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Constructing a minimal vertex cover of a graph can be seen as a prototype for a combinatorial optimization
problem under hard constraints. In this paper, we develop and analyze message-passing techniques, namely,
warning and survey propagation, which serve as efficient heuristic algorithms for solving these computational
hard problems. We show also, how previously obtained results on the typical-case behavior of vertex covers of
random graphs can be recovered starting from the message-passing equations, and how they can be extended.
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I. INTRODUCTION

The minimal vertex-cover �VC� problem belongs to the
most difficult class of optimization problems in graph theory
�1�. It asks to mark a minimal number of vertices of a graph,
such that each edge of the graph is incident to at least one of
the selected vertices. This problem is known to be NP-hard,
which means, in particular, that all currently known algo-
rithms construct minimal vertex covers in a computational
time, which scales exponentially with the size of the graph.
The applicability of such exact algorithms is therefore re-
stricted to pretty small graphs of few hundreds of vertices.

There are, however, applications of the vertex-cover prob-
lem and other closely related optimization problems �2,3� to
a huge number of real-world network problems; examples
are the monitoring of Internet traffic �4�, the prevention of
denial-of-service attacks �5�, and immunization strategies in
networks �6�. Another technically related network problem is
the one of counting loops in networks, recently analyzed on
the basis of statistical-physics methods �7�. The dimensions
of the underlying networks easily exceed the graph sizes
treatable with exact algorithms, and heuristic methods to
construct as small as possible solutions are needed.

In this paper we set up two message-passing techniques
based on the statistical-physics approach to combinatorial
optimization problems �8,9�, more precisely based on the
cavity method for diluted systems �10� and its algorithmic
interpretation �11,12�. The first of the message-passing tech-
niques, the so-called warning propagation is equivalent to the
Bethe-Peierls iterative scheme and therefore related to the
assumption of replica symmetry; the second one is a survey
propagation algorithm related to one-step replica symmetry
breaking. Both algorithms have already been formulated for
the vertex-cover problem by one of the authors in Ref. �8�;
here we go beyond this presentation providing both a more
elegant setting and a thorough analysis of the algorithmic
performance.

A natural test bed for the proposed algorithms is provided
by finite-connectivity random graphs �13�. The typical prop-
erties of VCs on such graphs have already been analyzed
both with rigorous mathematical tools �14,15� and with
statistical-physics methods �16–20�. We therefore have a
pretty complete knowledge about the phase diagram of this

problem, and can systematically compare the algorithmic
performance of the message-passing techniques on single,
finite, randomly generated graphs to the average behavior in
the thermodynamic limit.

It should also be noted that the vertex-cover problem is
closely related to a class of lattice glass models �21–25�. In
these models, hard particles are to be positioned on a lattice
under geometrical packing constraints representing hard-core
interactions. These models are considered as simple lattice
models for the glass transition due to geometric frustration,
and their closest packings correspond to minimal VCs �16�.

This paper is organized as follows: the vertex-cover prob-
lem is defined in Sec. II and the concept of cavity graph is
defined in Sec. III; Sec. IV focuses on the warning propaga-
tion algorithm, and its performance and iterative stability are
analyzed; Sec. V focuses on the survey propagation algo-
rithm; Sec. VI estimates the minimal vertex-cover size for a
random graph using a statistical-physics method; and finally,
in Sec. VII we conclude this work.

II. THE MODEL

Let us start with the definition of vertex covers. Given is
a graph G= �V ,E� with N vertices i=1, . . . ,N and M undi-
rected edges �i , j�= �j , i��E connecting pairs of vertices.

Definitions. A vertex cover �VC� of the graph G is a subset
U�V of vertices such that for all edges �i , j��E, at least
one end vertex is an element of U, i.e., i�U or j�U. A
minimal vertex cover of G is a vertex cover of minimal car-
dinality.

We also denote vertices in U as covered, as well as their
incident edges: The set U is a VC iff all edges are covered.
Determining a minimal vertex cover is one of the basic NP-
hard combinatorial problems �1�. Its worst-case solution time
is consequently expected to grow exponentially with the size
of the problem instance, here measured by the vertex and
edge numbers N and M. The problem is equivalent to the
problem of constructing a maximum independent set of G,
and to the problem of finding the maximum clique in the
complementary graph of G �where edges and nonedges are
exchanged�.

PHYSICAL REVIEW E 74, 046110 �2006�

1539-3755/2006/74�4�/046110�19� ©2006 The American Physical Society046110-1

http://dx.doi.org/10.1103/PhysRevE.74.046110


The exponential running time of algorithms constructing
minimal vertex covers is a serious limitation to practical ap-
plications: Exact algorithms are able to treat only relatively
small sample graphs. It is therefore interesting to develop
powerful heuristic methods, which are able to construct at
least close-to-minimal VCs, which may serve as reasonable
solutions in practical problems.

In the context of constraint-satisfaction problems �CSPs�,
recently, statistical-physics approaches have led to the pro-
posal of so-called survey propagation algorithms, which are
sophisticated message-passing procedures based on the cav-
ity method of statistical physics. This type of algorithm was
first proposed for the satisfiability problem �11�, and then
extended to graph coloring �26� and general CSPs �27�, and
is one of the most efficient algorithms in the hard-to-solve
phase of these problems.

The vertex-cover problem is structurally different from
CSPs. Whereas the computational problem of the latter re-
sults from the existence of a large number of constraints
being hard to satisfy simultaneously, the constraints in a ver-
tex cover—i.e., the need for covering each edge of the
graph—can in principle be satisfied very easily by covering
many vertices. The computational hardness stems from the
objective of finding a minimal vertex cover, i.e., from the
interaction between a high number of local constraints on
one side, and the global minimization condition on the other
side. This leads to a difference in the validation of the output
of a heuristic algorithm: Whereas a solution to a CSP can be
easily checked by testing all constraints, and the problem
consists in finding one, it is no problem at all to construct a
VC, but its minimality can hardly be shown. One can say
that the hardness of solving VC stems from the fact that the
landscape X�U�= �U� becomes complex over the set of all
VCs U �note: not over the set of all vertex subsets�.

The algorithmic aim is therefore to construct a vertex
cover as small as possible in polynomial time for some given
graph G= �V ,E�. The central step in this context will be the
calculation �or at least approximation� of the vertex-
dependent number

�i =
��U � V�U is minimal VC, i � U��

��U � V�U is minimal VC��
, �1�

which, for every vertex i�V, equals the fraction of minimal
vertex covers containing vertex i�V. In probabilistic terms,
it can be understood as the probability that i is covered in a
randomly selected minimal vertex cover.

Once we know these quantities, we can obviously exploit
them algorithmically. We know, e.g., that each vertex with
�i=1 belongs to all minimal VCs, and it has to be included
into the VC we are aiming to construct. Contrarily, vertices
i�V with �i=0 do not appear in any minimal VC, and they
have to be excluded from the vertex set we are building. The
problem is slightly more involved for those vertices having �
values different from zero and one; they are contained in
some vertex covers, but not in others. Since �i gives only
strictly local information, we do not know any possible
quantitative restriction to the simultaneous assignment of
pairs or even larger subsets of vertices. If we consider, e.g.,

one edge �i , j��E, the joint probability that both vertices are
uncovered does not equal �1−�i��1−� j� as one might as-
sume naively by considering the vertices to be independent.
It equals obviously zero due to the vertex-cover constraint
for the edge; at least one of the end vertices has to be cov-
ered. This problem can be resolved by an iterative decima-
tion process. We select, e.g., a vertex of nonzero � and add it
to the VC U to be constructed, and delete the vertex as well
as all its incident edges from the graph. We then recompute
the � from the decimated graph, add a new vertex to U and
so on, until all edges of G are covered. The vertex set U now
forms a vertex cover of the graph G.

There is an obvious algorithmic problem with evaluating
the �i: A naive calculation according to their definition
would require the prior knowledge of all minimal VCs—
which we do not have if we are trying to develop an algo-
rithm finding just a single one of them. The way out will be
a message-passing procedure �12,28�, which only exchanges
local information between neighboring vertex pairs, until
these messages reach globally self-consistent values. Such
message-passing procedures first need the introduction of the
cavity graph, which will be done in the following section.

III. THE CAVITY GRAPH

A simple idea could be to determine �i from all the � j of
the neighbors j�N�i� of vertex i. This is not directly pos-
sible. As discussed above, the � j are single-site quantities
and do not contain any information of vertex pairs. Any two
j�N�i� are, however—via a path crossing i—second neigh-
bors of each other, and thus they are highly correlated. Imag-
ine, e.g., that vertex i is not covered, then all j�N�i� have to
be simultaneously covered. The knowledge of the marginal
cover probabilities � j is obviously not sufficient to determine
also the central �i. The way out is to consider not the full
graph, but the cavity graphs.

Definition. Given a graph G= �V ,E�, and a vertex i�V,
the cavity graph Gi is the subgraph of G induced by the
vertex set Vi=V \ i.

Said with simpler words, the cavity graph is created from
the full graph G by removing vertex i as well as its incident
edges �i , j� for all j�N�i�. On a tree graph, the j�N�i�
would belong to pairwise-distinct connected components of
the cavity graph, and they would be independent of each
other. More generally, on a graph with relatively long cycles,
any two of the former neighbors of vertex i will be distant on
the cavity graph Gi. The basic approximation underlying
message-passing algorithms consists in assuming the statis-
tical independence of these vertices on the cavity graph
�within one thermodynamic state, as will be explained in the
case of survey propagation�.

Having defined the cavity graphs Gi for each vertex i, we
also define the generalized probabilities

� j�i =
��U � Vi�U is minimal VC of Gi, j � U��

��U � Vi�U is minimal VC of Gi��
�2�

measuring the fraction of minimal vertex covers of the cavity
graph Gi containing vertex j� i. Even if defined formally for
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any pair of vertices i and j, these quantities will be relevant,
in particular, for those vertices connected by an edge in the
original graph G, i.e., for �i , j��E.

A comment on the statistical-independence assumption
has to be included at this point: We are constructing an al-
gorithm for real, i.e., finite graphs. This means that graph
loops have finite length. The equations we are going to
present in the following will therefore be only approxima-
tions to the exact values of the probabilities �i, and the al-
gorithm cannot guarantee to construct a true minimum-
vertex cover. So, even if the presented algorithm will scale
only quadratically in the graph order N, it cannot be consid-
ered as an exact polynomial algorithm, and therefore does
not contribute to the solution of the P-NP problem. The im-
portance of message-passing algorithms is related to practi-
cal applications on large graphs, where exact methods fail
due to their exponential time requirements. As we will see
below in numerical simulations, the procedures presented
here largely outperform purely local algorithms, and there-
fore allow us to construct better approximations to the exact
solution.

IV. WARNING PROPAGATION

A. Algorithm

The very first and simplest message-passing procedure we
are going to introduce carries the name warning propagation
�WP�. In this case, we are going to calculate only the reduced
quantities

�̃i = 	0 if �i = 0,

* if 0 � �i � 1,

1 if �i = 1,

�3�

and analogously the cavity quantities �̃ j�i. So these quantities
are not measuring the exact probability for a vertex to be
covered in a randomly selected minimal vertex cover. They
only indicate whether it is always covered �value one�, never
covered �value zero�, or sometimes covered and sometimes
uncovered. For this last case we have introduced the unifying
joker state *. Note also that this information is sufficient to
be exploited algorithmically. If a vertex is assigned the joker
state, it can be chosen liberally to be covered or to be uncov-
ered during graph decimation.

As a first step, we introduce an even simpler message
type, the so-called warning uj→i sent from a vertex j to a
neighbor i. This warning incorporates the vertex-cover con-
straint: If the vertex j is uncovered, it sends a warning uj→i
=1 to vertex i signifying, “Attention, to cover our connecting
edge you should be covered, or I have to change state.” If, on
the other hand, vertex j is already covered, it sends the trivial
message uj→i=0 saying, “I have already covered our con-
necting edge.” More formally, a set of warnings is defined
for every vertex subset U�V,

uj→i�U� ª 
0 if j � U ,

1 if j � U ,
�4�

with �i , j��E being an arbitrary edge. Note that each edge

carries two messages: One sent from i to j, the other one
from j to i. In a proper VC, at least one of the end vertices of
each edge has to be covered, so we find that

U � V is VC of G ↔ ∀ �i, j� � E: ui→j�U�uj→i�U� = 0,

�5�

i.e., each edge has to carry at least one trivial warning. The
definition of the warning can also be extended to sets M of
vertex subsets. We define

uj→i�M� ª min
U�M

uj→i�U� , �6�

i.e., a nontrivial message is sent if and only if vertex j is an
element of no U�M. This definition obviously reproduces
the warning �4� if M consists of only one vertex subset. The
reason for selecting the minimum in the last definition will
become clear below. Using the set Si of all minimal vertex
covers of the cavity graph Gi as a special case, the warning
uj→i�Si� becomes a function of �̃ j�i only. For an arbitrary but
fixed edge we find

uj→i�Si� � uj→i��̃ j�i� = 	1 if �̃ j�i = 0,

0 if �̃ j�i = * ,

0 if �̃ j�i = 1.

�7�

The required minimality of the vertex cover to be con-
structed leads to a simple propagation of these warnings, or
equivalently of the corresponding �̃ j�i. This can be achieved
by considering how minimal vertex covers can be extended
from the cavity graph to the full graph. There are three cases
�cf. Fig. 1�.

�a� There exists at least one minimal vertex cover of the
cavity graph Gi where all j�N�i� �neighbors of i in the full
graph G� are simultaneously covered. These VCs are also
minimal VCs of the full graph G since all edges incident to i
are already covered, so i has to be uncovered to guarantee
minimality. The sizes of the minimal VCs of Gi and those of
G thus coincide. In this case we find �̃i=0, since there are no
minimal VCs of G containing i.

�b� All minimal vertex covers of Gi leave at least two j
�N�i� uncovered. Since all edges incident to vertex i have to
be covered, we have to add i to the VC of Gi in order to
extend it to the full graph. The VC of the full graph thus
contains exactly one vertex more than those of the cavity
graph, and �̃i equals one.

�c� In the last, intermediate case, there is at least one
minimal VC of Gi containing all but one j�N�i�, but there is
none containing all j�N�i�. Also in this case, we have to add
exactly one vertex by going from a VC of the cavity graph Gi
to one of the full graph G; the VC size grows by one. If we,
however, use the VC leaving only one j�N�i� uncovered,
there exists only one single uncovered edge in G. To cover it,
we can select any one of its two end vertices, i.e., either i or
its neighbor. In this case, we therefore find �̃i=*, i.e., vertex
i is found to be in the joker state.

At this point, the independence assumption of all j
�N�i� in the cavity graph enters into the discussion. We
consider their joint probability of simultaneously being cov-
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ered in a minimal VC of the cavity graph Gi, and assume this
quantity to factorize into � j�N�i�� j�i. Under this assumption,
case �a� happens if and only if all �̃ j�i�0. Case �b� happens
if there are at least two vanishing �̃ j�i in between the j
�N�i�, and the third case appears for exactly one zero �̃ j�i.
We see that in this rule no difference between always cov-
ered and joker vertices j�N�i� exists, which explains the use
of the minimum warning in definition �6�. We conclude

�̃i =	0 if 
j�N�i�

uj→i��̃ j�i� = 0,

* if 
j�N�i�

uj→i��̃ j�i� = 1,

1 if 
j�N�i�

uj→i��̃ j�i� � 1.

�8�

This rule is graphically represented in Fig. 1. The cavity
quantities �̃ j�i can now be calculated by considering the cav-
ity graphs Gj, and by disregarding in addition the influence
of vertex i,

�̃ j�i =	0 if 
k�N�j�\i

uk→j��̃k�j� = 0,

* if 
k�N�j�\i

uk→j��̃k�j� = 1,

1 if 
k�N�j�\i

uk→j��̃k�j� � 1.

�9�

Equations �7�–�9� are called warning propagation. The last
equation, together with Eq. �7�, describes a closed system of
2 �E� equations, two for each edge due to the two different
possible orientations of the messages. Note that Eqs. �7� and
�9� can also be reformulated for the warning uj→i itself,
eliminating the cavity quantities �̃ j�i. The iterative equations
take the particularly simple form

uj→i = �� 
k�N�j�\i

uk→j,0� , �10�

where, for better readability, we have used the notation
��· , · � for the Kronecker symbol.

These equations have to be solved and plugged into Eq.
�8� in order to calculate the values of all �̃i. Even if this
information is not yet sufficient to immediately solve the
minimal VC problem, we can already read off a lot of useful
information about the properties of all minimal vertex cov-
ers. The most important quantity is an estimate for the mini-
mal VC cardinality,

X = 
i�V

����̃i,1� +
1

2
���̃i, * �� . �11�

The prefactor 1/2 in front of the number of joker vertices is
not a direct result of WP. It can be justified using the more
detailed belief propagation calculating the full single-site
probability �i �8�, or via the replica method �16�.

The WP equations can be used to construct a vertex cover,
i.e., they can be exploited algorithmically. This is done in the
following way, starting with an initial graph G= �V ,E� and
an empty set U=�:

�1� The 2 �E� warnings ui→j are initialized randomly.
�2� Then, sequentially, edges are selected and the warn-

ings are updated using Eq. �10�. This update is iterated until
a solution of the warning-propagation equations is found.

�3� The �̃i are calculated from the warnings using Eq. �8�.
�4� All vertices with �̃i=1 are added to U and deleted

with their incident edges from G.
�5� All vertices with �̃i=0 are deleted from V, without

changing U. Since a vertex with �̃i=0 has only neighbors of
�̃i=1, it was already isolated after the last step. No edges
therefore have to be removed from E.

�6� One remaining vertex i ��̃i= * � is selected, and all its
neighbors j�N�i� are added to U. Vertices i and N�i� are
removed from V and all their incident edges are subtracted
from E.

�7� If uncovered edges are left, we go back to step 2 and
recalculate the warnings on the decimated graph. If no edges
are left, the current U is returned as a solution.

Obviously, the constructed U forms a vertex cover since
only covered edges are removed from the graph. It is also a
minimal one if the information provided by the �̃i was cor-
rect. Due to the factorization hypothesis in WP, some of the
�̃i may, however, be erroneous, resulting possibly in a non-
minimal cover. It is worth noting that after each graph deci-
mation step followed by a reiteration of the WP equations, a

FIG. 1. Graphical representation of Eq. �8�, with vertex i being
identified with the lower vertex in each subfigure. The color coding
of the vertices corresponds to the values of �̃i and �̃ j�i: Value zero is
represented by a white dot, value one by a black dot, and the joker
value * by a gray dot. In case �a�, there are no white dots between
the j�N�i�, so the lower vertex is not to be covered and gets the
color white. If there is exactly one white dot in the upper line, the
lower vertex becomes gray, cf. �b�. If there are two or more white
dots in the upper line, as in �c�, the lower vertex is black, corre-
sponding to an always covered vertex.
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new estimate of the VC size can be calculated according to
Eq. �11�. This estimate is expected to be stationary only in
the case where already the initial warnings were exact, and to
change under the algorithm if the latter were only approxi-
mations.

B. From single samples to average results on random graphs

Starting from Eqs. �10� and �8�, we can easily reconstruct
the replica-symmetric typical-case results for random graphs
of average vertex degree c. We start with defining the global
histogram of warnings,

Q�u� =
1

2�E� 
�i,j��E

���ui→j,u� + ��uj→i,u�� . �12�

Due to the binary nature of the warnings, it can be param-
etrized as

Q�u� = �0��u,0� + �1��u,1� �13�

with �0+�1=1. Consider now Eq. �10�: A nontrivial warning
is sent via a link j→ i only if the input messages uk→j from
all k�N�j� \ i equal zero. This happens for all warnings in-
dependently with probability �0, and the number d of these
incoming messages is, on a random graph, distributed ac-
cording to a Poissonian of mean c. We thus find

�1 = 
d=0

�

e−c cd

d!
�0

d = e−c�1, �14�

which, using the Lambert-W function, is solved by

�1 =
W�c�

c
. �15�

Let us now reconstruct also the histogram

P��̃� =
1

N

i�V

���̃i,�̃� �16�

of single-site marginals �̃i. The latter are three valued; we
thus parametrize the histogram as

P��̃� = �0���̃,0� + �*���̃, * � + �1���̃,1� . �17�

Using Eq. �8� and the Poissonian degree distribution, we find

�0 = 
d=0

�

e−c cd

d!
�0

d = �1,

�* = 
d=0

�

e−c cd

d!
d�0

d−1�1 = c�1
2,

�1 = 1 − �* − �0. �18�

For the derivation of the second expression we have utilized
the fact that the single nonzero warning among the messages
reaching a joker vertex can be chosen liberally in between all
d incoming edges. For the VC size we thus find

x�c� = lim
N→�

X

N
= 1 −

W�c�
c

−
W�c�2

2c
, �19�

which is identical to the result of a replica-symmetric calcu-
lation �17�. For average degrees c�e, this result was shown
to be exact �18�, and it can in fact already be read off from an
older result by Karp and Sipser �29� on maximal matchings
in random graphs �see also Refs. �30,31� for related
statistical-physics approaches�.

C. Bug proliferation and the stability of the WP fixed point

Besides the problem that the solution to the equations of
warning propagation may be imprecise due to the existence
of short loops in the graph, there can be another problem—
the iteration of the warning update may fail to converge. This
can happen again due to the existence of short loops, which
may lead to attractive limit cycles in the iterative warning
dynamics. Another problem can appear due to the existence
of many solutions of Eqs. �9�. In statistical physics we say
that the replica symmetry is broken.

To be more quantitative, we study here the stability of a
WP solution with respect to the introduction of a bug �32�:
One of the warnings uj→i is changed to its opposite value.
After one iteration of WP, the bug itself will be cured since it
depends only on unchanged messages. On the other hand, the
warnings from vertex i to its neighbors k�N�i� \ j may be
changed, i.e., new bugs may appear. The question is now if
these bugs proliferate and, after some iterations, change a
finite fraction of all warnings, or, if the bugs die out after a
while. Only in the second case, WP is stable and can be
usefully included into a decimation procedure.

Here, we perform this analysis analytically for the case of
a random graph of average degree c. In this case, the number
d of neighbors k�N�i� \ j receiving messages depending on
the bug is distributed according to the Poissonian e−ccd /d!.
They send themselves warnings uk→i to vertex i which are,
due to the locally treelike structure of a random graph, inde-
pendent of uj→i, and can be considered to be randomly se-
lected according to the global histogram Q�u�=�0��u ,0�
+�1��u ,1� of warnings introduced in Eq. �12�.

We have to distinguish two cases for the introduction of a
bug:

�i� We change the message uj→i from one to zero. Prior to
this change, all out messages ui→k with k�N�i� \ j were equal
to zero �cf. Eq. �10��. Let us denote by d= �N�i� \ j� the num-
ber of the out messages depending on uj→i, i.e., the degree of
vertex i equals d+1. After the introduction of the bug, an out
message ui→k becomes one if and only if all other in mes-
sages ul→i with l�N�i� \ �j ,k� are zero. There are two sub-
cases. First, with probability �0

d, all messages uk→i equal
zero. In this case, all d out messages change. Second, with
probability d�0

d−1�1−�0�, exactly one message uk→i has value
one, all others are zero. In this case, only ui→k changes under
iteration. On average, the bug introduces thus


d

e−c cd

d!
�d�0

d + d�0
d−1�1 − �0�� = ce−c�1−�0� = ce−c�1

new bugs into the graph. These bugs are of the second type.
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�ii� We change the message uj→i from zero to one. After
introduction of the bug, all out messages ui→k with k
�N�i� \ j become zero under the WP update. They are bugs
only if, in the initial WP solution, they had the value one.
Using analogous arguments to the first case, we find that,
with probability �0

d, all d out messages were one, and with
probability d�0

d−1�1−�0�, only one single message was one
and becomes a new bug. The expected number of new bugs
caused by the changed uj→i equals again ce−c�1.

We now apply a simple percolation-type argument: If the
average number of new bugs is smaller than one, the bugs
are expected to be cured after a few iterations; the WP solu-
tion is stable under bug introduction. If, on the other hand,
the average number of new bugs is larger than one, we ex-
pect an exponential increase in the bug number. Bugs prolif-
erate and carry away the system from the WP fixed point.
The latter is thus concluded to be unstable. Note that this
argument holds only because we update out messages which,
under iterated WP updates, do not interact because they all
influence disjoint sets of further warnings.

The critical point can now be determined easily: The av-
erage number of new bugs is set to one, cWPe−cWP�1 =1. Com-
paring it to the self-consistent Eq. �15�, we immediately con-
clude the

cWP =
1

�1�cWP�
= e . �20�

WP converges below this critical connectivity, i.e., in the full
region where replica symmetry is exact. As one would ex-
pect intuitively, it does not converge in the replica-symmetry
broken phase above average degree e; there survey propaga-
tion as discussed in the following section of this work has to
be applied.

D. Bug relaxation time of WP

Even if WP provides asymptotically exact results in the
full replica-symmetric phase in a running time scaling qua-
dratically with N, its convergence slows down if we ap-
proach the critical average degree. This can be seen analyti-
cally by calculating the evolution of the number of erroneous
messages, or bugs, under various update schemes.

1. Parallel update

Let us start with a parallel-update scheme, where, in every
iteration step, all messages are recalculated simultaneously
from the old messages. Assume that there are M1	2M
=2 �E� erroneous messages. These are, up to higher-order ef-
fects, isolated from each other and act thus independently
under WP iteration. Each of these bugs becomes corrected in
a new WP step, but causes, as seen in the last subsection, on
average ce−c�1 =c�1 new wrong messages. Again, up to
higher-order corrections, these messages do not interact. For
the expected number M1�t� we find

M1�t� = �c�1�tM1�0� , �21�

i.e., below cWP=e, this number decays exponentially with a
time scale


par = −
1

ln�c�1�
. �22�

This relaxation time diverges as we approach c=e from be-
low. To unveil the critical behavior, we set c=e−� �0��
	1�. With �1=1/e+� we find, using Eq. �15�,

1

e
+ � = exp
− 1 +

�

e
− e� + O����� , �23�

i.e., �=� / �2e2�, resulting in c�1=1−� / �2e�+O��2�, and thus
in


par �
2e

e − c
for 0 � e − c 	 1. �24�

The critical exponent one is expected to result from the
mean-field structure of the underlying graph.

2. Random update

The situation is slightly more involved in the case of a
random update, where in every time step one message is
selected randomly out of all 2M warnings, and is updated
according to the WP equation. Let us denote by pT�M1� the
probability that there are M1 erroneous messages after T
random-update steps. Its evolution under WP is given by the
rate equation

pT+1�M1� = pT�M1� −
M1

2M
pT�M1� +

M1 + 1

2M
pT�M1 + 1�

−
c�1M1

2M
pT�M1� +

c�1�M1 − 1�
2M

pT�M1 − 1� .

�25�

This is due to the fact that, with probability M1 / �2M� we
pick a bug and correct it—changing M1�M1−1, and with
probability c�1M1 / �2M� we pick a “child” of a bug, which
becomes changed �remember that a bug has on average c
children messages, but only a fraction �1 of these becomes
changed when updated under WP�—changing M1�M1+1.

After 2M random updates, each message is, on average,
visited once. To obtain time scales comparable to the parallel
update, we therefore have to rescale time as t=T / �2M�, iden-
tifying a single random update with the asymptotically in-
finitesimal time step dt=1/ �2M�. In this limit, Eq. �25� can
be rewritten as a system of ordinary differential equations,

d

dt
pt�M1� = − M1pt�M1� + �M1 + 1�pt�M1 + 1�

− c�1M1pt�M1� + c�1�M1 − 1�pt�M1 − 1� .

�26�

For the time evolution of the average number M1�t�
=M1

M1pt�M1� of bugs we thus find
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d

dt
M1�t� = − M1

2 + M1�M1 − 1� − c�1M1
2 + c�1M1�M1 + 1�

= − �1 − c�1�M1�t� . �27�

It decays exponentially with


rand =
1

1 − c�1
�28�

and shows the same critical behavior as the parallel update.
The main difference appears for c→0: Whereas the parallel
relaxation time goes to zero, 
rand approaches one. This re-
flects the persistence time that a message is not updated at
all: The fraction of variables that are not selected in N single-
spin updates is e−1.

Note that the algorithm as presented in Sec. IV A uses a
third update scheme, namely, a sequential update, which is
asynchronous but sees every message exactly once in 2M
steps. The analytical description is more involved than the
one of a simple parallel or random update, but the critical
behavior is expected to remain unchanged. For small c, the
behavior is further on expected to be more similar to the one
of the parallel update scheme. Since every message is seen
exactly once in 2M steps, there are no persistence effects.

E. Numerical tests

We have performed numerical tests of WP on randomly
generated instances of random graphs at various connectivi-
ties c�e, for graph sizes up to N=105.

To verify the results, we have also applied the leaf-
removal algorithm, which was shown �18� to output exact
results exactly in the same connectivity region, and which is
the basis of the proof of correctness of the replica-symmetric
result. The algorithm works as follows: In every step, a leaf
�vertex of degree one� is selected, its neighbor is covered and
both vertices are removed from the graph, as well as all their
incident edges. If this algorithm is able to cover the full
graph, the generated VC is a minimum one, but the algorithm
fails if, possibly after some decimation steps, a leaf-free sub-
graph emerges.

We have found that both algorithms produce in almost all
cases identical results, i.e., the WP output is thereby shown
to be exact. Also, the initial estimate of the VC size after the
first convergence of WP, before starting graph decimation,
was found to coincide in the majority of all cases with the
final output. As discussed above, this is a signal that already
the first convergence of WP leads to exact messages.

The problem of WP is, as discussed before, the slowing
down and final nonconvergence if we approach �or exceed�
an average degree c=e. In Fig. 2, we have quantified this
phenomenon. We have measured the fraction of graphs of
given average degree c �and given N� which, within 1000
sequential WP updates of all 2M messages, are converged on
more than 99% of all messages. In the figure, we see a clear
drop of this probability from almost one to zero in a region
concentrated close to c=e. This drop sharpens considerably
with growing graph size N, and suggests the existence of a
sharp transition in the WP behavior in the thermodynamic

limit N→�. Note that in Fig. 2, this transition seems to be at
a graph degree being slightly larger than c=e. This is a result
of the measured quantity. The transition should be found
exactly in c=e when for an arbitrarily large, but finite num-
ber of updates almost all messages are converged—instead
of the test values used in the generation of Fig. 2.

V. SURVEY PROPAGATION

We have already mentioned the possibility that the equa-
tions of warning propagation possess a high number of solu-
tions, and none can be found using a local iterative update
scheme. The messages would try to converge to different,
conflicting solutions in different regions of the graph, and
global convergence cannot be achieved. In physics’ lan-
guage, these different solutions correspond to different ther-
modynamic states—to be understood as clusters of minimal
VCs, as illustrated in Fig. 3. Inside such a cluster, any two

FIG. 2. Convergence probability of WP as a function of the
average degree, for graphs of N=250, 1000, and 4000 vertices. The
symbols signify the fraction of graphs, where after 1000 sequential
updates at least 99% of the warnings are converged, measured for
10 000, 3000, and 1000 sample graphs. The dashed vertical line is
situated at c=e, where WP theoretically ceases to converge.

FIG. 3. Schematic graphical representation of the organization
of optimal solutions for warning propagation �left side� and for
survey propagation �right side�. For the first case, all solutions are
collected in one large unstructured cluster �or in a very small num-
ber of these clusters, as in the case of a ferromagnet�, corresponding
to unbroken replica symmetry. In the second case, the set of solu-
tions is clustered into a large number of extensively separated sub-
sets. Survey propagation corresponds to one step of replica symme-
try breaking, where there is no further organization of the clusters in
larger clusters.
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VCs are connected by at least one path via other �almost�
minimal VCs, which differ stepwise only by a small number
of elements �the number of these different elements stays
finite in the thermodynamic limit�. For two minimal VCs
selected from two different clusters, no such connecting
paths exist, at least once an extensive step has to be per-
formed. Note that this distinction is, from a mathematical
point of view, not well defined for finite graphs—which are
the objects of our algorithms. There can be, however, a clear
separation of distance scales, which practically allows for an
identification of solution clusters.

As already said, warning propagation works well only if
there is a single cluster �or a very small number of clusters�,
corresponding to the replica symmetric solution. A breaking
of the replica symmetry implies the emergence of clustering
in the solution space. This effect is taken into account by the
survey propagation �SP� algorithm, as first proposed in Refs.
�11,33�. This algorithm is equivalent to the first step of rep-
lica symmetry breaking, where the solution clusters show no
further organization. If there are clusters of clusters, etc., one
has to go beyond survey propagation.

A. Algorithm

Let us, however, assume a clustering only on one level.
Instead of defining probabilities like �i over the full solution
space, we consider for a moment only one cluster. Inside
such a cluster of minimum VCs, a vertex i may either be
always covered �state 1�, never covered �state 0�, or some-
times covered and sometimes not �joker state *�. This means
that for single clusters we treat the problem on the same level
as WP.

However, the assignment of this three-valued vertex state
may vary from cluster to cluster. We now denote by �̂i

�1� the
fraction of clusters where vertex i takes state one, by �̂i

�0� the
fraction of clusters where vertex i takes state zero, and by
�̂i

�*� the fraction of clusters where vertex i takes the joker
state *. Analogously we define the cavity quantities �̂ j�i

�1�,
�̂ j�i

�0�, and �̂ j�i
�*� on the cavity graph Gi. A crucial assumption of

SP is that clusters do not change dramatically by eliminating
one vertex from the graph, i.e., by going back and forth
between the full graph and the cavity graphs for different
cavities.

Again, we can distinguish the three cases in Fig. 1 of how
the variable states propagate inside each solution cluster. A
vertex i of state 0 has to have all neighbors in states 1 or * on
the cavity graph Gi; a vertex i of state * has to have exactly
one neighbor of state 0 on the cavity graph; a vertex i of state
1 has at least two neighbors which have state 0 on the cavity
graph. The statistics over all clusters can now be performed
in a very simple way. The fraction of clusters having vertex
i in state 0, which by definition is �̂i

�0�, equals the fraction of
solution clusters of the cavity graph Gi where all neighbors
are in a state different from 0, and so on, for the other two
states. This procedure guarantees the minimization inside
each cluster. Note, however, that in clusters belonging to the
first case no vertex has to be added to the minimal VC by
stepping from the cavity graph to the full graph, whereas the
VC size increases by one in the second and third case. The

VCs of different clusters thus grow differently. To optimize
between clusters, we therefore introduce a penalty e−y to the
last two cases. The resulting equations are

�̂i
�0� = Ci

−1 �
j�N�i�

�1 − �̂ j�i
�0�� ,

�̂i
�*� = Ci

−1e−y 
j�N�i�

�̂ j�i
�0� �

j��N�i�\j

�1 − �̂ j��i
�0� � ,

�̂i
�1� = Ci

−1e−y�1 − �
j�N�i�

�1 − �̂ j�i
�0��

− 
j�N�i�

�̂ j�i
�0� �

j��N�i�\j

�1 − �̂ j��i
�0� �� , �29�

and the normalization constant is given by

Ci = e−y�1 − �1 − ey� �
j�N�i�

�1 − �̂ j�i
�0��� . �30�

Note that we have again made an assumption of statistical
independence of the vertices j on the cavity graph. This as-
sumption enters on two levels: First, inside the cluster, when
we say that j vertices of state * can be covered simulta-
neously in a minimum VC of the cavity graph; and second,
in between clusters, when we factorize the joint probabilities
in the upper expression.

Analogous equations are valid for the iteration of the cav-
ity quantities, where again the influence of the cavity site has
to be taken out;

�̂i�l
�0� = Ci�l

−1 �
j�N�i�\l

�1 − �̂ j�i
�0�� ,

�̂i�l
�*� = Ci�l

−1e−y 
j�N�i�\l

�̂ j�i
�0� �

j��N�i�\�j,l�

�1 − �̂ j��i
�0� � ,

�̂i�l
�1� = Ci�l

−1e−y�1 − �
j�N�i�\l

�1 − �̂ j�i
�0��

− 
j�N�i�\l

�̂ j�i
�0� �

j��N�i�\�j,l�

�1 − �̂ j��i
�0� �� ,

Ci�l = e−y�1 − �1 − ey� �
j�N�i�\l

�1 − �̂ j�i
�0��� . �31�

These are the equations for SP. To solve them, one has to first
initialize the cavity quantities arbitrarily and update them
iteratively according to the second set of equations. Once
convergence is reached, the �̂i

�·� can be simply evaluated
from the first set of equations. Note also that the SP equation
for the cavity quantities close in the �̂ j�i

�0� alone;

�̂i�l
�0� =

�
j�N�i�\l

�1 − �̂ j�i
�0��

e−y�1 − �1 − ey� �
j�N�i�\l

�1 − �̂ j�i
�0��� . �32�

A note on the selection of the reweighting parameter y is
necessary: Finite values of y focus on local minima of the
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complex landscape X�U�= �U� defined over all VCs, i.e., to
VCs of cardinality, which cannot be decreased by changing
only a finite part of U. One would thus expect naively that
minimal VCs are obtained in the limit y→�. As we will see
in the next section, the SP solution carries, however, sensible
physical information only in a limited interval y� �0,y*�. It
is therefore necessary to work directly with finite y values.

The knowledge of all �̂i
�·� does not allow us to directly

create a �locally� minimal vertex cover. It is impossible to
deduce a joint probability distribution of all vertices from the
knowledge of the marginal single-vertex probabilities only.
Nevertheless, some useful knowledge can be drawn directly
from these quantities. In particular, we may estimate the VC
size by

X�y� = 
i�V

��̂i
�1� +

1

2
�̂i

�*�� . �33�

As in the replica-symmetric case of WP, we have assumed
that vertices carrying value * are, on average, half covered
and half uncovered. At this point, this is a pure conjecture
which, however, will be justified in the next section �see Eq.
�60��.

To actually construct a minimum vertex cover �or an ap-
proximation due to the non-exactness of SP because of, e.g.,
a finite value of y, cycles in the graph, or more levels of
cluster organization�, we have to resort again to an iterative
decimation scheme. In every step, the �̂i

�·�are calculated; one
vertex of large �̂i

�1� is selected and covered. It is removed
from the graph together with all incident edges, and the
�̂i

�·�are reiterated on the decimated graph. This procedure is
iterated until no uncovered edges are left, i.e., until a proper
VC is constructed. Slightly different schemes of selection
heuristics can be applied �select a vertex of high �̂i

�0�, un-
cover it, cover all neighbors, and decimate the graph, or take
into account also the value of �̂i

�*��. All these heuristic rules
are equally valid in the sense that, if SP is exact on a graph,
they all produce one minimum VC of the same size. For real
graphs, however, where the results of the SP equations are to
be considered as approximations of the actual quantities de-
fined over the set of solutions, different heuristic choices
may result in VCs of different sizes. Within the numerical
experiments described below, we have, however, found no
preferable selection heuristic, and the fluctuations from one
heuristic to another were small compared with the VC size.

B. Complexity of clusters

Different values of the reweighting parameter y lead to a
concentration of the partition sum �or, equivalently, the solu-
tion of the SP equations� to clusters of vertex covers of dif-
ferent �locally minimal� size. The complexity ��X�, or con-
figurational entropy, measures the logarithm of the number
Ncl�X� of clusters of given VC size X. We introduce the
generalized thermodynamic potential �y� as the Legendre
transform of the complexity

e−y�y� = 
X=0

N

exp�− yX + ��X�� . �34�

According to the general procedure of the cavity method in
diluted systems �10�, this potential can be decomposed into
site and link contributions,

�y� = 
i�V

�i�y� − 
�i,j��E

�i,j�y� . �35�

These contributions can be determined by adding a vertex or
an edge to the graph;

e−y�i�y� = �
j�N�i�

�1 − �̂ j�i
�0�� + �1 − �

j�N�i�
�1 − �̂ j�i

�0���e−y

= e−y + �1 − e−y� �
j�N�i�

�1 − �̂ j�i
�0�� ,

e−y�i,j�y� = 1 − �1 − e−y��̂ j�i
�0��̂i�j

�0�, �36�

where, as in the derivation of the SP equations, one has to
take care separately of the cases where the VC size remains
unchanged under vertex or link addition, or increases by one.
Having solved the SP equations for the �̂i�j

�0�, the potential
becomes easy to calculate;

− y�y� = 
i�V

ln�e−y + �1 − e−y� �
j�N�i�

�1 − �̂ j�i
�0���

− 
�i,j��E

ln�1 − �1 − e−y��̂ j�i
�0��̂i�j

�0�� . �37�

Approximating the sum in Eq. �34� by the saddle-point
method �valid for N�1�, we see that the complexity can be
calculated via

��y� = ��X�y�� = y�X�y� − �y�� , �38�

where X�y� is given in Eq. �33� in dependence of the SP
solution. The function X�y� can also be determined directly
from the potential �y� via X�y�=�y�+y��y�. The nu-
merical observation that both expressions for X�y� coincide
is a strong justification for the ratio 2 used in Eq. �33� be-
tween the number of all unfrozen vertices and the number of
simultaneously covered unfrozen vertices.

The complexity � is defined as the logarithm of the clus-
ter number, i.e., in the presence of at least one cluster it takes
necessarily a nonnegative value. This defines a range y
� �0,y*� where the SP equation provides a potentially sen-
sible solution, with y* given by the marginality condition
��y*�=0. For higher y, the predicted complexities become
negative, thus corresponding to unphysical solutions of the
SP equations. We see that the naive expectation that y→�
leads to minimal VCs is thus inconsistent; the best possible
estimate for the minimal VC size we can obtain at the level
of SP �one-step replica symmetry breaking� is thus given by
X�y*� �19�. Note that this observation, in replica theory, cor-
responds to the usual optimization of the replicated free en-
ergy over the replica symmetry-breaking parameter �34,35�.
Note also that the existence of a finite y* is a clear signal for
the existence of more than one step of replica symmetry
breaking, and the SP results can only be expected to be ap-
proximations to true minimal VCs.
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C. Stability of the fixed point under SP iteration

It is, however, not clear if SP converges at all in the
replica-symmetry broken phase. To investigate this question,
we consider the behavior of the solution of Eq. �32� under
small perturbations. Note that the situation here is different
from the bug proliferation picture used in order to analyze
the stability of WP fixed points: The messages now are real
numbers and thus small perturbations are possible even on
the level of a single message.

Let us therefore imagine that we start a set of experiments
with initial conditions �i�l

�0� distributed around the SP solution
�̂i�l

�0� according to some narrow distribution

f i�l��i�l
�0�� =

1
�2��i�l

exp
−
��i�l

�0� − �̂i�l
�0��2

2�i�l
2 � �39�

of link-dependent widths �i�l	1. After one iteration of SP,
the messages are distributed according to �for simplicity we
have skipped the superscript �0��

f i�l� ��i�l� =� �
j�N�i�\l

�d� j�i f j�i�� j�i�����i�l − �̃i�l��� j�i��� ,

�40�

with the update rule �̃ given by Eq. �32�. We expand this
update function around the SP fixed point,

�̃i�l��� j�i�� = �̂i�l
�0� + 

j�N�i�\l

��̂i�l
�0�

��̂ j�i
�0� �� j�i − �̂ j�i

�0��

+
1

2 
k,j�N�i�\l

�2�̂i�l
�0�

��̂k�i
�0� � �̂ j�i

�0� ��k�i − �̂k�i
�0���� j�i − �̂ j�i

�0��

+ O��3� . �41�

The mean of the updated message is given by

��i�l�� =� �
j�N�i�\l

�d� j�i f j�i�� j�i���̃i�l��� j�i��

= �̂i�l
�0� +

1

2 
j�N�i�\l

�2�̂i�l
�0�

���̂ j�i
�0��2

� j�i
2 , �42�

and its change is negligible with respect to the width of the
distribution. The second moment, on the other hand, behaves
as

��i�l
2 �� =� �

j�N�i�\l
�d� j�i f j�i�� j�i���̃i�l

2 ��� j�i��

= ��̂i�l
�0��2 + �̂i�l

�0� 
j�N�i�\l

�2�̂i�l
�0�

���̂ j�i
�0��2

� j�i
2

+ 
j�N�i�\l

� ��̂i�l
�0�

��̂ j�i
�0��2

� j�i
2 . �43�

We find thus that the variance of the updated distribution
behaves as

�i�l�
2 = ��i�l

2 �� − ��i�l��2 = 
j�N�i�\l

Ti�l,j�i� j�i
2 , �44�

with

Ti�l,j�i = � ��̂i�l
�0�

��̂ j�i
�0��2

= � e−y �
k�N�i�\�j,l�

�1 − �̂k�i
�0��

�e−y + �1 − e−y� �
k�N�i�\j

�1 − �̂k�i
�0���2�

2

.

�45�

The �in�stability of this equation is related to the largest ei-
genvalue �max of the matrix �Ti�l,j�i�, only if �max is smaller
than one the perturbations f i�l��i�l

�0�� of the SP solution con-
tract exponentially.

Note that this type of stability of the SP fixed point is
known in the literature under the name “type-one instability”
�32,36� and can be related to the appearance of more than
one step of replica symmetry breaking, more precisely to the
fragmentation of the solution clusters in subclusters. It is not
the only type of instability of the one-step replica-symmetry-
broken solution with respect to more steps; an alternative
scheme would be the accumulation of clusters into clusters
of clusters �“type-two instability”�. The latter instability
leads, however, not to an iterative instability of the SP equa-
tions itself; i.e., the latter can be used even if not being
physically exact. This is what happens in the case of VC
�19�.

D. Numerical tests

1. Size of the constructed VC

In order to check the performance of SP, we have tested it
on single samples of random graphs of medium to large size.
In Fig. 4, we concentrate on a single graph of N=50 000
vertices and average degree c=10. The data reported in Fig.
4 are quantitatively comparable to other graphs with the
same parameters, and qualitatively with graphs of other sizes
and connectivities. We show trajectories of the estimated VC
size during graph reduction as a function of the number of
vertices, which are still in the reduced graph, for various
values of the reweighting parameter y. We see that the initial
variability of the estimates is much larger than the difference
in output. Even the worst-performing case y=0 outputs a VC
of 34 171 vertices compared to the minimal one found with
X=34 104. This similarity is due to the fact that the ranking
of the vertices with respect to the SP results depends only
weakly on y, whereas the messages themselves change con-
siderably and thus the corresponding predictions of the VC
size. Close to the end of the curves, there are some striking
fluctuations in the VC size. In this region, SP was not able to
converge to a fixed point, and the nonconverged solution was
used. This nonconvergence of SP may be related to the criti-
cal slowing down of SP at the phase boundary when the
solution space of the minimal VC problem transits between
the two schemes of Fig. 3 �see Sec. V�. After an interval of
these fluctuations, the SP solution collapses to the WP solu-
tion, i.e., we go from the replica-symmetry-broken clustered
phase to the replica-symmetric unclustered phase. Note that
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the performance of SP improves with increasing values of y,
as long as it converges in the greatest majority of the deci-
mation steps. The region of nonconvergence, however, grows
with y.

To circumvent this problem, we have introduced a version
of SP with adaptive y values. We start SP with a relatively
large y, and whenever the convergence time exceeds a cer-
tain threshold �we have used, e.g., 100 sequential updates of
all messages�, the value of y is decreased �we have, e.g.,
multiplied it by 0.9�. As a result, the trajectory of predicted
VC sizes is smoothened, and the algorithm automatically
tends toward the lowest-found VC sizes.

As already mentioned, the original estimate for X varies a
lot with y; it is even nonmonotonous. Whereas the value for
y=0 is substantially smaller than the smallest constructed
VCs, there is a local maximum, which is larger than the
constructed VCs. It is, however, astonishing that the extrapo-
lated value at y*, where the complexity � vanishes, is ex-
tremely close to the finally constructed value, 34 090±10
compared to 34 104. This is even more astonishing since we
do not reach convergence of SP at y* for c=10 �see the
discussion in the next subsection�.

To see the behavior of SP in the full range of average
degrees, we have systematically scanned the c interval
�10, 400�, as can be seen in Fig. 5. The graph size for these
high connectivities range up to N=6400 �note that in this
case up to cN=2 560 000 messages have to be handled�. The
results for fixed c and various N were extrapolated to their
asymptotic value at N→�, in order to be comparable to
analytical results and to the performance of local algorithms.
We see that SP performs much better than the local heuris-
tics, and its behavior is consistent to the exact large-c behav-
ior found by Frieze �14�. For comparison we have used two
local algorithms: The first one is a simple heuristic by
Gazmuri �15�, where in every step a vertex is selected ran-
domly, all its neighbors are covered, and the covered edges
are removed from the graph. The second heuristic is a gen-
eralization of leaf removal �37� working also beyond average
degree c=e, but no longer guaranteeing minimality of the
constructed VC. The algorithm selects in every step a vertex
of minimal degree, covers its neighbors, and removes all

considered vertices and covered edges. If the algorithm never
needs to select vertices of degrees exceeding one, it reduces
to leaf removal. As already said, SP outperforms the local
algorithms.

A drawback for all c values is, however, that the algo-
rithm does not work at high values of y, which, noting the
derivation of the SP equations, should bring us closest to a
minimal VC.

2. Iterative stability of SP

Running SP for different values of the reweighting param-
eter y, we observe that it converges very fast for small y �and
c�e�, but it does not converge at all for large y. As a first
impression, it seems therefore useless to check the stability
of the SP solution via the eigenvalues of the stability matrix
�Ti�l,j�i�. The solution itself is found via iteration of Eq. �32�

FIG. 4. Trajectories of graph decimation for a
single graph with N=50 000 and c=10. We plot
the VC size as estimated by SP, as a function of
the vertex number in the remaining graph. The
decimation proceeds from the right to the left,
i.e., from the initial N=50 000 toward zero. The
fact that the estimate changes under the applica-
tion of the reduction process results from the ap-
proximate nature of the SP messages.

FIG. 5. Numerical results of SP run on graphs of high, but finite
average degree c� �10, 400�. As a comparison, we have added the
results of two local algorithms �Gazmuri’s heuristic and generalized
leaf removal�, and rigorous bounds on the asymptotic average be-
havior for random graphs as well as the exact large-c asymptotics.
SP clearly outperforms local algorithms and is close to the asymp-
totically exact value.
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starting from a random initial condition, i.e., if this iteration
converges, the solution is automatically stable. On the other
hand, it is much harder to extrapolate precisely the point
where the convergence time diverges instead of identifying
this point by �max→1.

Technically the eigenvalue can be determined in a way
inspired by the message-passing procedure itself: We ran-
domly initialize all �i�j to non-negative values, and update it
according to Eq. �44�. Then we renormalize the vector divid-
ing it by ��i,j��E��i�j

2 +� j�i
2 �. This is repeated until conver-

gence of the procedure is reached and �max equals the
asymptotic renormalization factor �see Ref. �38� for an
analogous approach to testing the stability of a replica sym-
metric solution in the problem of counting graph loops�.

The results of the numerical tests are shown in Fig. 6. For
the c values displayed there, we find that the SP solution is
stable against small perturbations in the vicinity of y=0, but
�max starts to grow right away. For all the displayed values,
we also find that �max approaches one at positive complexity,
i.e., at values y�y*. At the y value, which in the ensemble
average, the one step of replica-symmetry-breaking �1RSB�
result is expected to be most precise compared to the exact
value, SP does not even converge on the single sample.

This changes for c�20.4. At this point, the instability
threshold coincides precisely with the zero-complexity point
corresponding to minimal VCs. At even higher value, SP
thus converges at y=y*. However, this does not necessarily
mean that we can do all of the decimation process efficiently
at the initial y* after decimation of a c-dependent fraction of
the graph SP starts to diverge even for large c.

VI. FROM SURVEY PROPAGATION TO TYPICAL
PROPERTIES ON RANDOM GRAPHS

In Sec. IV B we have seen that it is possible to average
the solution of warning propagation over random graphs of

average vertex degree c and to recover the replica-symmetric
results of Ref. �17� in the thermodynamic limit. In analogy,
the equations of survey propagation can be used to reproduce
and extend the results of Ref. �19� on the typical properties
of minimal VCs under the assumption of 1RSB, i.e., to trans-
late the probabilistic-algorithmic approach on single graph
instances to a statistical-physics approach with the graph ran-
domness playing the role of the quenched disorder.

As already explained above, the computational hardness
of the VC problem results from the fact that the landscape of
VC sizes over the space of all vertex covers may become
rough. It may contain, in particular, many local minima: A
VC U is considered to be locally optimal if all VCs differing
only in a finite number of vertices are as least as large as U.
Such local minima are expected to act as traps for many local
search algorithms, which therefore are unable to find glo-
bally optimal VCs. If 1RSB is considered, not only the mini-
mal VCs are assumed to be clustered �cf. Fig. 3�, but also an
exponential number of clusters of locally optimal VCs are
expected to appear. The total number of such VC clusters of
cardinality X=xN in a given graph G is denoted as �G�X�.
The complexity of graph G at VC density �or “energy den-
sity”� x is defined as

�G�X� =
1

N
ln �G�X� , �46�

with respect to Sec. V B we have renormalized the complex-
ity by a factor 1 /N to assure a sensible thermodynamic limit.
The complexity �G�X� is expected to be self-averaging �34�.
When N is increased, the complexity of randomly drawn
graphs G approaches asymptotically the mean value aver-
aged over the whole graph ensemble. Technically, the inter-
esting quantity is thus

��c,x� = lim
N→�

1

N
�ln �G�xN��G, �47�

where �¯�G denotes the average over all random graphs G
of fixed parameters N and c, since this value is found almost
surely also in very large random graphs.

The partial derivative of ��c ,x� with respect to x is de-
noted as

y =
���c,x�

�x
. �48�

The above equation gives an implicit relationship between y
and the VC density x. We can define a generalized free-
energy density at given values of y and c via the Legendre
transform

��c,y� = x�c,y� −
�„c,x�c,y�…

y
, �49�

in complete analogy to the single-graph quantity  in Eq.
�34�.

The parameter y formally corresponds to an inverse tem-
perature � in an ordinary statistical-physics system, with the
difference that microscopic configurations are replaced by
clusters of locally optimal VCs. It can be used to control the

FIG. 6. Stability of the SP solution: The complexity � is plotted
vs the largest eigenvector �max of the stability matrix �Ti�l,j�i� defined
in Eq. �45�, for various values of the average graph degree c. All
data are produced from graphs with N=10 000 vertices averaged
over 10 samples. Error bars both in � and � are smaller than the
symbol size.
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mean VC density x of our artificial statistical-physics system.
This is in fact done in the SP equations; as we will see below,
y is exactly the reweighting parameter introduced before.

All this holds true as long as the relative VC size x
=X /N is such that �G�xN��1 for a typical random graph G,
i.e., ��c ,x��0. When ��c ,x��0, a typical random graph G
has no optimal VC clusters of density x. The largest allow-
able value y=y* is thus located at the point where
��c ,x�c ,y*��=0. This point also corresponds to the best
1RSB estimate of the globally minimal VC size x�c ,y*� of a
typical random graph �cf. the discussion at the end of Sec.
V B�.

A. Cavity equation

As already discussed, for each cluster of VCs, vertices can
be decorated by a three-state variable: It assumes the value 1;
if the vertex belongs to all VCs in the cluster, it takes the
value *; if it belongs to some but not all VCs, and the value
0 if it belongs to no VCs of the cluster. Let us also recall the
notation �̂i

�0�, �̂i
�*�, and �̂i

�1��=1− �̂i
�0� − �̂i

�*�� for the probabil-
ity that vertex i takes the corresponding value in a randomly
selected locally optimal VC at given y. The values �� i

= ��̂i
�0� , �̂i

�*� , �̂i
�1�� fluctuate from vertex to vertex, and the

main aim of the cavity method is to describe their distribu-
tion in a self-consistent way.

Suppose one already knows �� i for each vertex i of a ran-
dom graph G with N vertices. Now add a new vertex �say
vertex 0� and connect it to k randomly chosen vertices �say
j=1,2 , . . . ,k� of graph G. The integer k is determined ac-
cording to the Poisson distribution fc�k�=e−cck /k!. After ver-
tex 0 and the k edges are added, a new graph G� of N+1
vertices is constructed. Under the assumption of statistical
independence of the vertices j=1,2 , . . . ,k in graph G �cf. the
comment below Eq. �30��, one can write down the following
equations for �� 0:

�̂0
�0� =

�
j=1

k

�1 − �̂ j
�0��

e−y + �1 − e−y��
j=1

k

�1 − �̂ j
�0��

, �50�

�̂0
�*� =

e−y
j=1

k

�̂ j
�0��

l�j

�1 − �̂l
�0��

e−y + �1 − e−y��
j=1

k

�1 − �̂ j
�0��

, �51�

�̂0
�1� = 1 − �̂0

�0� − �̂0
�*�. �52�

Assuming furthermore that the statistical properties of the ��
do not change drastically by adding the new vertex, Eq. �50�
allows us to write down the following self-consistent equa-
tion governing the probability distribution of �̂0

�0�:

P��̂0
�0�� = fc�0���̂0

�0�,1 + 
k=1

�

fc�k��
l=1

k �� d�̂l
�0�P��̂l

�0���

����̂i
�0� −

�
l=1

k

�1 − �̂l
�0��

e−y + �1 − e−y��
l=1

k

�1 − �̂l
�0��� .

�53�

This equation can be numerically solved with very high pre-
cision using a standard algorithm of population dynamics.
Note also the equivalence of the update rule in the delta
function to Eq. �32�. One can in fact estimate P��̂0

�0�� also by
first generating a huge random graph, iterating SP on it, and
than calculating the histogram of all messages.

B. VC density and complexity

Also the VC density is self-averaging. When the graph
size N is sufficiently large, the VC density of a typical graph
G is almost independent of the microscopic details of G; it
only depends on the statistical properties of the graph en-
semble represented by the mean-vertex degree c. At fixed
value of the reweighting parameter y, this also means VC
density x�c ,y� can be calculated using the cavity method.
The graph G� as generated in the preceding subsection has
N+1 vertices and mean-vertex degree c�=2�M +k� / �N+1�
=c+ �2k−c� / �N+1�. The expectation of the VC density of
G� and that of the graph G are related by

�N + 1� x�c�,y� = Nx�c,y� + 1 − �̂0
�0�. �54�

Expanding x�c ,y� around c, and keeping only the nonvanish-
ing terms in the thermodynamic limit, we obtain

x�c,y� + c
�x�c,y�

�c
= 1 − ��̂0

�0��G�. �55�

FIG. 7. �Color online� Complexity ��c ,y� as a function of the
reweighting parameter y for fixed mean-vertex degree c=12.0
�circles�, c=10.0 �squares�, c=8.0 �diamonds�, and c=6.0 �tri-
angles�. All these curves seem to intersect in two points, y=0 and
y=y* �3.1. In these two points, ��c ,y�=0.
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To obtain an expression for �x�c ,y� /�c, we add a new
edge between two randomly chosen vertices �say vertex j
and l� of the old graph G and thus construct a new graph G�.
This new graph has mean-vertex degree c�=c+2/N. Aver-
aged over all the locally optimal VC clusters at fixed re-
weighting parameter y, the mean increase in VC density due
to the addition of edge �j , l� is

e−y�̂ j
�0��̂l

�0�

1 − �1 − e−y��̂ j
�0��̂l

�0� , �56�

since it results from the case that both end vertices j and l are
uncovered in the corresponding cluster. In other words, we
have

Nx�c�,y� = Nx�c,y� +
e−y�̂ j

�0��̂l
�0�

1 − �1 − e−y��̂ j
�0��̂l

�0� , �57�

which leads to the expression

�x�c,y�
�c

=
1

2� e−y�̂ j
�0��̂l

�0�

1 − �1 − e−y��̂ j
�0��̂l

�0��
G�

. �58�

Combining Eq. �55� and Eq. �58� we finally obtain that

x�c,y� = 1 − ��̂0
�0��G� −

c

2� e−y�̂ j
�0��̂l

�0�

1 − �1 − e−y��̂ j
�0��̂l

�0��
G�

= 1 − �
0

1

d�̂�0�P��̂�0���̂�0� −
c

2
�

0

1

d�̂1
�0�P��̂1

�0��

��
0

1

d�̂2
�0�P��̂2

�0��
e−y�̂1

�0��̂2
�0�

1 − �1 − e−y��̂1
�0��̂2

�0� , �59�

where we have used another time the argument that the
change in the histogram P��̂�0�� due to vertex or edge addi-
tion is neglectable in the thermodynamic limit.

The first line of Eq. �59� is consistent with the analog Eq.
�33� for a single graph. To see this, we notice that

c

2� e−y�̂ j
�0��̂l

�0�

1 − �1 − e−y��̂ j
�0��̂l

�0�� =
1

2� 
j�N�l�

e−y�̂ j
�0��̂l

�0�

1 − �1 − e−y��̂ j
�0��̂l

�0�� =
1

2� 
j�N�l�

e−y�̂ j
�0�

�
i�N�l�\j

�1 − �̂i
�0��

e−y + �1 − e−y� �
i�N�l�\j

�1 − �̂i
�0��

1 − �1 − e−y��̂ j
�0�

�
i�N�l�\j

�1 − �̂i
�0��

e−y + �1 − e−y� �
i�N�l�\j

�1 − �̂i
�0��
 

=
1

2� e−y 
j�N�l�

�̂ j
�0� �

i�N�l�\j
�1 − �̂i

�0��

e−y + �1 − e−y� �
i�N�l�

�1 − �̂i
�0�� =

1

2
��̂l

�*�� . �60�

The mean complexity ��c ,x� can be calculated analo-
gously �cf. Ref. �19� and Eqs. �37� and �38��. The final ex-
pression reads

��c,x� = yx + 
k=1

�

fc�k��
l=1

k �
0

1

d�̂l
�0�P��̂l

�0��

�ln�e−y + �1 − e−y��
l=1

k

�1 − �̂l
�0���

−
c

2
�

0

1

d�̂1
�0�P��̂1

�0���
0

1

d�̂2
�0�P��̂2

�0��

�ln�1 − �1 − e−y��̂1
�0��̂2

�0�� . �61�

C. Optimal reweighting and minimal VC density

At given average degree c, Eq. �59� allows us to calculate
the typical VC size as a function of the reweighting param-

eter y. It is monotonously decreasing with growing y, so
naively one would expect that the minimal VC size is found
in the limit of y→�. There is, however, a problem. The
complexity ��c ,y� reaches zero at some �a priori�
c-dependent value y*, and becomes negative for larger y.
Being defined as the logarithm of the number of correspond-
ing clusters, negative complexities correspond to VC sizes
typically nonexisting in random graphs of mean degree c.
Consequently, we have to determine the size of the minimal
VC of a typical graph by x�c ,y*� from the zero-complexity
criterion ��c ,y*�=0.

Figure 7 shows ��c ,y� as a function of y at various fixed
c values. At a given c value �c�e�, the complexity ��c ,y�
first increases with y as y increases from zero. ��c ,y� attains
its maximal value when y increases to y �1.5. Afterwards,
��c ,y� decreases with y and it reaches �=0 when y=y*

�3.1. Upon further increase of y, the complexity becomes
negative. It is remarkable that the ��c ,y� curves for different
c values intersect at �almost� the same point y*,which is just
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the point where the complexity vanishes, ��c ,y*�=0. At
present we do not understand why the complexities for sys-
tems with different c values should approach zero at �almost�
the same point.

At each fixed c value, the optimal y* value can be deter-
mined from the point of ��c ,y*�=0. The optimal y* value
was calculated numerically by population dynamics and
shown in Fig. 8 as a function of mean-vertex degree c. Fig-
ure 8 indeed demonstrates that the optimal reweighting pa-
rameter y* is insensitive to c and stays at y* �3.1 over the
whole range of inspected c values. This is also in agreement
with Ref. �19� �note that y* in the present article corresponds
to 2y* in Ref. �19��. Even when c=2.8 �just slightly beyond
e� we have y*=2.9±1.2, which is significantly different from
zero, but consistent with a constant y*. From Fig. 8 we thus
get the impression that, as the mean-vertex degree c exceeds
e, the optimal reweighting parameter jumps quickly to a
value y* �3.1.

The minimum-vertex cover size can also be obtained. In
Fig. 9 we show the relationship between the minimal vertex
cover size and the mean-vertex degree c. As a comparison,
Fig. 9 also includes the mean minimal vertex cover size as
estimated by the SP algorithm of the last section �N=5000,
y=2.0, each point averaged over 20 samples�. The results
obtained by SP and those obtained by the mean-field statis-
tical physics calculations are in very good agreement. At
given vertex degree c, the minimal VC density estimated by
SP and the mean-field theory is lower than the corresponding
value obtained through exact enumeration followed by ex-
trapolation �17�. The reason for such a discrepancy can be
understood. According to Fig. 7, at given mean-vertex degree
c�10, the maximum complexity of the system is less than
5�10−3. This indicates that clustering of minimal VC solu-
tions into distantly separated domains will only occur for
random graphs with size N�103. For small random graphs
as used in Ref. �17�, it is very likely that all the minimal VC
solutions can be grouped into a single cluster �but with long-
range frustrations among those vertices described by the
joker state * �20��.

To summarize this subsection, we list in Table I the values
of y* and the minimal energy density at several c values.
Theoretical and SP results are extremely close to each other,
even if the latter are systematically slightly larger. This may
be due to various reasons: SP uses finite size and really con-
structs a possibly nonoptimal VC, whereas the theory works
at the 1RSB level, which again is not exact due to higher
RSB effects. We expect, however, both estimates to be very
close �but slightly different� from the exact result.

D. Relaxation time of the population dynamics

Let us finally analyze the mean-field population dynam-
ics, which aims at finding a fixed-point distribution for Eq.
�53�. In the population dynamics, an array of N values �̂�0� is
first initialized randomly �typically we use N!106; this
number should not be confused with the vertex number N in
the single-sample analysis of the previous sections�. Then in
each time step, corresponding to an interval �t=1/N, we
perform the following update of the population:

�1� A natural number k is drawn from the Poisson distri-
bution fc�k�.

�2� k elements �̂i
�0�, i=1, . . . ,k, are randomly and inde-

pendently chosen in the current population.
�3� A new �̂�0� is calculated according to Eq. �50�.
�4� A randomly selected element in the population is re-

placed with this new �̂�0� value.
This iteration is repeated many times �typically of the

order of 104 N�, until the statistical properties of the popu-
lation approach stationary values. The histogram of the
population is then our estimate of the self-consistent distri-
bution P��̂0� in Eq. �53�.

Suppose that at time t, the histogram of �̂�0� over the
whole population is given by

P��̂�0�;t� = p1�t����̂�0�� + p2�t����̂�0�� + p3�t����̂�0�;t� ,

�62�

FIG. 8. Relationship between the optimal reweighting parameter
y* and the mean-vertex degree c.

FIG. 9. �Color online� The fraction of covered vertices �VC
density� x in a minimum-vertex cover problem as a function of
mean-vertex degree c. Typical-case statistical-physics results are
given by a +, and � gives the estimates made by SP on graphs of
size N=5000, averaged over 20 samples.
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with p3�t�=1− p1�t�− p2�t�, and with ���̂�0� ; t� satisfying the
conditions

��0;t� � 0, ��1;t� � 0, �
0

1

d�̂�0����̂�0�;t� � 1.

�63�

Since the population of �̂�0� values at time t+�t is obtained
by replacing one randomly chosen element of the population
of time t with the newly calculated �̂�0�, we can write down
the following two evolution equations for p1�t� and p2�t�:

Np1�t + �t� = Np1�t� + 
k=1

�

fc�k��1 − �1 − p2�t��k� − p1�t�

→
dp1�t�

dt
= 1 − e−cp2�t� − p1�t� , �64�

Np2�t + �t� = Np2�t� + 
k=1

�

fc�k�p1
k − p2�t� →

dp2�t�
dt

= e−c�1−p1�t�� − p2�t� . �65�

More precisely, these equations describe the average evolu-
tion over many runs of the population dynamics. For large
populations N�1 the true evolution of one population is,
however, expected to be closely concentrated around its ex-
pectation value, with random fluctuations of the order
O�1/�N�. These equations can be understood easily. In Eq.
�64�, we describe the expected number of zero elements of
the population. This number is decreased by one with prob-
ability p1�t� by replacing an old zero element, or it grows by
one if a new zero element is introduced. The latter case hap-
pens if in between the k “parents” �̂i

�0�, i=1, . . . ,k, selected
before, there exists at least one which equals one. Analo-
gously, a new element equal to one is inserted in the popu-
lation if all parents were equal to zero, explaining the gain
term in Eq. �65�.

The fixed-point solution �p1 , p2� of Eqs. �64� and �65� is
determined by

p1 = 1 − e−cp2, p2 = e−c�1−p1�. �66�

Note that for c�e, only one solution with p1+ p2=1 exists.
This solution corresponds to replica symmetry, only one so-
lution cluster exists, and consequently no cluster-to-cluster
fluctuations exist. Above c=e, also two other solutions with
p1+ p2�1 exist. Only one is iterationally stable; it fulfills
p1+ p2�1 and allows therefore for cluster-to-cluster varia-
tions of the value of �̂i

�0� for some vertices i.

To study the convergence velocity toward this fixed-point
solution, we assume that

p1�t� = p1 + �1�t�, p2�t� = p2 + �2�t� , �67�

where �1�t� and �2�t� are small quantities. Linearizing the
dynamical equations, we find

d�1�t�
dt

= c�1 − p1��2�t� − �1�t�,
d�2�t�

dt
= cp2�1�t� − �2�t� ,

�68�

and the typical relaxation time for p1�t� and p2�t� is


12 =
1

1 − c��1 − p1�p2

. �69�

When the mean-vertex degree c approaches e from below,
the parameter p2 approaches e−1 as

p2 �
1

e
+

�e − c�
2e2 . �70�

Consequently, the typical relaxation time 
12 diverges as


12 !
2e

e − c
for c � e . �71�

Note that the same critical behavior was found for the bug-
relaxation time in the purely replica-symmetric warning-
propagation equations.

On the other hand, when c approaches e from above,

p2 �
1

e
− �6�c − e�

e3 �1/2

+
�c − e�

e2 . �72�

Therefore 
12 diverges as


12 !
e

c − e
for c � e . �73�

Equations �71� and �73� were confirmed in a single-graph
message-passing experiment. Note that the only region
where this convergence slows down is close to the replica-
symmetry-breaking transition at c=e, where also the popula-
tion dynamics slows down critically. Note also that this re-
laxation time does not depend on the reweighting parameter
y.

We now study the evolution of ���̂�0� ; t� in Eq. �62�. For
this purpose, in the population dynamics we can set p1�t�
� p1, p2�t�� p2, p3�t�= p3=1− p1− p2 to their stationary val-
ues, and store only those �̂�0� values that satisfy 0��̂�0�

�1 in the population array. The distribution ���̂�0� ; t+�t� is
related with ���̂�0� ; t� by the following equation, describing

TABLE I. The optimal reweighting parameter y* and the minimal VC density x as estimated by the 1RSB ansatz and by SP
�N=5000�.

c 2.8 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

y* 3�1� 3�1� 3.1�1� 3.11�4� 3.10�2� 3.08�2� 3.07�1� 3.069�9� 3.068�8�
x �theory� 0.4536290�8� 0.46632�2� 0.51934�2� 0.56033�3� 0.59341�3� 0.62088�2� 0.64416�2� 0.66423�2� 0.68175�2�
x �SP� 0.4661�5� 0.52004�4� 0.5607�3� 0.5942�3� 0.6214�3� 0.6453�2� 0.6655�3� 0.6834�2�
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the expected number of population entries in the interval
��̂�0� , �̂�0� +��̂�0��:

N���̂�0�;t + �t���̂�0�

= N���̂�0�;t���̂�0� − ���̂�0�;t���̂�0�

+ 
m=1

� fcp3
�m�

1 − e−cp3
�
l=1

m �
0

1

d�̂l
�0����̂l

�0�;t�

����̂�0� −

�
l=1

m

�1 − �̂l
�0��

e−y + �1 − e−y��
l=1

m

�1 − �̂l
�0�����̂�0�.

�74�

From Eq. �74� we see that

����̂�0�;t�
�t

= − ���̂�0�;t� + 
m=1

� fcp3
�m�

1 − e−cp3
�
l=1

m �
0

1

d�̂l
�0����̂l

�0�;t�

����̂�0� −

�
l=1

m

�1 − �̂l
�0��

e−y + �1 − e−y��
l=1

m

�1 − �̂l
�0��� .

�75�

The fixed-point solution of Eq. �75� is

���̂�0�� = 
m=1

� fcp3
�m�

1 − e−cp3
�
l=1

m � d�̂l
�0����̂l

�0��

����̂�0� −

�
l=1

m

�1 − �̂l
�0��

e−y + �1 − e−y��
l=1

m

�1 − �̂l
�0��� ,

�76�

as can be seen also directly from Eqs. �53� and �62�.
Now let us suppose that, at time t, the actual distribution

���̂�0� ; t� deviates from the fixed-point distribution only
slightly;

���̂�0�;t� = ���̂�0�� + �3��̂�0�;t� , �77�

with ��3��̂�0� ; t� � �1 for all 0��̂�0� �1 and

�3�0;t� = �3�1;t� � 0, �
0

1

d�̂�0��3��̂�0�;t� = 0. �78�

The linearized evolution equation for �3��̂�0� ; t� is

��3��̂�0�;t�
�t

= − �3��̂�0�;t� + cp2
ey

�1 + �ey − 1��̂�0��2

��3� 1 − �̂�0�

1 + �ey − 1��̂�0� ;t� + cp3�
0

1

d�̂1
�0�

��3��̂1
�0�;t��

0

1

d�̂2
�0����̂2

�0�����̂�0� − 1

+
�̂1

�0��1 − �̂2
�0��

1 − �1 − e−y��1 − �̂1
�0���1 − �̂2

�0��
� . �79�

The stability of Eq. �79� can be analyzed by Fourier ex-
panding �3��̂�0� ; t� in the following way:

�3��̂�0�;t� = 
m=1

�

am�t��2 sin��m�̂�0�� , �80�

with coefficients am�t� satisfying the global constraint


n=0

�
a2n+1�t�
2n + 1

� 0. �81�

Based on Eqs. �79� and �80�, one can write down the
evolution equation for am�t�,

dam�t�
dt

= 
n=1

�

�mnan�t� , �82�

where the elements of the matrix � can be easily written
down.

The task now is to identify the dominant eigenmode of
Eq. �82� under the constraint of Eq. �81�. We have performed
such an analysis for various c values in the range 3�c
�30 and various y values ranging from y=0 to y=5. In all
the cases studied, the dominant eigenmode of Eq. �82� de-
cays to zero very quickly, indicating that the mean-field
population dynamics is exponentially fast converging toward
its fixed point. Compared to the iterative stability of SP on
single instances of random graphs, we find that the messages
may converge in population even if they do not converge on
the single graph any longer. This is interesting since it allows
us to extend the typical-case estimates to a region, where SP
applied to single samples fails to predict anything.

VII. CONCLUSION

In this paper, we have formulated two message-passing
procedures for solving—or approximating—the minimal ver-
tex cover problem, namely, warning propagation and survey
propagation. We have analyzed the performance of both al-
gorithms on the test bed of finite-connectivity random
graphs, where previous statistical-physics approaches based
both on the replica approach and on the cavity method pro-
vide an insight on the phase diagram. We have also discussed
in detail how the message-passing approach is technically
connected to these typical-case-based statistical-physics re-
sults.

For small average-vertex degrees c�e replica symmetry
is known to hold in the space of all minimal vertex covers.
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Therefore the simpler one of the two algorithms—warning
propagation, which is based on the replica-symmetric Bethe-
Peierls iterative approach—is applicable. Comparing it to the
exact leaf-removal algorithm, we have shown that it outputs
true minimal vertex covers. Unfortunately the iterative solu-
tion of the warning propagation equations slows down criti-
cally if we approach c=e from below, and it does not con-
verge at all for higher average degrees.

In this higher-degree region, replica symmetry is known
to be broken. We have therefore applied a survey propaga-
tion algorithm, which is based on the first step of replica
symmetry breaking. We have identified a parameter range
where the message-passing equations converge to a globally
self-consistent solution, which can be used to construct small
vertex covers. We have found that the provided results not
only outperform simple local-search procedures, but are con-
sistent to exact asymptotic results for high but finite average
degrees. Interestingly the vertex covers produced at the end
are relatively insensitive to details of the algorithms �in par-
ticular to the somewhat heuristic choice of the reweighting
parameter y�.

In the case of vertex cover, replica symmetry is known to
be fully broken, i.e., the exact solution for c�e is known to
be more complicated than the one described by one-step
replica-symmetry breaking. Intuitively the solutions are ex-
pected to be organized in clusters of clusters of clusters, etc.;
so, even if the results of the application of survey propaga-
tion are very promising, it is expected to provide only a good
approximation algorithm. It could therefore be interesting to
go beyond survey propagation and to formulate an algorithm
based on the second step of replica symmetry breaking �cor-
responding to two hierarchical clustering levels�, in order to

see if the higher complexity of the algorithm required is
leading to even smaller vertex covers than survey propaga-
tion.

As a last point, it could be interesting to apply the algo-
rithm to real-world covering problems, possibly extending it
to the specific nature of these tasks, which may be similar
but not equal to the original minimal VC problem �2,6�.
These problems are frequently characterized by a broad-
degree distribution of the underlying networks. Their ex-
treme heterogeneity may result in a better performance of
simple heuristic algorithms exploiting local network struc-
tures. On the other hand, it was shown in Ref. �3� that assor-
tative degree correlations may force replica symmetry to
break also in scale-free networks, and algorithms such as
survey propagation are expected to become efficient. A re-
lated interesting topic is the local-network structure beyond
the vertex degrees, in particular, small loops or other small
dense subgraphs. It may be necessary to coarse grain the
graph considering such loops as single constraints, and apply
the factorization hypothesis only to larger structures. In the
replica-symmetric case �warning or belief propagation�, this
corresponds to the region-graph method proposed in Ref.
�12�; for the one-step replica-symmetry-broken case �survey
propagation� it is still an open technical challenge.
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