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One of the major questions in complex network research is to identify the range of mechanisms by which a
complex network can self organize into a scale-free state. In this paper we investigate the interplay between a
fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned
a fitness x, drawn from a probability distribution ��x�. In Model A, at each time step a vertex is added and
joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices
with fitnesses x and y, with a rate f�x ,y�, with probability 1− p. Model B differs from Model A in that, with
probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A
shows that, for every fixed fitness x, the network’s degree distribution decays exponentially. In Model B we
recover instead a power-law degree distribution whose exponent depends only on p, and we show how this
result can be generalized. The properties of a number of particular networks are examined.
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I. INTRODUCTION

Complex networks are normally modeled using graph
theory in which evolving or growing sets of vertices are con-
nected by edges. The vertices can represent the individuals of
the system under consideration, the edges then symbolize
relations between them. Complex networks are ubiquitous in
physics, biology, sociology, and computer science. Despite
the difference in the interpretation of the vertices and edges,
and the networks’ diversity of function, complex networks
display considerable statistical and topological similarities.

The analysis of complex networks was initially ap-
proached through random graph theory �1�, where the verti-
ces are connected at random. These models result in expo-
nential degree distributions �the degree of a vertex is the
number of edges connecting it to other vertices�. Thus the
structure of these random graphs is uniform with most verti-
ces having approximately the same degree and only few ver-
tices of high degree.

It soon became clear, however, that this model, usually
referred to as the Erdös-Renyi model �1,2�, cannot explain
the behavior of the many networks that display power-law
rather than exponential degree distributions. These networks
are called scale-free, because of the self-similarity property
of the power law. Power laws decay very slowly, in contrast
to the Poisson degree distribution of random graphs, and
consequently scale-free networks have a number of hubs
which are often the most important vertices. Hubs can con-
nect apparently very distant environments and play a crucial
role in the spreading of infective agents �such as human or
computer viruses �3,4�� or the stability of network structures
under external attack �5�.

The widespread occurrence of scale-free topologies dem-
onstrates that networks cannot be fundamentally random ob-
jects. The topological similarities between structures as di-
verse as the world-wide web, the web of human sexual
contacts, and some metabolic networks suggest that net-
works cannot be understood only in terms of properties of
their parts, and that one needs to identify the self-organizing
principles controlling the evolution of the network as a
whole.

Through a variety of different analytical approaches, usu-
ally borrowing tools from statistical physics �1,6–9�, it has
been shown that if the following two conditions hold: �i� the
network grows in time by addition of new vertices at a con-
stant rate; and �ii� the newly introduced vertices connect
preferentially to highly connected vertices, we recover the
power-law degree distribution displayed by many real-world
networks. The simplest analytical model, usually referred to
as the Albert-Barabási model �1�, assumes growth at a con-
stant rate and a linear form of preferential attachment �1,6�,
yielding a power law with exponent 3. While only a fraction
of real-world networks have been fully characterized empiri-
cally, data mining usually recovers power laws with expo-
nents ranging between 2 and 3.5. Thus growth and preferen-
tial attachment seem to be the principal mechanisms for
scale-free degree distributions.

However, it has also been argued �10–12� that preferential
attachment is not always a natural hypothesis since a new
vertex, informally speaking, needs to know the global degree
distribution of the network in order to decide with whom to
link. It is obvious that in many contexts, and especially when
the networks involved are very large, this information will
not be available.

The varying fitness model �11,12� was thus proposed as
an alternative mechanism for recovering scale-free topolo-
gies. A real non-negative variable x, drawn from a probabil-
ity distribution ��x�, is assigned to each vertex of the net-
work, representing the fitness, or ability to compete for new
edges of the vertex. In real world networks the fitness will be
related to intrinsic qualities of the vertex, such as rank,
beauty, or wealth. Edges between vertices successively form
according to a linking function f�x ,y�, designed to model the
idea of mutual benefit in a competitive environment.

The varying fitness model shows that scale-free behavior
does not necessarily imply an underlying preferential attach-
ment mechanism. Indeed, given any fitness probability dis-
tribution �, it is always possible to determine a linking func-
tion f�x ,y� such that the resulting degree distribution decays
as a power law with a given real exponent �12�.

While the varying fitness model interprets network topol-
ogy exclusively in terms of fitnesses, attempts �13,14� have
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been made to explain network evolution on the basis of a
preferential attachment mechanism which depends on the fit-
nesses, arguing that fitter vertices might overcome highly
connected but less fit ones. It has been shown �13,14� that the
introduction of a random additive fitness �or quenched disor-
der� to each vertex leads to a power law whose exponent
depends on the average fitness of the network. The introduc-
tion of both a random additive fitness x and a multiplicative
fitness y leads instead to multiscaling, that is, to a power law
with a fitness dependent exponent.

Following this approach, we use rate equations �6–8� to
investigate models where a fitness linking process is com-
bined with random and preferential attachment �rather than
coupled to preferential attachment as in Refs. �13,14��. Since
the self-organizing principles underlying network evolution
might be system-dependent and by no means unique, we
wish to analyze the interplay and relative strength of the
different processes likely to shape any network’s structure.

In Sec. II, generalizing growing Erdös-Renyi graphs �1,2�,
we analyze a network built by adding the fitness linking
process to random attachment. In Sec. III, generalizing the
Albert-Barabási model �1�, we analyze a model that incorpo-
rates preferential rather than random attachment. In the last
section we summarize our results and draw conclusions.

II. MODEL A

Following Refs. �11,12� we introduce a distribution den-
sity function ��x� and a linking probability function f�x ,y�.
We then introduce a network built as follows. At each time
step

�a� with probability p, 0� p�1, a new vertex is intro-
duced that then connects at random to one of the earlier
vertices;

�b� or with probability 1− p an edge is introduced be-
tween vertices of fitnesses x ,y with rate f�x ,y�.

The average number of vertices with fitness x and degree
k, Nk�x , t�, evolves as

�Nk�x,t�
�t

=
p

N�t�
„Nk−1�x,t� − Nk�x,t�… + p�k1��x� + 2�1 − p�

�
w�x,t�

�
k=1

� �
0

�

w�x,t�Nk�x,t�dx

„Nk−1�x,t� − Nk�x,t�… ,

�1�

where N�t� is the total number of vertices at the time t and

w�x,t� = �
k=1

� �
0

�

f�x,y�Nk�y,t�dy . �2�

The first term on the right hand side of Eq. �1� represents
the change in the average number of vertices with fitness x
and degree k due to process �a�. The second term accounts
for the continuous introduction, with probability p, of new
vertices with fitness drawn from the probability distribution
��x�. The third term represents the change in the average
number of vertices with fitness x and degree k due to process
�b�. We define also

N�x,t� = �
k=1

�

Nk�x,t� , �3�

and express the total number of vertices at the time t as

N�t� = �
0

�

N�x,t�dx . �4�

Summing Eq. �1� over k we obtain

�N�x,t�
�t

= p��x� �5�

which, given our initial conditions �no vertex is present in
the network at the time t=0�, yields

N�x,t� = p��x�t �6�

in the large t limit. Integrating Eq. �6� we find as expected
N�t�= pt, and Eq. �6� reads now N�x , t�=��x�N�t�. Equation
�6� allows us to express the integrals in the third term of Eq.
�1� in terms of f and �:

w�x,t�

�
k=1

�

w�x,t�Nk�x,t�dx

=
1

pt

�
0

�

f�x,y���y�dy

�
0

� �
0

�

f�x,y���x���y�dxdy

.

�7�

We introduce the function

D�x� =

�
0

�

f�x,y���y�dy

�
0

� �
0

�

f�x,y���x���y�dxdy

, �8�

which can be interpreted physically �in the long time limit�
as the mean degree of a vertex of fitness x divided by the
total degree of the network, referring of course only to the
degree accumulated by process �b�.

Thus, Eq. �7� takes the form

w�x,t�

�
k=1

�

w�x,t�Nk�x,t�dx

=
D�x�
N�t�

. �9�

We proceed now to solve the rate equations for Model A
following the methods in Refs. �6–8�. Since Nk�x , t� grows
linearly with time, we introduce functions ck�x� such that

Nk�x,t� = tck�x� , �10�

and notice that Eq. �10� becomes exact in the long time limit.
Substituting Eqs. �9� and �10� into Eq. �1� gives recursive

equations for the functions ck�x�;

C. BEDOGNE’ AND G. J. RODGERS PHYSICAL REVIEW E 74, 046115 �2006�

046115-2



ck�x� =
H�x�

1 + H�x�
ck−1�x� +

p�k1��x�
1 + H�x�

, �11�

where the function H is defined by

H�x� = 1 + 2
1 − p

p
D�x� . �12�

Equation �11� can be easily solved recursively and yields

ck�x� =
H�x�k−1

�1 + H�x��k p��x� . �13�

Defining now

F�x� = �
0

�

f�x,y���y�dy �14�

and

� = �
0

�

F�x���x�dx , �15�

we can express Eq. �13� in the form

ck�x� =
p

2k

�1 + 2
1 − p

p�
F�x��k−1

�1 +
1 − p

p�
F�x��k ��x� . �16�

Hence

ck�x� = �T�x��kA�x� , �17�

where

T�x� =
1

2	1 +

1 − p

p�
F�x�

1 +
1 − p

p�
F�x�
 �18�

and

A�x� =
p��x�

1 + 2
1 − p

p�
F�x�

. �19�

Equation �18� shows that the inequality 1
2 �T�x��1 holds.

There exists then a function A=A�x� and a function B
=B�x� such that

ck�x� = A�x�
1

B�x�k , �20�

with 1�B�x��2. Thus for every fixed x, the network’s de-
gree distribution decays exponentially. The function ck�x�
can be equivalently expressed in the form

ck�x� =
p

2k−1E�x�k−1��x� −
p

2kE�x�k��x� , �21�

where E�x�=2T�x�.
The global degree distribution is given by

ck=�0
�ck�x�dx, and can thus be expressed in the form ck

= �P /2k−1�ak−1− �p /2k�ak, where ak=�0
�E�x�k��x�dx. Notice

that the coefficients �ak , k=1,2 , . . .  satisfy the inequalities
ak−1�ak, ak�2ak−1. Notice also that Eqs. �6� and �10� imply
that �k=1

� ck= p. It follows, as expected, limk→�ck=0.
Finding the explicit analytical form of the infinitesimal

sequence �ck , k=1,2 , . . .  is very hard, even for simple
choices of f and �, as the coefficients �ak , k=1,2 , . . .  usu-
ally cannot be expressed in terms of elementary functions.
Some particular solutions can, however, be obtained for ck,
for instance when ��x� is a linear sum of delta functions, so
that the system can be divided into interacting subpopula-
tions. For instance, if f�x ,y�=xy and

��x� = 1
2 ���x − 	� + ��x�� , �22�

where 	 is some positive constant, then

ck =
p

2
�2−k +

p

4 − 3p
�4 − 2p

4 − 3p
�−k� . �23�

For large k, the degree distribution is dominated by the
second term. Some solutions are also possible for continuous
��x� and f�x ,y�. For instance, when ��x�=1, 0�x�1 and
f�x ,y�= �x−y�2, so that vertices with different fitnesses are
more likely to be joined than those with similar fitnesses, it is
a simple matter to show that

ck �
1

�1 + p�k . �24�

The same result holds for any any 
 if f�x ,y�= �x
−y
�2.
We notice at last that, although is not always possible to

express the functions analytically, it is nevertheless possible
to find f and � such that the global degree is power-law
distributed. Supposing for instance that T�x�=e−x and A�x�
=Dx
, where D�0, Eq. �17� yields ck=D��
+1��1/k
+1�.
We can easily see that � must now take the form ��x�
= �D / p��x
 / �ex−1��. Thus we can choose D such that
�0

���x�dx=1. The linking function f will then be a �normal-
ized� element of the linear space of the solutions of the inte-
gral equation,

�
0

�

f�x,y���y�dy =
p

2�1 − p�
2 − ex

ex − 1

��
0

� �
0

�

f�x,y���x���y�dxdy . �25�

It is obvious that this technique can be generalized. Sup-
posing that T and A are chosen such that the integration of
Eq. �17� yields a power law, without any loss in generality
we can multiply the function A by a constant which will be
used to normalize the probability distribution �. The linking
function f will then be a solution of an integral equation of
the same kind of the one above.
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We end this section by observing that if we forget the
random process �a� considering only the second and third
terms of Eq. �1�, we still recover an exponential degree dis-
tribution. With calculations similar to the ones above, we can
easily obtain the recursive equations

ck�x� =
H�x� − 1

H�x�
ck−1�x� +

p�K1��x�
H�x�

, �26�

whose solution is

ck�x� =
p��x�

H�x� − 1
�1 −

1

H�x�
�k

. �27�

Since H�x��1, Eq. �27� has the form

ck�x� = U�x�
1

V�x�k �28�

where V�x��1, showing that the network’s degree distribu-
tion decays exponentially for every fixed x.

Notice that in this case, given any probability distribution
�, it is always possible �12� to find a linking function f�x ,y�
such that ck scales as a power law with a fixed real exponent.
On the other hand, if we choose U and V such that integra-
tion of Eq. �28� gives a power law, we can always determine
f and � accordingly. The probability distribution ��x� is
uniquely determined by U, V and takes the form

��x� =
1

p

U�x�
V�x� − 1

. �29�

Since U can always be multiplied by an arbitrary constant,
we can assume that

1

p
�

0

� U�x�
V�x� − 1

dx = 1. �30�

The linking function obeys then the integral equation

�
0

�

f�x,y�
U�y�

V�y� − 1
dy =

1

2�1 − p�
1

V�x� − 1
�

0

� �
0

�

�f�x,y�
U�x�

V�x� − 1

U�y�
V�y� − 1

dxdy .

�31�

III. MODEL B

We change now the model substituting preferential to ran-
dom attachment. The rate equations now become

�Nk�x,t�
�t

=
p

M�t�
��k − 1�Nk−1�x,t� − kNk�x,t��

+ p�k1��x� + 2�1 − p�
w�x,t�

�
k=1

� �
0

�

w�x,t�Nk�x,t�dx

��Nk−1�x,t� − Nk�x,t�� , �32�

where the proper normalizing factor in the first term on the
right hand side is now

M�t� = �
0

�

�
k=1

�

kNk�x,t�dx . �33�

While the second and the third term on the right hand side of
Eq. �32� are the same as in Model A, the first term on the
right hand side now represents the change in the average
number of vertices with fitness x and degree k due to prefer-
ential attachment.

Differentiating Eq. �33� gives

�M�t�
�t

= 2, �34�

which obviously yields

M�t� = 2t , �35�

in the large t limit. Substituting now Eqs. �8�, �10�, and �35�
into Eq. �32� gives recursive equations for the functions
ck�x�,

ck�x� =

H�x� − 1 +
p

2
�k − 1�

H�x� +
pk

2

ck−1�x� +
p�k1��x�

H�x� +
pk

2

, �36�

whose solution can be expressed in terms of gamma func-
tions,

ck�x� = 2��x�
��k + 2

H�x� − 1

p
���1 + 2

H�x�
p

�
��1 + 2

H�x� − 1

p
���k + 1 +

2H�x�
p

� .

�37�

Equation �37� yields the asymptotic result �15�

ck�x� �
1

k1+�2/p� . �38�

For every x and for large k we have thus found a power law
degree distribution, whose exponent �p�=1+ 2

p only de-
pends on p. When p=1 we recover =3 as expected for a
random network growing preferentially.

Equation �38� shows that the interplay between process
�a� and process �b� shifts the power law by 2 1−p

p above the
value 3 we would obtain when preferential attachment acts in
isolation. We have also seen, on the other hand, that the
degree distribution of the network described only by the sec-
ond and third terms of Eq. �32� decays exponentially for
every fixed x and, therefore, it cannot shift a power law by
mere addition. We conclude that the �nonlinear� influence of
process �b� on process �a�, when evaluated on vertices of a
given fitness x, turns out to weaken the effect of process �a�.
When p�1, the power law exponent is larger then 3, and we
would thus expect to find a smaller number of hubs than
when preferential attachment acts in isolation.
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Notice that when p→0 the preferential attachment
mechanism still dominates the fitness linking process, in the
sense that we still recover a power law distributed connec-
tivity, but by choosing an appropriately small p we can make
the power law decay arbitrarily fast.

There are very few ��x� and f�x ,y� that allow an explicit
solution for ck. An exception is f�x ,y�=xy and ��x� given by
Eq. �22�. Then we have an explicit solution:

ck =

��k���2

p
+ 1�

��k +
2

p
+ 1� +

��k + 8
1 − p

p2 ���2

p
+ 1 + 8

1 − p

p2 �
��k + 1 +

2

p
+ 8

1 − p

p2 ���1 + 8
1 − p

p2 � .

�39�

It is easy to see that both terms decay at the same rate for
large k, independent of which value of x they correspond to,
given by Eq. �38�.

The three terms of Eq. �32� depend, respectively, on prob-
abilities p, p, and 1− p. We can easily generalize our results
by replacing the triplet �p , p ,1− p� by a triplet of completely
unrelated probability parameters �p ,r ,q�.

Equation �35� becomes now

M�t� = p + r + 2q , �40�

and Eq. �36� takes the form

ck�x� =
W�x� − 1 + 
�k − 1�

W�x� + 
k
ck−1�x� +

r�k1��x�
W�x� + 
k

, �41�

where

W�x� = 1 +
2q

r
D�x� �42�

and


 =
p

p + r + 2q
. �43�

When p�0 �the case p=0 can be treated analogously to
the case discussed at the end of Sec. I� the solution of Eq.
�41� is

ck�x� =
r��x�




��k +
w�x� − 1



���1 +

W�x�



�
��1 +

W�x� − 1



���k + 1 +

W�x�



� �44�

yielding the asymptotic result �15�

ck�x� �
1

k1+�1/
� . �45�

We have still recovered, for every fixed x, a power law de-
gree distribution. In this case we can easily see that the prob-
abilities can be tuned to give any power-law exponent larger
than 2.

IV. CONCLUSIONS

Using rate equations we have investigated the interplay
between the fitness linking process introduced in the varying
fitness model and the other two most important networks’
self-organizing principles examined so far in the literature,
that is random and preferential attachment.

In Sec. II �Model A�, we have shown that the interplay
between the fitness linking mechanism and random attach-
ment results in an exponential degree distribution for any
fixed fitness x. Although the analytical form of the exponen-
tial law depends explicitly on the choice of the probability
distribution ��x� and of the linking function f�x ,y�, the ex-
ponential basis is always limited between 1 and 2. We also
noticed that integrating this exponential distributions over x
easily gives power laws, when f and � are chosen appropri-
ately. We also examined special cases where the global de-
gree is instead exponentially distributed. We have then
shown that the fitness linking mechanism acting in isolation
also yields an exponential degree distribution for every fixed
x.

In Sec. III �Model B� we replaced random with preferen-
tial attachment showing that the degree distribution decays
as a power law shifted by 2 1−p

p above the value expected for
a linear preferential attachment mechanism acting in isola-
tion. We have interpreted this result as a weakening of the
preferential attachment mechanism due to the fitness linking
process. We observed that Model B can be generalized tak-
ing account of three completely unrelated probabilities and
that the parameters thus introduced can be tuned to give any
desired power law larger than 2.
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