin layer
can be very complex. Yet, an external observer, who has
information about the radiation in vacuum only, sees that
E_ =0 at x5gp. The ARP is located within the skin layer at the
electron-fluid surface, which is much shorter than the laser
wavelength for overdense plasmas for which the similarity
parameter is S> 1. In this sense, the ARP is attached to the
oscillating plasma surface.

V. HIGH-ORDER HARMONIC UNIVERSAL SPECTRUM

According to Eq. (16), the electric field of the reflected
wave at the plasma surface is

E [/, X(t")]=-E[/".X(")], (19)

where E [, X(¢')]=—(1/c)d,A[t',X(¢")] is the incident la-
ser field and ¢’ is the reflection time. The one-dimensional
wave equation translates signals in vacuum without change.
Thus the reflected wave field at the observer position x and
time 7 is E,(r,x)=—E[#',X(¢')]. Setting x=0 at the observer
position we find that the Fourier spectrum of the electric field
E,(t,x=0) is

+00

E(Q)= meﬂ Re(ia{[ct' + X(¢) ) c7o}
eN2mJ
Xexp[—iwgt’ — iwyX(t")/c)]exp(- iQe)dt,
(20)
where
' =X(t")c=t (21)

is the retardation relation [12].

The fine structure of the spectrum of E,(r) depends on the
particular surface motion X(¢), which is defined by the com-
plex laser-plasma interaction at the plasma surface. Previous
theoretical works on high-order harmonic generation from
plasma surfaces [11-13,18] tried to approximate the function
X(z) in order to evaluate the harmonic spectrum. The analyti-
cal description of the high-order harmonic intensity spectrum
and the concept of universality were presented in Ref. [1].
This work has shown that the most important features of the
high-order harmonic spectrum do not depend on the detailed
structure of X(r). The relativistic similarity theory, which was
developed later [21] not only simplifies the physical picture
of HHG, but, as we will see below, also influences the
saddle-point technique [23] in this regime.

To find the spectrum, we notice that the investigation of
E,(Q) [Eq. (20)] is equivalent to the investigation of the
function

J(n) = fi(n) + f(n), (22)

where
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FIG. 4. Surface dynamics and path integration in Eq. (25). (a)
Velocity x'(7') of the plasma surface; x,=(n—1)/(n+1) are the
saddle points corresponding to d®/d7'=0. (b) The integration path
can be shifted below the real axis everywhere except in the neigh-
borhood of ré (dashed regions).

fo= =% f”’ gl7 +x(7)]exp{zi[ 7 + x(7')] - inT}dT.
(23)

Here 7=wt, 7 =wpt’, n=0Q/ wy, x(7')=(wy/c)X(¢'), and g is
a slowly varying function (|dg(7')/d7’|<1), which is trivi-
ally related to a as
—im,c
gl7 +x(7)]= —==a{lct’ + X(t'))/cmy}. (24)
2eN2r

Making use of Eq. (21) we rewrite Eq. (23) as

fo= % f gl +x(7)]expliT’ (=nx1)+ix(7)(nx1)]

X[1—x'(7)d7. (25)

We wish to examine the integral (25) for very large n. For
this purpose, we notice that the derivative of the phase

O()=7(=nx1)+x(7)n=x1) (26)

is negative everywhere except in the vicinity of Té:mot; for
which x'(7;) =1 [see Fig. 4(a)].

The physical meaning of 7, and the behavior of x(7') in
the vicinity of these times is explained by Eq. (10). Since the
time derivative of ®(7’) is negative for all 7s that are not too
close to one of the T;S, we can shift the path over which we
integrate to the lower half of the complex plane everywhere
except in the neighborhood of 7, [see Fig. 4(b)]. The contri-
butions of the parts remote from the real axis are exponen-
tially small. We can shift the path to the complex plane until
the derivative equals zero or we find a singularity of the
phase ©.

To calculate the contributions of T;’, neighborhoods we can
expand x'(7') near each of its maxima at 7,. Since every
smooth function resembles a parabola near its extrema, the

046404-5



BAEVA, GORDIENKO, AND PUKHOV

expansion of x'(7') is a quadratic function of (T’—Té).
Simple integration leads to the following expression for
x(7'):

x(7') = x(7)) +vo(7) (7' = 7) — a—(;’;'l(r' - 7';’,)3. (27)

The Taylor expansion given by Eq. (27) has three important
properties related to its dependence on S and ay: (1) for §
=const and ay— +% one finds that vy—c; (2) for ay— +,
a depends only on the parameter S; (3) the expansion (27) is
a good approximation for |7’ — 7| < (27/ w)f;(S), where the
function f; does not depend on a,. These three properties are
mathematical statements of the physical picture described in
Sec. I combined with the similarity theory developed in Sec.
III. In other words, the properties of the expansion (27) just
mentioned are direct consequences of the physical picture
presented in Fig. 2.
The substitution of Eq. (27) into f,(n) yields

fuln) =2 ful7n), (28)

where the sum is over all times Té,

f+(7'é,n) = g[Té + x(T;,)]exp[i®+(Té,n)]F(T;,n), (29)

f—(Té,n) =- g[T;, + x(TS’,)]exp[i®_(7';,n)]F(T',— n),

(30)
. 4 [ 2 n-n,(7) )
) = , (31
Fem) = <ncr(fg> [a(rymy5)> OV
0. = £[7,+x(7)]+n[x(7)) - 7], (32)

and n,,=2/(1-vy). In Eq. (31) Ai is the well-known Airy
function, defined as

+o0
Ai(x) = ;f cos(ux + llf)du. (33)
VarJo 3
Note that if x(7+7)=x(7") and g(7)=g(7'+m), then
f+(2n)=0. Using Egs. (28)—(32) we can show analytically
that the spectrum of radiation generated by the plasma is
described by a universal formula.
For the intensity of the nth harmonic we obtain

1, exp[i®,(n)]F(n) — exp[i®_(n)JF(-n)|*,  (34)
where
4\s"1_7 [ 2 n—-ng,
F(”)=WAl<n_cr(an)l/3>’ (35)
@i(n) = % @0 - nl N (36)

with the Airy function Ai(x) defined in Eq. (33) and the
critical harmonic number 7., satisfying ”cr=4%2nax’ where
Ymax 18 the largest relativistic factor of the plasma boundary.

Equation (34) gives an exact formula for the high-order
harmonic spectrum, which includes both power law and ex-
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ponential decay parts. Now we want to use different
asymptotic representations of the Airy function in order to
demonstrate explicitly these two quite different laws of high-
order harmonic intensity decay.

For n<+\a/8n>* [2|1-=n/n,,|<(an)"?] we can substitute
the value of the Airy function at x=0 [Ai(0)
=\/[3?°T'(2/3)]=0.629, Ai'(0)==361(2/3)/(2\7)=
-0.459] in Eq. (34), and obtain

. Ai'(0) 2
I, W sin O + AI0) B(n,0.)| ., 37)
where
2 sin @0( n )2/3 2i cos O

B(n,0g)=——7| —| +-——5. (38
(n,00) (an,, 173 1, (an) (38)

This means that the universal spectrum
I, 1/n%3 (39)

is observed everywhere except for sin ®,~0, when the
dominant term in the expansion is zero. For this particular
case, a higher-order correction is important for

Ai’(0)
13
tan O, < 2 40
() an 0 < 2|~ - (40)
and in this restricted frequency range the spectrum

I, 1/n'%3 (41)

should be used.

At this point we want to explain the meaning of
8/3-spectrum universality. Notice that since Eq. (37) de-
pends on the phase ®, for moderate values of n,, the best
power-law fit of the high-order harmonic spectrum can be
delivered by

I,cn™?, (42)

where 8/3<p=<10/3. When n, becomes really large, the
majority of the harmonics does not satisfy the inequality (40)
and the spectrum inevitably becomes I,%n 3. In other
words, one should think of the 8/3 spectrum as the high-
intensity limit of the high-order harmonic spectrum. To find
an analytical criterion for the 8/3-spectrum generation one
can state that the condition (40) has to be violated for the
harmonics with n o \s"a/ 8n3£2. This means that

1 Ai'(0)
Ymax > Y813 = \E tan @0 AI(O) . (43)
The formal expansion of the Airy function for
n<n,, (an)'®<1 (44)

leads to the spectrum 7, 1/n*? discussed in Ref. [1]. How-
ever, the similarity theory shows that a does not depend on
ay and N, separately, but on S, giving a=a(S), whereas the
cutoff is OCag. Moreover for experimental laser-overdense
plasma interaction S is of the order of unity, therefore one
expects @= 1. As a result an increase in a, (S=const) leads
to the violation of condition (44) for all but the lowest har-
monics. This makes the case of I,%n™>? irrelevant. How-
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ever, the analytically accurate spectrum /,,<n™? with the ex-
ponent p=2.67 differs from the one with p=2.5 predicted in
Ref. [1] only by 0.17. This difference is hardly distiguishable
numerically and experimentally. What does differ is the ac-
tual cutoff of the spectrum. The approximation presented in
Ref. [1] delivers a cutoff located at n,,=47?,.. Our present
analysis shows that although the spectrum begins to deviate
from the exact power law at n,,, this deviation is small and
can be neglected. The significant cutoff begins only at n
o \J'mnifm rax and therefore is parametrically larger than
n.. This new result opens a way to important applications.
For n>\a/8n* [2|1-n/n,|> (an)"] Eq. (31) can be

rewritten as
-
! nif 16N2n-n,,
oC exp _—_—
n= 3 3012 32

cr

(45)

It is interesting to notice that the approximation used in Ref.
[1] also gives Eq. (45) for this area.

VI. ULTRASHORT PULSE DURATION

For ultrashort pulse generation not only the amplitudes
but also the harmonic phases are of importance. The calcu-
lations presented above show that all harmonics are phase
locked. This means that after proper filtering they can pro-
duce a pulse of duration 7, such that

T 1 1
TOC—/——MM—, (46)

—
/ /
Wo van,, V&Y max

where w is the frequency of the fundamental wave.
Equation (46) presents a new result. Notice that the
plasma boundary never moves with a relativistic y factor
larger than v,,,,. Consequently, the frequency of a photon
reflected from this boundary due to the relativistic Doppler
effect does not exceed 4)/[2naxwo=nc,w0. How can a pulse with
duration T given by Eq. (46) be produced then?
Mathematically this can be understood looking at the
properties of the Airy function. Ai(x) changes its behavior

from oscillatory for x <0 with |x|>1,

. I (2 ™
Ai(x) = |x|—1/4 sm(§|x|3/2 + Z) s (47)
to exponentially decaying for x> 1,
) 1 2
Ai(x) = m eXp(— §x3/2) . (48)

The point x=0 corresponds to n=n,,. However, the exponen-
tial is so small for n< \e“mniﬁz that the power-law decay
dominates over the exponent. As a result, the power-law
spectrum goes well beyond the threshold wgyn,., predicted by
oversimplified models considering reflection from a moving
surface.

The reasoning just presented explains the mathematical
origin of the Va/8n> cutoff. In the next section we give a
simple physical interpretation of this result and reveal its
relation to the relativistic y-factor spikes. We also take a

closer look at the mathematical origin of the cutoff.
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VII. RELATIVISTIC SPIKES AND CUTOFF OF
THE HIGH-ORDER HARMONIC SPECTRUM

The 7? scaling of the spectrum cutoff (1) is readily under-
stood using the relativistic y-factor spikes of the plasma-
surface motion. Indeed, the plasma-surface velocity in the
vicinity of a maximum can be approximated as

v(t) =vy(t,) - awé(t - z‘g)2 (49)
(see Sec. V). Consequently, for the surface 7y factor during a
relativistic spike we find
'}/max
V1 + 'yfnaxawg(t - tg)2 '

where Ypa=1/ l—v(z)(tg)/ 2. Equation (50) shows that the
highest-order harmonics are generated over the time interval

) = (50)

1 1
At oc ——. (51)

[

(J)O V’ a 7max

For the whole time interval Ar the relativistic spike moves
with ultrarelativistic velocity in the direction of the emitted
radiation. For this reason, the spatial length L of the high-
order harmonic pulse produced is

1
L o [c = voltg) JAr o ~————. (52)
o \‘”a')’max

A pulse of such duration contains frequencies
c —
Qe z * wo\"a/y?nax’ (53)

which physically explains the origin of the high-frequency
cutoff (1). This cutoff should be compared with the one pre-
dicted by the oscillating mirror model 47, It differs para-
metrically from the correct cutoff «y8ay, .., which is due to
the relativistic y-factor spikes.

As it has been shown, the oscillating mirror model gives
the incorrect formula for the spectrum cutoff because it does
not include the relativistic y-factor spikes. Mathematically,
this failure of the oscillating mirror model [10,18] is related
to the saddle-point overlapping. Equation (26) defines the
saddle points

1
—— =1, (54)
n

the vicinity of which determines the value of the integral
describing the amplitude of the nth harmonic, n> 1 (see Fig.
4). Equation (27) yields that the set of Eq. (54) has real (not
imaginary) solutions only for n<nC,=4yIzmx. For larger n all
of the saddle points of Eq. (54) have an imaginary part.

Let us now apply the standard saddle-point method to the
problem without investigating whether the conditions for its
applicability are met (it is clear that these conditions are
violated at least for n=n,,, for which two saddle points co-
incide). This approximation predicts that for 1 <n<n,,, the
spectrum decays as 1/n%2. For n>n,,, this approach restores
Eq. (48).
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As was mentioned above, the spectrum 1/ 12 occurs for-

mally in the limit (an)><1. In other words, if a were
small, this spectrum would be observed. However, since a
depends on S rather than a, this spectrum corresponds to
harmonics with small numbers only and is hardly of any
practical interest. On the other hand, one can notice that «
describes the plasma-surface acceleration at the maximum of
the velocity. This means that the limit of small « (and the
spectrum 1/n>?) describes the limit of the surface moving
without acceleration. However, this limit is of little interest
for large ay.

VIII. CUTOFF AND THE STRUCTURE
OF FILTERED PULSES

As we have seen, the relativistic plasma harmonics are
phase locked and can be used to generate ultrashort pulses.
However, to extract these ultrashort pulses, one has to re-
move the lower harmonics. The high-energy cutoff (1) of the
power-law spectrum defines the shortest pulse duration that
can be achieved this way.

Let us apply a high-frequency filter that suppresses all
harmonics with frequencies below (), and study how the
relative position of the () and the spectrum cutoff affects the
duration of the resulting (sub)attosecond pulses.

According to Eq. (34), the electric field of the pulse after
the filtration is

E xRe J‘+°° {expli®,(n)]F(n)
Qj/“’o

—exp[i®_(n) |F (- n)}texp(int)dn. (55)

The structure of the filtered pulses depends on where we
set the filter threshold Q. In the case 1 <€/ wy<Va/ 8n?,
we use Eq. (39) and rewrite Eq. (55) as

* explint
EoRe f pUnD) 4
Qj/“’() n

w |3
=\a. Re exp(iQ1 - i0,)P(Q1), (56)
f

where the function P

P(x) = f - %dy (57)
1

gives the slow envelope of the pulse.

It follows from the expression (56) that the electric field
of the filtered pulse decreases very slowly with the filter
threshold as Q}U 3. The pulse duration decreases as 1/ Q. At
the same time, the fundamental frequency of the _p_ulse is Qf.
Therefore the pulse is hollow when ),/ w,<< V8ayl ., ie.,
its envelope is not filled with electric-field oscillations. One
possible application of these pulses is to study atom excita-
tion by means of a single strong kick.
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The pulses structure changes differ significantly when the
filter threshold is placed above the spectrum cutoff. For
Oyl wy> \s’Saﬁnax we use Egs. (45) and (55) to obtain

E x (ﬂ>3/2 exp(— 8\Eﬂf )R
QO 3\'/;w0n3/2

cr

eXp(ith - l®1)
e—— = .
8V2/(3Van?) + iwyt

(58)

Th amplitude of these pulses decreases fast when (), grows.
However, the pulse duration «1/ V/Z/’)ﬁmax does not depend on
). Since the fundamental frequency of the pulse grows as
Qf, the pulses obtained with an above-cutoff filter are filled
with electric-field oscillations. Therefore these pulses are
suitable to study the resonance excitation of ion and atom
levels.

The minimal duration of the pulse obtained by cutting off
low-order harmonics is defined by the spectrum cutoff
«\a87y. . Physically, this result is the consequence of the
ultrarelativistic spikes in the plasma-surface vy factor.

IX. SPECTRUM MODULATIONS

In this section we discuss the harmonic phases and show
how the interference of harmonics produced by different y
spikes can lead to spectrum modulations.

Equation (28) obtained in Sec. V allows for straightfor-
ward physical interpretation. The sum f_(T(;,n)+ f+(7';,n)
gives the contribution of the 7';, spike of the surface-
relativistic factor to the harmonic spectrum (see Fig. 4).
Therefore the phase of the nth harmonic ¢, due to the 7';
spike is given by

1- F(T;,,— n)/F(T,,:,,n)
1+ F(7;,— n)/F(7,,n) ’
(59)

tan[ ¢, (7;) +n0,(7;)]tan(®) =

where Oy(7;)=7,+x(7,) is the phase of the incident laser
pulse at the time 7, and ©,(7}) =7, —x(7,)="7(7,), the time of
the observation, i.e., the symbol ®, is redundant, yet we
keep it for the sake of notation coherency.

Since F(7,,~n)=~F(7;,n) for n>1, Eq. (59) gives rise to
¢u(7,)~-nO(7;). This means that each spike radiates
phase-locked high-order harmonics that can be used for ul-
trashort pulse production. Another consequence of F(7.,
-n)=F (T;,,n) is that the amplitude of the harmonics is pro-
portional to sin[O(Tgf)].

The mechanism presented in Fig. 2 has another very in-
teresting consequence. Each harmonic is generated due to
several spikes. These spikes contribute to Eq. (28) with dif-
ferent phase multipliers. This phase difference leads to
modulations in the high-order harmonic spectrum. As an ex-
ample we consider the interference between the harmonics
produced by two different spikes in detail. The phase shift
between the contributions from different spikes is

B, ) = B(7,) = O(7, ) = Og(7, ) ~ n[O4(7] ) ~ O, (7]

and can be large for large n. Since for
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n< min[\/a(Tél)/Sngiz(Tél), \/a(rgz)/Sniﬁz(Té)]

only Ai(0) enters fi(T;Lz), the values of the contributions
from the T;’, spikes for this harmonic range do not depend
on ncr(T;,Lz). As a result the modulations in this harmonic
range depend only on the parameter S. To recapitulate, the
nontrivial plasma motion producing more than one 7y spike
per oscillation period is the cause of the spectrum modula-
tion.

X. NUMERICAL RESULTS

In order to check our analytical results, we have per-
formed a number of 1D PIC simulations with the 1D
particle-in-cell code VLPL [24]. In all simulations a laser
pulse with the Gaussian envelope a=a, exp(~1>/77)cos(wyt),
duration wy7; =4, and dimensionless vector potential a
=20 was incident onto a plasma layer with a step-density
profile.

A. Apparent reflection point

First, we study the oscillatory motion of the plasma and
the dynamics of the apparent reflection point defined by the
boundary condition (16) [26]. The plasma slab is initially
positioned between xp=-1.5N and x;=-3.9\, where A
=27/ wy is the laser wavelength. The laser pulse has the
amplitude a,=20. The plasma density is N,/N.=90 (S
=4.5).

At every time step, the incident and the reflected fields are
recorded at x=0 (the position of the “external observer”).
Being solutions of the wave equation in vacuum, these fields
can be easily chased to arbitrary x and . To find the ARP
position x,gp, We solve numerically Eq. (18). The trajectory
of xsgrp(?) obtained in this simulation is presented in Fig.
5(a). One can clearly see the oscillatory motion of the point
xarp(?). The equilibrium position is displaced from the initial
plasma-boundary position xp due to the mean laser-light
pressure.

Since only the ARP motion towards the laser pulse is of
importance for the HHG, we cut out the negative ARP ve-
locities v agp(f) =dxarp(t)/dt and calculate only the positive
ones [Fig. 5(b)]. The corresponding 7y factor y,rp(?)
=1/\1-vagp(t)?/c? is presented in Fig. 5(c). Notice that the
ARP velocity is a smooth function. At the same time, the y
factor yarp(?) contains sharp spikes, which coincide with the
velocity extrema. These numerical results confirm the predic-
tions of the ultrarelativistic similarity theory, which were
presented in Sec. III.

B. High-order harmonic spectrum

For the same laser-plasma parameters (a,=20, N,=90N..)
the spectrum of high-order harmonic radiation is presented in
Fig. 6. The maximum v factor of the apparent reflection
point in this numerical simulation is v, =~3.3 (compare
with Fig. 5). Consequently, the maximal harmonic number
predicted by the oscillating mirror model lies at 47, ~40,
while the harmonic cutoff predicted by the relativistic spikes
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FIG. 5. 1D PIC simulation results for the parameters a,=20 and
N,=90N,. (a) Oscillatory motion of the point xsgp(f) where
E [x(1)]=0. (b) Velocity v srp(t) =dxarp(t)/dt; only the positive ve-
locities are shown, since they correspond to motion towards the
laser pulse in the geometry of this simulation. Notice that the ARP
velocity is a smooth function. (c) The corresponding 7y factor
Yarp()=1/y/1=vogp(1)?/c? contains sharp spikes, which coincide
with the velocity extrema.

is about 100. Figure 6 clearly demonstrates that there is no
change of the spectrum behavior at 497, , while steeper de-
cay takes place above 100, as predicted by our theory. Also,
the spectral-intensity modulations discussed in Sec. V and
Refs. [3,25] are observed.

10"

Intensity (arb. units)

10" T .:
1 10 100

w/ @,

FIG. 6. Spectrum of high-order harmonics obtained numerically
for the case of ay=20 and N,=90N,, corresponding to S=4.5 and
YVinax = 3-3. Assuming a= 1, the cutoff (1) is expected at n=100.
This analytically predicted cutoff is marked by the dashed line.
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FIG. 7. Spectra of the reflected radiation for the laser amplitude
ap=20 and the plasma density N,=30N,,. The broken line marks
the universal scaling o w33,

To be able to make a real statement about the power in the
power-law decay of the spectrum we need more harmonics
in order to satisfy the condition of universal 8/3-spectrum
formation (43). For this reason we made the simulation with
parameters ay=20 and N,=30N,, which roughly corresponds
to solid hydrogen or liquid helium. The reflected radiation
spectrum obtained for these parameters is shown in Fig. 7 in
the log-log scale. The power-law spectrum 7,5 1/n%3 is
clearly seen here, thus confirming the analytical results of
Sec. V.

C. Subattosecond pulses

Let us take a closer look at Fig. 7. The power-law spec-
trum extends at least until the harmonic number 2000 and
zeptosecond (1 zs=1072!s) pulses can be generated. The
temporal profile of the reflected radiation is shown in Fig. 8.
When no spectral filter is applied [Fig. 8(a)], a train of at-
tosecond pulses is observed [18]. However, when we apply a
spectral filter selecting harmonics above n=300, a train of
much shorter pulses is obtained [Fig. 8(b)]. Figure 8(c)
zooms into one of these pulses. Its full width at half maxi-
mum (FWHM) is about 300 zs. At the same time its intensity
normalized to the laser frequency is huge (eE.,/mcw)*~ 14.
This corresponds to the intensity 7,,=~2 X 10! W/cm?.

D. Filter threshold and the attosecond pulse structure

The dependence of the short pulses on the position of the
filter also can be studied numerically. We apply a filter with
the filter function f(w)=1+tanh[(w—-{/)/Aw]. It passes
through frequencies above (), and suppresses lower frequen-

1000
= 508 (®) L}LMKMU\)\
‘@ 0 2 4 6 8 10
£ 15
= 10
@ 0 2 4 6 8 10
B
g 10
5 2|
0
% 84a3 6.444 6.445

i /27w

FIG. 8. Zeptosecond pulse train: (a) temporal structure of the
reflected radiation; (b) zeptosecond pulse train seen after spectral
filtering; and (c) one of the zeptosecond pulses zoomed (its FWHM
duration is about 300 zs).
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FIG. 9. Dependence of the pulse filling on the position of the
sharp filter boundary for ;=20 and N,=90N, and filter positions:
(a) Qf=20(1)0, Aw=2wo; (b) Qf=40w0, Aw=2w0; (C) Qf=100w0,
Aw=2wy; and (d) Q;=200w), Aw=2wy.

cies. We choose the similation case of laser-vector potential
ap=20 and plasma density N,=90N,. The spectrum of high-
order harmonics is given in Fig. 6. We zoom into one of the
pulses in the pulse train obtained and study how the shape of
this one pulse changes with (). Figure 9 represents the pulse
behavior for four different positions of (), We measure to
what degree the pulse is filled by the number of field oscil-
lations within the FWHM. One clearly sees that for filter
threshold below the cutoff frequency [Figs. 9(a) and 9(b)],
the pulse is hollow. Notice that the case of Fig. 9(b) corre-
sponds to the cutoff frequency predicted by the oscillating
mirror model. Only for filter threshold positions above the
spectrum cutoff given by Eq. (1) the pulse becomes filled
[Figs. 9(c) and 9(d)]. These results confirm once again the
real position of the harmonic cutoff.

XI. DISCUSSIONS

In this work we have shown analytically and numerically
that the relativistic y-factor spikes are the physical cause for
HHG at the boundary of overdense plasma. It is important
that the properties of these spikes are universal and follow
from the ultrarelativistic similarity theory. The universal
physics of the relativistic 7y spikes inheres in the universality
of the high-order harmonic spectrum.

The spectrum of the high-order harmonics contains the
power-law part 1, 1/n33, which goes until the cutoff at
v Sayfnax. Here 7,4 18 the maximal 7y factor and « describes
the acceleration of the plasma boundary. This result demon-
strates that a naive oscillating mirror model is insufficient for
the correct treatment of HHG at plasma boundaries.

Physically and mathematically, the cutoff at 497, would
correspond to a uniformly moving mirror without accelera-
tion (@¢— 0 in our approach). In this case, the mirror upshifts
the laser frequency when a full period of the laser radiation is
reflected. In reality, however, only a short part of the laser
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period is reflected (the 7y-spike duration is 7,% 1/ ¥p).
This leads to the broadening of the reflected radiation by
the additional factor 7, and to the much higher cutoff

at oy
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