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I. INTRODUCTION

Analysis of dynamical systems in terms of invariant
phase-space structures provides important insights into the
behavior of physical systems. The simplest such invariants
are equilibria, points in phase space which are stationary
solutions or zero-dimensional invariants of the flow. They
and their stable and unstable manifolds yield information
about the topology of the flow. The role played by the next
class of flow invariants, periodic orbits, in the topological
organization of phase space and the computation of long-
time dynamical averages is well known �for an overview, see
Ref. �1��. A periodic orbit is topologically a circle or an
invariant one-torus for a flow, and a set of discrete points or
an invariant zero-torus for a map, embedded in a
d-dimensional phase space. Higher-dimensional invariant
tori also frequently play an important role in the dynamics;
we refer the reader to Ref. �2� for further references to
the literature. Invariant tori of dimension lower than the di-
mension of the dynamical flow can be normally hyperbolic
and thus stay discrete �3,4�. In Hamiltonian systems,
Kolmogorov-Arnold-Moser �KAM� theory implies that in-
variant tori occur in Cantor sets, and such tori play key roles
in the phase-space transport �5,6�. For two-degree-of-
freedom Hamiltonian flows �i.e., four-dimensional phase
space�, two-dimensional invariant tori act as barriers to dif-
fusion across phase space, and for higher-dimensional flows
similar structures are effectively hindering the orbit diffusion
�Arnold diffusion�. The breakup of these structures leads to
qualitative changes in phase-space dynamics. In dissipative
systems like Newtonian fluids, quasiperiodic motion on two-
or higher-dimensional tori is one of the fundamental routes
to the eventual turbulent motion �7,8�.

Many methods for determining periodic orbits exist in the
literature �1,9,10�. The lack of comparably effective methods
for the determination of higher-dimensional invariant struc-
tures including invariant tori has stymied the exploration of
the phase spaces of high-dimensional flows, a focus of much
recent research �2,11�. In this paper, we concentrate on the
algorithms for the numerical computation of invariant tori in
both Hamiltonian and dissipative systems.

Signal processing methods like frequency analysis
�12,13�, based on the analysis of trajectories, can detect el-
liptic invariant tori since these tori influence the behavior of
nearby trajectories in a persistent way. Bailout methods
�14,15� effectively locate the elliptic regions in a noninte-

grable system by embedding the dynamical system into a
larger phase space. Reference �16� describes a variational
technique designed to find regular orbits in a phase space
with mixed dynamics. However, these methods can only de-
tect trajectories with nonpositive Lyapunov exponents. They
single out regular motions in a phase space but can not ex-
actly determine a torus unless it is stable. Due to their rela-
tive ease of identification, in special cases, periodic orbits are
used to study invariant tori and their breakups. For example,
in the Greene’s criterion approach �17–19� one studies a se-
quence of periodic orbits which converges to a given invari-
ant torus. Such approaches have been mainly applied to the
determination of tori of Hamiltonian systems with two de-
grees of freedom.

Other techniques to determine invariant tori are specific to
the phase-space dynamics of the system under consideration,
most often a Hamiltonian system. Early attempts like the
spectral balance method were based on computation of qua-
siperiodic orbits �20,21�, the closure of which constitutes the
invariant torus. To overcome the small divisor problems as-
sociated with the flow on a torus, recent research employed a
geometric point of view and focused on the invariant torus
itself. Efforts are devoted to find the solution of the so-called
invariance condition which ensures the invariance of a pa-
rametrized object in phase space. Invariance conditions are
functional equations for maps �22–27� and first-order partial
differential equations �PDE’s� for flows �28–30�. These
equations can be solved by Newton’s method or the Had-
amard graph transform technique �4�. In view of the period-
icity in the angle variables, Fourier transforms are widely
used in the computation �31–37�. For Hamiltonian systems,
the action principle and the Hamilton-Jacobi equation are
also frequently used in the calculation of periodic and qua-
siperiodic orbits �32,38–42�.

In this paper, we use a particular invariance condition to
derive a PDE which evolves a guess torus to an invariant one
for flows and maps embedded in d-dimensional phase
spaces. The method is a generalization of the differential
“Newton descent” method originally developed to locate pe-
riodic orbits of flows �46,47�, which can be viewed as a
variant of the multishooting method in boundary value prob-
lems �43–45�. When the representative points on the guess
torus achieve a near-continuous distribution, a PDE is de-
rived which governs their evolution to a true invariant torus.
In spirit, this is similar to the approach used in Ref. �32� and
thus high accuracy is expected. However, our method is
stable and thus applies to more general systems, including
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searches for partially hyperbolic tori embedded in chaotic
regions of a phase space. In a general dynamical system, the
phase-space structure can be extremely complex and the glo-
bal stability of our algorithm is of key importance for the
convergence of the searching program. In our numerical
computation, an adaptive scheme is used which keeps chang-
ing the step size according to the smoothness of the evolu-
tion. In addition to the adaptive step size, we further speed
up our searches by utilizing the continuity of the evolution
PDE. These salient features will be explained in detail in
what follows.

In Sec. II we derive the Newton descent equation which
governs the fictitious time dynamics. The numerical imple-
mention of this equation is discussed in Sec. III. The method
is further illustrated in Sec. IV through its application to the
determination of one-tori of the standard map, of two-tori of
a forced pendulum flow �three-dimensional phase space�, of
one- and two-tori of two coupled standard maps �a four-
dimensional symplectic map�, and of two-tori of the
Kuramoto-Sivashinsky system �infinite-dimensional phase
space�. In particular, we provide evidence that the method
converges up to the threshold of existence of a given invari-
ant torus and yields estimates of the critical thresholds of the
breakup of invariant tori of two-degree-of-freedom Hamil-
tonian systems.

II. NEWTON DESCENT METHOD FOR INVARIANT TORI

We start by deriving a fictitious time evolution equation
for the determination of a one-dimensional �1D� invariant
torus of a d-dimensional map f :Rd→Rd. The method can be
extended to the determination of invariant m-tori of
d-dimensional maps and flows. We stress here that the maps
or flows and the invariant tori are assumed to be sufficiently
smooth in the following.

A fixed point �zero-dimensional invariant torus� x= f�x� is
a point which is mapped onto itself under the action of f.
Likewise, a one-dimensional invariant torus of f is a loop in
Rd which is mapped onto itself under the action of f. If points
on the invariant one-torus are parametrized by a cyclic vari-
able s� �0,2��, with x�s�=x�s+2��, a point x�s� is mapped
into another point on the invariant torus

f„x�s�… = x„s + ��s�… , �1�

where ��s� is the local parametrization s-dependent shift. In
other words, the full phase space dynamics f induces a one-
dimensional circle map on the invariant one-torus:

s � s + ��s� mod 2� . �2�

We also parametrize our guess for the invariant one-torus,
the loop x�s ,��, by s� �0,2��, with x�s ,��=x�s+2� ,��. To-
gether with the “fictitious time” �, to be defined below, this
parametrizes a continuous family of guess loops, with the
initial one at the beginning ��=0� and the truly invariant one
at the end ��=��. However, for an arbitrary loop there is no
unique definition of the shift �, as the loop is not mapped
onto itself under the action of f. Intuitively, � should be
determined by requiring that the d-dimensional distance vec-

tor between the circle map image of a point on the loop at s
and the corresponding point on the iterate of the loop,

F�s,�� = x„s + ��s,��,�… − f„x�s,��… , �3�

be minimized. For example, if the guess loop is sufficiently
close to the desired invariant one-torus, ��s ,�� can be fixed
by intersecting the loop with a hyperplane normal to the loop
and cutting through the image of loop f(x�s ,��).

In this exploratory foray into the world of compact
higher-dimensional invariant manifolds we shall make the
simplest choice at each turn. In particular, we are free to
choose any parametrization s which preserves ordering of
points along the invariant one-torus—i.e., any circle map �2�
that is strictly monotone, 1+d� /ds�0. For an irrational ro-
tation number a strictly monotone circle map can be conju-
gated to a constant shift, so in what follows we define the s
parametrization dynamically by requiring that the action of
the dynamics f on both the guess loop and the target invari-
ant one-torus be a rotation with constant �in s but not in ��
shift �,

s � s + � mod 2� . �4�

The invariance condition �1� with conjugate dynamics �4�
has been used previously in the literature �33,34�. We now
design a stable scheme which yields a parametrization x�s�
satisfying Eq. �1� together with Eq. �4�.

Following the approach of Refs. �46,47� originally devel-
oped to locate periodic orbits of flows, we now introduce the
simplest cost functional that measures the average distance
squared, Eq. �3�, of the guess loop from its iterate:

F2��� = � ds

2�
F�s,��2. �5�

A similar functional was used in the stochastic path extrem-
ization �48�. Here F2���=F2�x ,�� is a functional, as it de-
pends on the infinity of the points x�s ,�� that constitute the
loop for a given �. If the loop is an invariant one-torus con-
jugate to rotation by �, F2=0; otherwise, F2�0. At ficti-
tious time � we compute the cost due to the two mappings:
one is the iterate f(x�s ,��) of the loop, and the other the
circle map s�s+���� along the loop. The fictitious time
evolution should monotonically decrease the distance be-
tween a loop and its iterate, as measured by the functional
F2���, by moving both the totality of loop points x�s ,�� and
modifying the shift ����.

With constant shift circle map �4� the variation of F2���
under the �yet unspecified� fictitious time variation d� is

d

d�
F2��� = 2� ds

2�
�F�s,�� ·

dF

d�
�s,��� , �6�

where

d

d�
F�s,�� =

�x

��
„s + ����,�… + v„s + ����,�…

d����
d�

− J„x�s,��…
�x

��
�s,�� ,
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v�s,�� =
�x

�s
�s,�� .

The adjustment in the loop tangent direction v is needed to
redistribute points along the loop in order to ensure a con-
stant shift parametrization s, and the �d�d� Jacobian matrix
of the map J=�f /�x moves the loop point x�s ,�� in the
“Newton descent” direction.

Again we design a fictitious time flow in the space of
loops by taking the simplest choice, in the spirit of the New-
ton method �47�,

dF

d�
= − F , �7�

for which F2�x ,�� decreases exponentially with fictitious
time �:

F2��� = F2�0�e−2�. �8�

Written out in detail, the Newton descent equation for a
guess loop,

�x

��
�s + �,�� +

�x

�s
�s + �,��

��

��
��� − J„x�s,��…

�x

��
�s,��

= f„x�s,��… − x�s + �,�� , �9�

evolves points x�s ,0� on the �=0 initial guess loop to the
points x�s�=x�s ,��, s�s+�, �=��s ,��, on the target one-
torus, provided that the � flow does not get trapped in a local
minimum with F2����0. For a bad initial guess the Newton
method for determining the roots of a one-dimensional func-
tion can fail by getting trapped by a critical point of the
function. The same applies to the Newton descent equation
�7� where in our numerical searches we sometimes observe
trapping by points with critical directions. In such cases, “�”
in Eq. �8� cannot go to infinity, and we restart the search with
a new initial guess torus. A good initial guess for the target
torus should lie in its basin of attraction under the fictitious
dynamics. As the search takes place in a high-dimensional
discretized-loop space, we have very limited intuition as to
the form of these basins of attraction. The “Newton descent”
PDE �9� which governs evolution of the loop points in ficti-
tious time � and along loop direction s is the main result of
this paper, which bears a close similarity to the PDE for the
homotopy evolution of pseudoholomorphic curves �49,50�.

The choice of the minimization scheme �7� is not arbitrary
but can be derived in a more physical way through a similar
multishooting argument discussed in Ref. �47�. We present
here a derivation with the calculus of variations for simplic-
ity �46�. It is important to notice that Eq. �7� is not a gradient
descent equation for blindly minimizing the functional F2

since the direction given by its right-hand side is not along
the gradient of F2 or F2. A similar argument has been used in
the derivation of a globally convergent modified Newton’s
method in Ref. �45�. Equation �9� is an infinitesimal variant
of Newton’s method. The cost functional �5� is used to show
the monotonous decrease of the discrepancy between the
guess and the true torus.

Generalization to searches for invariant m-tori is immedi-
ate: the guess m-torus is parametrized by s= �s1 ,s2 , . . . ,sm�
� �0,2��m, periodic in each cyclic coordinate,

x�s + 2�k� = x�s� for all k � Zm, �10�

with m incommensurate shifts �= ��1 ,�2 , . . . ,�m� �51�.
Now the fictitious time flow �9� has an �d�m� velocity ten-
sor v which spans the m-dimensional tangent space of the
guess torus embedded in a d-dimensional phase space. Fur-
thermore, the fictitious time flow searches �9� for invariant
tori can also be adopted to smooth continuous time flows by
reducing the flow to a Poincaré return map on any local
Poincaré section which intersects transversally the trajecto-
ries in the neighborhood of the guess �m+1�-torus. We will
provide examples in what follows.

In general, each independent tangent vector of an invari-
ant m-torus transformation along a given cyclic parameter sk
has a unit eigenvalue, leaving arbitrary the phase of the pa-
rametrization. We need to impose further constraints to get
rid of this arbitrariness. For example, for the Jacobian matrix
of a continuous time periodic orbit �a one-torus� the velocity
vector is an eigenvector with a unit eigenvalue and Newton
descent equations need to be supplemented with a constraint
�a Poincaré section� in order to determine the orbit together
with its period. On the other hand, if the flow is Hamiltonian
and the invariant m-torus is located on a fixed energy surface
H�p ,q�=E, the constraint dH /d�=0 is needed to ensure the
conservation of the energy by the fictitious time dynamics.

In the case at hand, there are two alternative ways to
impose the constraint: We may or may not fix � a priori.

�a� If we are searching for an invariant one-torus of a
fixed shift �, the fictitious time flow should not change the
shift along the loop,

d�/d� = 0. �11�

�b� If we are searching for an invariant one-torus of a
given topology or on a specific energy surface, the shift �
=���� varies with the fictitious time � and is to be deter-
mined simultaneously with the one-torus itself. In this case
we impose the phase condition �30�

� ds�v�s,�� ·
�x

��
�s,��� = 0, �12�

which ensures that during the fictitious time evolution the
average motion of the points along the loop equals zero.
Empirically, for this global loop constraint the fictitious time
dynamics is more stable than for a single-point constraint
such as �x�0,��=0. For an m-torus, v�s ,�� is a �d�m� ten-
sor and Eq. �12� yields m constraints. For energy-conserving
Hamiltonian systems, one phase condition has to be replaced
by the energy conservation condition

1

2�
� ds � H„x�s,��… ·

�x�s,��
��

= E −
1

2�
ds� H„x�s,��… ,

�13�

where a fixed E fixes the energy shell under consideration.
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The two cases are analogous to continuous time Hamil-
tonian flow periodic orbit constraints: case �a� corresponds to
fixing the period and varying the energy shell and case �b� to
fixing the energy and computing the period of a periodic
orbit of a given topology.

The examples of Secs. IV A–IV C illustrate the constant
shift � constraint �11�; the examples of Fig. 4and Sec. IV D
illustrate the phase condition �12�.

III. NUMERICAL IMPLEMENTATION

Due to the periodic boundary condition �4�, it is conve-
nient to expand the loop point x, the Jacobian matrix J, the
map f, and the loop tangent v as a discrete Fourier series

x�s,�� = �
k

ak���eiks,

J„x�s,��… = �
k

Jk���eiks,

f„x�s,��… = �
k

bk���eiks,

v�s,�� = i�
k

kak���eiks �14�

�ak
*=a−k due to the reality of x�s ,��, and similar relations

hold for Jk and bk�, and rewrite the Newton descent PDE �9�
as an infinite ladder of ordinary differential equations:

�dak

d�
+ ikak

d�

d�
�eik� − �

l

Jk−l
dal

d�
= bk − ake

ik�. �15�

Finally, the unit stability eigenvalue along the loop tangent
direction v�s ,�� needs to be eliminated by adding to Eq. �15�
either the constant shift � constraint �11� or the phase con-
dition �12�. In the Fourier representation the phase condition
is given by

�
k

kak
* · �ak/�� = 0. �16�

If the target torus is smooth and has a well-behaved Fourier
representation, the monotone decrease with � of the func-
tional F2, given by Eq. �6�, guarantees that the solution of
Eq. �15� approaches a fixed point which, provided that F2

=0, is the Fourier representation of the target invariant torus.
For tori with less regularity, the correct convergence is not
assured �52�.

In our numerical calculations, we represent the loop by a
discrete set of points 	x�s1� , . . . ,x�s2N�
. The search is initial-
ized by a 2N-point guess torus. The Fourier transforms of x,
v, and J are computed numerically, yielding M complex Fou-
rier coefficients ak, bk, and Jk, respectively. To maintain nu-
merical accuracy, we choose M 	N and set ak=0, bk=0, and
Jk=0 for �k�
M. We terminate the numerical integration of
the fictitious time dynamics �19� when the distance �3� falls
bellow a specified cutoff. In the Fourier representation, we
stop when distance reaches the termination value � defined
as

max
k

�Fk� = max
k,j

�bk,j − ak,je
ik�� � � , �17�

where ak,j and bk,j denote the jth component of ak and bk.
While the algorithm is more efficient with a good initial

guess, in practice it often works for rather inaccurate initial
guesses. If the initial guess is bad or the target invariant torus
does not exist, the evolution diverges. Then another search is
initiated, with a new guess. This guess torus can either be
derived from the integrable limit, like the examples of Secs.
IV A–IV C, or from numerical exploration, like the example
of Sec. IV D. If the invariant torus is isolated or partially
hyperbolic, far away from the integrable limit, it can be a
challenging problem to initialize the search for an embedded
invariant torus. However, once provided with a reasonable
guess, our method is able to reliably locate the torus with
relatively high accuracy.

Since the invariant torus corresponds to a stationary set of
equations �9� explored ergodically by long-time dynamics,
the accuracy of the fictitious time steps is not important as
long as the successive tori remain in the domain of attraction
of the desired invariant torus. A simple Euler step integration
method suffices for our purposes. If we try to find a high-
order torus �large m� in a high-dimensional phase space
�large d� with M complex Fourier modes, we have to solve a
��2M�md+m�-dimensional linear system

M�dak/d�

d�/d�
� = �Fk

0
�, with Fk = bk − ake

ik�,

derived from Eq. �15� with the constraint �11� or �16�, for
�2M�md dak /d�’s and m d� /d�’s in each time step. This
involves inverting the large 	��2M�md+m�� ��2M�md+m�

matrix M repeatedly during the integration which may con-
stitute a major bottleneck in such calculations. In our nu-
merical implementation, the matrix inversion by the LU de-
composition �45� consumes most of the computational time.
We employ a speed-up scheme, based on the continuity of
the evolution of Eq. �15�. Once we have the LU decomposi-
tion of M at one step, we use it to approximately invert the
new M matrix in the next step, with accurate inversion
achieved by iterative approximate inversion �45�. In practice,
we find that one LU decomposition can be used for many ��
evolution steps. The more steps in which we used the same
LU decomposition, the more iterations at each step are
needed to get the accurate inversion. After the number of
such iterations exceeds some fixed given maximum number,
another LU decomposition is performed. The number of in-
tegration steps following one decomposition is an indication
of the smoothness of the evolution, and we further accelerate
our program by adjusting accordingly the step size ��: the
greater the number, the bigger the step size. Near the final
stage of convergence, the evolution becomes so smooth that
the step size can be brought all the way up to ��=1, recov-
ering the full undamped Newton-Raphson step and acquiring
the desired quadratic convergence.

IV. EXAMPLES

We now test the Newton descent method for determining
invariant tori on a series of systems of increasing dimension-
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ality: a two-dimensional area-preserving standard map, a
Hamiltonian flow with one and half degrees of freedom �a
forced pendulum�, a four-dimensional symplectic map �two
coupled standard maps�, and a dissipative PDE �the
Kuramoto-Sivashinsky system�. In the following, the repre-
sentative points are uniformly distributed on the initial guess
torus.

A. Critical tori of the standard map

As our first example we search for invariant one-tori of a
two-dimensional area-preserving map, the standard map

qn+1 = qn + pn+1 mod 2� ,

pn+1 = pn + K sin qn, �18�

where K is the nonlinearity parameter. For K=0 the map is a
constant rotation in q, and for K�0 its phase space is a
mixture of KAM tori and chaotic regions. In the Fourier
space the initial guess loop x= �q , p� and its image f�x�= �q
+ p+K sin q , p+K sin q� are expanded as

x�s,�� = s + �
k

ak���eiks, s = �s,0� ,

f�x�s,��� = s + �
k

bk���eiks.

The linear term s in Eq. �15� is needed to compensate the
modulus 2� operation on q in Eq. �18�. Substitution into Eq.
�9� yields

�dak

d�
+ ikak

d�

d�
�eik� + �0k

d�

d�
e1 − �

l

Jk−l
dal

d�

= bk − ake
ik� − �0k�e1, �19�

where e1= �1,0�. If we denote by Fk the distance �3� on the
right hand side of Eq. �19�, the invariant torus condition for
constant shift �11� is Fk=0 for all k—i.e., bk=ake

ik� for
k�0 and b0=a0+�e1.

As the first test of our searching method, we apply it to
the determination of the golden-mean invariant torus, with
the shift fixed to �g=2��5−1� /2 and the fixed shift con-
straint �11�. We use as the initial guess for the fictitious time
dynamics the invariant torus of the linear standard map with
K=0 and the golden-mean shift x�s ,0�= �s ,�g�, represented
by the straight line in Fig. 1. In order to test that the method
works for a smooth invariant torus we set K=0.5 and inte-
grate the fictitious time dynamics �19� with 2N=256 point
discretization of the torus, M =64 complex Fourier mode
truncation, and �=2�10−6 termination value �17�. The re-
sulting invariant torus is shown by the dotted line in Fig. 1.

Next, we apply the method to a sequence of golden-mean
invariant tori with increasing K. Numerics indicates that

there exists a critical value K̃c such that when K� K̃c, the
fictitious time dynamics converges exponentially, as in Eq.

�8�, but for K� K̃c, it diverges. The critical value K̃c depends
sensitively on the torus discretization 2N and the termination

value �. K̃c�N� computed for �=2�10−6 and several values
of N is

2N 64 128 256 512 1024

K̃c�N� 0.34 0.80 0.93 0.9656 0.9762

The golden-mean critical invariant torus is depicted in
Fig. 2�a� for 2N=1024 points discretization of the torus.
Small oscillating structures in the critical torus whose reso-
lution would require higher-frequency Fourier components
are already visible. The uneven distribution of representative
points �s parametrization’s embedding into the �q , p� plane�
along the torus indicates the drastically varying stretching
rate on the invariant torus close to the breakup �53,54�. Our

FIG. 1. The �=�g=3.883. . . golden-mean invariant torus of the
standard map �18� for K=0.5; the straight line represents the initial
condition.

FIG. 2. Invariant tori for the standard map �18� for �a� �=�g at

K= K̃c�512�=0.9762 close to the golden-mean torus critical value
Kc, termination value �=2�10−6. The inset, which is an enlarge-
ment of the curve around q=4.6, illustrates the fine structure of the
nearly critical torus. �b� Irrational shift �=2���−3� at the esti-

mated critical value K̃c�512�=0.4313, termination value �=4
�10−6. 2N=1024 torus point discretization.
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numerical estimate of the critical Kc parameter is in agree-
ment with Greene’s estimate �17� that the golden-mean in-
variant torus breaks up at the critical value Kc�0.9716.
Moreover, we find that for large values of the 2N-point dis-
cretization of the torus, K̃c�N� approaches Kc approximately
as N−1.

As the Newton descent method does not depend on the
specific arithmetical properties of the invariant torus shift, it
should work for arbitrary irrational shifts. As an example, we
study the family of invariant tori with shift �=2���−3�. We

found that the critical value of convergence K̃c�0.4313 for
2N=1024 and �=4�10−6. The critical torus, depicted in
Fig. 2�b�, exhibits nonuniform s-parametrization and oscillat-
ing structure, though much less so than the golden-mean
critical torus.

In order to assess the sensitivity of the method to the
choice of the termination value �, we have studied its influ-
ence on the estimation of the critical K̃c. For the golden-
mean example, a decrease in the termination value to �
=10−6 for �=�g and 2N=1024 point discretization of the

torus yields K̃c=0.6188, which is much smaller than the

value of K̃c=0.9762 obtained for �=2�10−6. The corre-
sponding invariant torus for �=10−6 is depicted in Fig. 3�a�.
We notice that this torus looks much smoother than the one
obtained for �=2�10−6 �see Fig. 2�a��. Similarly, for �
=2���−3� a decrease of the termination value to �=2

�10−6 yields also a smaller critical value K̃c=0.3004. The
corresponding invariant torus for �=2�10−6 is shown in
Fig. 3�b�. The points are distributed more evenly than in Fig.
2�b�, indicating that the invariant torus obtained using this
termination value is far from criticality.

In summary: For fixed 2N-point discretization of the

torus, if � is too small, then K̃c�N��Kc, while if � is too

large, then K̃c�N��Kc. At the threshold of criticality the in-
variant torus is fractal and thus cannot be resolved by a
smooth finite Fourier truncation. The discrepancy between
the invariant torus and its numerical discretization has a
complicated influence on the fictitious time dynamics, not
elucidated in this investigation. If � is too small, high oscil-
lating modes in the critical torus preclude a numerical repre-

sentation, which leads to an estimate of K̃c lower than the
true Kc and renders the torus smoother. If � is too large, the
discretization will average out the small oscillating features,
converging to a grid beyond the critical value. With increas-
ingly refined 2N-point discretization of the torus, the value of
� needs to be chosen carefully in order to improve the Kc
estimate.

So far we have determined invariant tori of the standard
map by imposing a constant shift condition �11�. An alterna-
tive is the phase condition �12� which requires that the mo-
tion of representative points along the torus during the ficti-
tious time dynamics average to zero. In this case the shift �
is not fixed, but is determined by the fictitious time dynam-
ics. We test this condition by starting with an initial torus
x�s�= �s ,9�g /10� discretized on 2N=256 points, with termi-
nation value �=2�10−6. For K=0.352 the Newton descent
method yields the invariant torus of the standard map shown
in Fig. 4, with shift ��4.678 57. In general, the technique
which varies the frequency of the torus might be useful. Very
often in dissipative systems strong evidence shows that an
isolated invariant torus exists in some region of the phase
space with unknown shift. Our method can be used to deter-
mine both the torus and the shift simultaneously. One such
an example is given in Sec. IV D.

B. Periodically forced Hamiltonian system

As our second test case, we consider the forced pendulum

H�p,x,t� = p2/2 − �cos x + cos�x − t�� , �20�

a time-dependent Hamiltonian flow with 1.5 degrees of free-
dom. H�p ,x , t� is a periodic function of the angle variable x
and the time variable t, with dynamics on R�T2. The

FIG. 3. The invariant tori for the standard map �18� with smaller
termination values � than in Fig. 2, the same number of torus

points, 2N=1024: �a� �=�g with K̃c=0.6188 and �=10−6 and �b�
�=2���−3� with K̃c=0.3004 and �=2�10−6.

FIG. 4. An invariant torus of the standard map �18� for K
=0.352 obtained by the fictitious time dynamics with the phase
condition �12�. The method yields a shift ��4.67857. 2N=256
point discretization of the torus, termination value �=2�10−6.
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Poincaré return map for the stroboscopic section t
=0 mod 2� is a reversible area-preserving map. The Jaco-
bian J required for the fictitious time dynamics �9� is evalu-
ated by integrating

J̇ = AJ, A = � 0 1

− ��cos x + cos�x − t�� 0
�, J�0� = 1.

�21�

We apply the fixed shift condition �11� Newton descent to the
determination of the invariant torus with the golden-mean
shift �= �̄g= �5−1� /2. For the initial guess torus we take
the golden-mean torus of Hamiltonian �20� with =0—i.e.,
x�s�= �s , �̄g�. We define ̃c�N� to be the minimum value of
the parameter of the model at which the algorithm defining
the fictitious time dynamics with 2N sampling points fails to
converge at fixed �. The critical values ̃c�N� computed for
different numbers of sampling points �termination value �
=2�10−6� are

2N 64 128 256 512 1024

̃c 0.01688 0.02312 0.02594 0.02750 0.02781

For 2N=512 and 2N=1024 the ̃c�N� values that we find
are are close to the threshold c�0.02759 estimated in Ref.
�55�. The invariant torus with =0.02781, 2N=1024, and
�=2�10−6 shown in Fig. 5�a� exhibits a nonsmoothness and
uneven distribution of discretization points characteristic of
criticality. Setting �=10−6 leads to the invariant torus with
the critical value estimate ̃c=0.018 44, displayed in Fig.
5�b�. It looks smooth, indicating that it is far from criticality
and thus that the termination value is too small.

C. Two coupled standard maps

In principle, the Newton descent method is applicable to
determination of invariant tori of arbitrary dimension for
flows or maps of arbitrary dimension. In practice, one is
severely limited by computational constraints.

In order to test the feasibility of the method in higher
dimensions, here we consider two coupled standard maps
�63�

In+1 = In + �1 sin �n + �3 sin��n + �n� ,

�n+1 = �n + In+1,

Jn+1 = Jn + �2 sin �n + �3 sin��n + �n� ,

�n+1 = �n + Jn+1, �22�

with four-dimensional phase space, and demonstrate that the
method can determine one- and two-dimensional invariant
tori. The fictitious time dynamics �15� acts on the x
= ��n , In ,�n ,Jn� phase space, with dynamics f�x� defined by
Eqs. �22�.

First, we apply the fixed shift �19� fictitious time dynam-
ics to determination of the one-dimensional golden-mean in-
variant torus with shift �=�g. For the initial guess torus we
take the integrable case torus �1=�2=�3=0:

x�s� = �s,�g,s,�g� . �23�

In the numerical calculation we search for a typical 1D in-
variant torus, with �arbitrarily chosen� small coupling values
�1=0.1, �2=0.15, and �3=0.005.

The invariant torus obtained by the fictitious time dynam-
ics in this case is shown in Fig. 6. Numerically, �=�, indi-
cating that for this one-dimensional torus the two phases are

FIG. 5. Invariant tori of Hamiltonian �20� with �= �̄g obtained
by the fictitious time dynamics with 2N=1024 and two different
termination values: �a� �=2�10−6 yields a critical value ̃c

=0.02781, and �b� �=10−6 yields an underestimate ̃c=0.01844.

FIG. 6. A one-dimensional invariant torus with shift �g of Eq.
�22� with �1=0.1, �2=0.15, and �3=0.005: �a� I-� projection and �b�
J-� projection. 2N=512 point discretization of the torus, termina-
tion value �=10−6.
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entrained. The torus appears very smooth, indicating that for
the parameter values chosen it is far from the critical values.

Next, we apply the Newton descent to the determination
of a two-dimensional torus with nonresonant frequencies �1
and �2. In this case, we need two cyclic parameters �s1 ,s2�
� �0,2��2 to locate a point on the torus. The fictitious time
evolution equation is similar to Eq. �19� but now we take

k = �k1

k2
�, � = ��1

�2
�, s =�

s1

0

s2

0
�, e1 =�

1 0

0 0

0 1

0 0
� .

The initial guess is chosen as in the integrable �i=0 case

x�s1,s2� = �s1,�1,s2,�2� . �24�

In the numerical experiment we then search for �arbitrarily
chosen� �1=0.07, �2=0.1, and �3=0.004 two-dimensional in-
variant torus with �also arbitrarily chosen� frequencies �1
=�g and �2=��3−1�. In order to reduce the computational
time, we take a rather coarse 2N=32 grid, with �2N�2

=1024 points representing the torus.
Two projections of the resulting invariant torus for �

=10−4 termination value are shown in Fig. 7. While the
��s1 ,s2� and J�s1 ,s2� dependence on s1 and s2 shown in Fig.
7 follows in shape the integrable case �24� dependence, the
small coupling terms induce significant oscillations. The
smoothness of the invariant torus indicates that the param-
eters are not close to the critical values. For �2N�2=1024

point discretization of the torus, � can be as low as 5.1
�10−5 and for �2N�2=4096 as low as 1.6�10−5. However,
the computation takes at least 100 times longer, and in this
exploratory study the larger �2N�2 resolutions were out of
reach.

D. Kuramoto-Sivashinsky system

In our last example, we apply the Newton descent to the
determination of an invariant two-torus embedded in a high-
dimensional strongly contracting flow. Special tori that can
be converted to periodic orbits in a rotating or moving frame
have previously been computed for the complex Ginzburg-
Landau equation �31� and for the 2D Poiseulle flow �56�.
Here we shall determine a generic two-torus of the
Kuramoto-Sivashinsky equation �57–59� parametrized by the
system size L,

ut = �u2�x − uxx − uxxxx, x � �0,L� . �25�

The Kuramoto-Sivashinsky equation describes the interfacial
instabilities in a variety of contexts, like the flame front
propagation �58�, the two-fluid model �60� and the liquid
film on an inclined plane �61�.

In the study of flame fluttering on a gas ring as the system
size L increases, the “flame front” becomes increasingly un-
stable and turbulent. As shown in Refs. �8,62�, in dissipative
systems two-dimensional tori often result from a Hopf bifur-
cation of a periodic orbit while three- �or higher-� dimen-
sional tori are a rare occurrence. In the following we restrict
our search to the antisymmetric solution space of Eq. �25�
with periodic boundary conditions—i.e., u�−x , t�=−u�x , t�
and u�x+L , t�=u�x , t�, with u�x , t� Fourier expanded as

u�x,t� = �
k=−�

�

iake
ikqx, �26�

where q=2� /L is the basic wave number and a−k=−ak�R.
Accordingly, Eq. �25� becomes a set of ordinary differential
equations

ȧk = ��kq�2 − �kq�4�ak − kq �
m=−�

�

amak−m. �27�

In the asymptotic regime of Eq. �27� for k large ak’s decay
faster than exponentially, so a finite number of ak’s yields an
accurate representation of the long-time dynamics. In our
calculation, a truncation at d=16 suffices for a quantitatively
accurate calculation.

In the current example, 2N=128 points are used to repre-
sent the torus on the Poincaré section a1=0.06. Numerical
experimentation indicates that for L=40.95 trajectories spend
significant fraction of time in a toroidal neighborhood, sug-
gesting that a �partially hyperbolic?� invariant two-torus ex-
ists at this system size: Poincaré section returns of a typical
orbit fall close to a closed curve. The initial guess for the
Newton descent is constructed by choosing 128 more or less
evenly distributed points to represent a guess loop on the
Poincaré section and keeping the lower-wave-number modes
of their Fourier transform. In this case the shift � is fixed by

FIG. 7. The two-dimensional invariant torus of the coupled stan-
dard maps �22� with incommensurate frequencies �1=�g and �2

=��3−1� for �1=0.07, �2=0.1, and �3=0.004. �2N�2=1024 point
discretization of the torus, termination value �=10−4.
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the dynamics, and in order to compute it we impose the
phase condition �12�.

Figure 8 shows two Poincaré section projections, in the
Fourier space, of the invariant two-torus of the Kuramoto-
Sivashinsky flow determined by the Newton descent method.
The method yields the shift �=0.5968. Even though the in-
variant torus is very smooth and discretization points are
evenly distributed, surprisingly many sampling points are re-
quired to resolve the torus. For attempts with fewer discreti-
zation points—for example, 2N=64—the search did not con-
verge even with �=10−2.

V. SUMMARY

We have generalized the “Newton descent” method to de-
termination of invariant m-tori in general d-dimensional dy-
namical systems and provided numerical evidence that the
method converges in a large domain of existence of invariant
tori, up to their breakups. In the case of maps and flows with
invariant tori such as standard maps, the approach offers an
alternative method for determining critical thresholds. While
in principle the method is applicable to flows or maps in
arbitrary dimension, computation can be expensive for in-
variant objects larger than one- and two-tori. We have uti-
lized the smoothness of the fictitious time evolution to intro-
duce acceleration schemes which improve the efficiency of
the method.

In our numerical work, we have implemented the method
in the constant shift �4� parametrization, Fourier representa-
tion of an m-torus �m=1,2�. Other discretizations could be
better suited to specific applications. For instance, if an in-
variant torus is close to its critical threshold, representation
of small fractal structures requires inclusion of slowly decay-
ing high-wave-number Fourier modes, and so a large number
of Fourier modes are needed to obtain an accurate represen-
tation. Furthermore, the discretization points distribute very
nonuniformly when close to criticality which could consid-
erably lower the accuracy of a representation. In this case,
other nonconstant shift parametrizations of the torus dynam-
ics might be more appropriate. For example, our method is
of modest accuracy compared to some of current studies of
critical tori, in particular Haro–de la Llave �11� computation
of critical tori to 100 digits precision.

In periodic orbit searches we have found the Newton de-
scent approach robust and very useful for finding periodic
orbits in high-dimensional phase spaces where good guesses
for multishooting Newton routines are hard to find �46,47�.
Examples worked out here suggest that the method is also a
robust starting point for m-dimensional invariant tori
searches. Once an approximate invariant torus is found by
the Newton descent method, it can be used as a starting
guess for a high-precision method, such as some of the cur-
rently used Newton’s methods in Fourier-space representa-
tions of invariant tori.
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