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We study the effects of thermal noise in a stochastic Langevin formulation of a typical example of a
pattern-forming system with two-dimensional circular domain. A greater tendency towards dynamic cellular
states is observed when the pattern-forming system is subjected to noise, which seems to explain the prevailing
behavior of related laboratory experiments. We also report on two-dimensional numerical observations of
certain dynamic states, homoclinic intermittent states, which until now, had only been observed in laboratory
experiments.
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Cellular patterns are common features of many nonlinear
phenomena. In material science, they are observed in poly-
crystalline metals, soap suds, bubbles in lipid monolayers,
bubbles in fluidization and solidification processes, and mag-
netic bubbles �1�. They are also found in biological �2� and in
vibrated granular systems �3�. Understanding the mecha-
nisms that govern the spatial and temporal evolution of cel-
lular patterns, and their response to noise, is important be-
cause such knowledge can lead, for instance, to novel
designs and developments of new materials. With this per-
spective in mind, we investigate the effects of noise in a
stochastic �Langevin� version of a typical example of a
cellular-pattern-forming dynamical system, known as the
Kuramoto-Sivashinsky �KS� equation

�u

�t
= �1u − �1 + �2�2u − �2��u�2 − �3u3 + ��x�,t� , �1�

where u=u�x� , t� represents the perturbation of a planar front
�typically assumed to be a flame front� by thermodiffusive
instabilities in the direction of propagation. In Eq. �1�, �1
measures the strength of the perturbation force, �2 is a pa-
rameter associated with growth in the direction normal to the
circular domain �burner�, �3u3 is a term that is added �4� to
help stabilize the numerical integration, and ��x� , t� represents
Gaussian white noise, which models thermal fluctuations, di-
mensionless in space and time. We assume ��x� , t� to be dis-
tributed with zero mean ���x� , t��=0, and to be uncorrelated
over space and time, i.e., ���x� , t���x�� , t���=2D��x� −x�����t
− t��, where D is a measure of the intensity of the noise, �¯�
represents the time average over a range of observations.

The Kuramoto-Sivashinsky equation has been studied in
different contexts by Cross and Hohenberg �5�, Armbruster,
Guckenheimer, and Holmes �6�, and by Palacios et al. �7�.
These studies show that, overall, thermodiffusive instabilities
can lead to complex stationary and dynamic cellular patterns,
which emerge from the geometry of the domain through the
universal properties of symmetry-breaking bifurcations. In
recent work �8�, we developed a Crank-Nicolson based inte-

gration scheme that solves a numerical instability problem of
the first truly two-dimensional numerical integration scheme
developed by Zhang et al. �9�. In the present study we build
on this numerical scheme in order to study the effects of
noise on the formation of cellular patterns. Computer simu-
lations of Eq. �1� shows a predominant tendency towards
stationary states, in the absence of noise. In the presence of
noise, the preferred patterns are, however, dynamic states.
We also report on the two-dimensional numerical observa-
tion of certain intermittent states, some of which had only
been observed, until now, in laboratory experiments. Similar
results have been studied in the context of turbulence �10�;
theoretical and simulation results are available for the one-
dimensional �1D� KS equation �11�.

Numerical method. The numerical scheme used to inte-
grate the stochastic version of the KS model �1� employs
distributed approximating functionals for calculating the spa-
tial derivatives �8,9,12�. Time integration is Crank-Nicolson
based �13�, second order accurate, and linearly uncondition-
ally A stable. The nonlinearities are handled by Newton it-
eration in each time step, where the resulting sequence of
linear systems are solved using the preconditioned Bi-
CGSTAB method �14�. The preconditioner is chosen to be
the unchanging linear part of the discretized operator. The
stochastic contribution to the system ��x� , t� only affects the
linear systems in the form of a constant, over each time step,
addition to the right-hand side.

Simulations. Computer simulations of the KS model �1�
show an increased propensity for stationary over dynamic
states, whenever noise is absent. The former states are or-
dered states with petal-like cellular structures and well-
defined spatial symmetries, see Fig. 1. As the radius of the
circular domain increases, the ordered states undergo various
symmetry-breaking bifurcations, which increase the com-
plexity of the patterns; more cells form, and eventually ad-
ditional concentric rings of cells appear.

Dynamic states are sometimes observed in the transition
region between two stationary states. In previous work �7�,
we studied the selection mechanism in this transition. We
now study the effects of noise on these transitions. Under
noise-free conditions, corresponding to D=0 in the bifurca-
tion diagram of Fig. 2, a dynamic one-cell rotating �1R� state
appears in a very narrow range of radii, between the one-cell
�1S� and the two-cell stationary �2S� states, i.e., a 1-to-2
mode interaction. The shape of the single rotating cell re-
sembles the 1S state �i.e., Fig. 1, panel 1�.
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In order to get insight into the effects of noise, we focus
our attention around this 1-to-2 mode interaction that leads
to a 1R-state, though the analysis still captures many essen-
tial features of the effects of noise on more complex patterns.
With increasing noise intensity, the range of radii yielding
1R-states is extended, and additional patterns emerge, see
Fig. 2. For very weak noise, an unsteady dynamic pattern
�1U� appears between the 1S and 1R states. The 1U pattern,
similar in shape to the 1R state, does not sustain rotations;
instead, it visibly rocks back and forth. Increasing the noise
intensity further leads to the formation of a one-cell rotating
pattern which intermittently changes its direction of rotation;
this pattern is observed between the 1U and 1R patterns, we
denote this pattern by �1RI� in the bifurcation diagram. At
this noise level we now have a 1S-1U-1RI-1R-2S transition.

Between the 1R and 2S �or, for higher noise intensities,
2U� patterns, an intermittent 1-2 cell pattern forms, represen-
tative snapshots are shown in Fig. 3. This dynamic pattern is
very peculiar: one of the two cells in the 2S state is extin-
guished; the remaining one-cell state is short-lived, the pat-
tern immediately splits into a new 2S state, the orientation of
which is roughly a quarter rotation of the previous 2S state.
Each appearance of the 2S state lasts an irregular amount of
time, ranging from a few to several hundreds of frames. This
is qualitative evidence of a heteroclinic connection where the
stable �unstable� manifold of a two-cell equilibrium is also
the unstable �stable� manifold of another two-cell equilib-
rium. Until now, this pattern had only been observed in labo-
ratory experiments �15,16� but not in 2D simulations of the
KS model. Finally, a two-cell analog 2U of the 1U pattern
forms between the 1-2I and 2S patterns.

Analysis. In order to explain, quantitatively, the origin and
formation mechanisms of the noise-induced dynamic pat-
terns that we described above, we consider the influence of
noise on the normal form equations for a 1-to-2 cell mode
interaction in a system with O�2� symmetry, i.e., the symme-
try group of rotations and reflections of the circular domain.
Projecting the KS equation �1� onto Fourier-Bessel modes,
we obtain �after rescaling� the desired normal forms

ż1 = z̄1z2 + z1��1 + e11�z1�2 + e12�z2�2� + �g�t� ,

ż2 = ± z1
2 + z2��2 + e21�z1�2 + e22�z2�2� + �h�t� , �2�

where g�t� and h�t� are Gaussian white noise functions, un-
correlated with zero mean, with amplitude �. The two-
parameter bifurcation diagram for the noise-free case, i.e.,
D=0, shown in Fig. 4 indicates the region of existence and
stability of related patterns �see Refs. �6,17��.

FIG. 1. �Color online� Samples of stationary states found
through numerical simulations of the KS model �1� without noise.
The cells organize in concentric rings, with an increasing number of
cells in the outer rings. The cell sizes within each pattern are ap-
proximately constant. The radii corresponding to the panels are
�4.2, 5.0, 6.0, 8.0� and �8.625, 11.0, 13.75, 14.0�; with the simula-
tion parameters ��1 ,�2 ,�3�= �0.32,1.0,0.17� being identical for all
eight simulations.

FIG. 2. Schematic behavior of the KS model for various param-
eter values of radius and noise intensity. Notation: 1�single cell,
2�two cells. S�stationary, U�unsteady, RI�rotating intermittent,
R�rotating, 1-2I�1/2-cell intermittent �heteroclinic cycle�. Noise
levels are actually low noise levels since the dynamic range of u in
the Kuramoto-Sivashinsky equation is order 10. Beyond D=1.25
�10−3 no static patterns are observed.

FIG. 3. �Color online� Representative snapshots of simulations
of the KS model with simulation parameters R=4.285, D=0.0008,
and �1,2,3 as in Fig. 1. Here we see the 1-2I state, in which extinc-
tion and subsequent reformation of the second cell occurs at inter-
mittent intervals.
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The deterministic version of the normal forms �2� has
been thoroughly studied by Armbruster et al. �17�. The
Langevin version where g�t� and h�t� are Gaussian white
noise functions, uncorrelated with zero mean, with amplitude
�, has also been studied �with particular emphasis on the
effects of noise on heteroclinic connections� by Stone and
Holmes �18�. Among their findings, most relevant to this
work, is the realization that intermittent states are noise-
induced “stochastic limit cycles” that are created from the
perturbation of heteroclinic orbits connecting saddle-node
equilibria of the deterministic ��=0� normal forms. The pas-
sage time of a typical orbit lingering near one of these equi-
librium points obeys the following probability distribution
function

P�t� =
2	
�t�e−
2�t�

���1 − e−2	t�
, �3�

where 
�t�=����2 /	��e2	t−1��−1/2, 	 is the largest unstable
eigenvalue of the equilibrium points, � is the noise amplitude
seen in Ref. �2�, and � is the size of a neighborhood around
the equilibrium points. In Fig. 5 we calculate the passage
times �vertical bars� for the numerical simulations of the 1-2I
pattern of Fig. 3. The equilibrium points correspond to the
two different orientations of the two-cell states that appear
intermittently. The bold curve is a fitting of the probability
distribution function P�t� given by Eq. �3�.

FIG. 4. Two-parameter bifurcation diagram of the KS
equation �1�. Notation: PM�pure modes, MM�mixed modes,
TW�traveling waves, MTW�modulated traveling waves,
HC�heteroclinic cycles. Arrows indicate direction by which a
given solution becomes stable.

FIG. 5. Passage times calculated �vertical bars� from numerical
simulations of the 1-2I intermittent pattern and �bold curve� by
fitting the probability distribution function of Eq. �3� with param-
eters 	=0.28, �=0.030, and �=0.20.

FIG. 6. �Color online� The phase space corresponding to the first
three empirical orthogonal basis functions for the snapshot se-
quence of the 1-2I simulation of the KS model with simulation
parameters as in Fig. 3. We clearly see the saddle-node connections
between the stable and unstable manifolds associated with each
individual ordered pattern, one with one cell and one with two cells.

FIG. 7. �Color online� Phase-space reconstruction of the 1-2I
state of Fig. 3 via solutions of normal form equations �2�.
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Together, �i� the numerical calculations yielding the curve
fitting of P�t�; �ii� the close structural correspondence of the
phase-spaces related to the KS simulation �Fig. 6� and the
normal form simulation �Fig. 7, top panel�; as well as �iii� the
matching of the reconstruction of the dynamics described by
the normal form simulation �Fig. 7, bottom panels� to KS-
simulation behavior �Fig. 3�; are all strong indicators that the
1-2I intermittent state is indeed a stochastic limit cycle cre-
ated from the perturbation of a heteroclinic connection. Such
connections would be unobservable in the 2D simulation un-
der noise-free conditions.

We have now extended the analysis of Stone and Holmes
�18� of the Langevin normal forms �2� to other regions of
parameter space where other dynamic patterns, beyond het-
eroclinic cycles, exist. We summarize the results next but
details of the analysis can be found in an companion publi-
cation �19�. A mode analysis �via proper orthogonal decom-
position and Fourier-Bessel decomposition� shows that all
three intermittent patterns 1RI, 1U, and 1-2I, emerge from
the mutual interaction of two pairs of spatial modes, with
wave numbers in a 1:2 ratio. Analysis of the phase dynamics
�relative to the rotation of the O�2�-symmetry� of the ampli-
tude coefficients associated with the basis modes further re-
veals a single frequency in the Fourier spectrum of the phase
of the 1RI pattern. It is then reasonable to classify the 1RI
pattern as a traveling wave solution, subject to noise, of the
1:2 mode interaction. As noise increases, the angular velocity
of the 1R and 1RI patterns increases as is shown in Fig. 8.

Similarly, the phase of the 1U �and 2U as well� pattern
remains almost constant while it lies in an invariant subspace

spanned by a pair of basis Fourier-Bessel modes. This sug-
gests that the 1U �and 2U� state are standing wave patterns in
which noise perturbations cause the observed rocking back-
and-forth motion. We note that the noise-free dynamic pat-
terns were already stable; noise is not stabilizing these pat-
terns. Instead, it is changing their dynamic characteristics.
Again, details of the normal form analysis can be found in an
upcoming paper �19�. As a closing remark, we wish to
emphasize that more complex intermittent transitions, see
Fig. 9, are also found in simulations of the KS model �1�.
Our analysis of the 1:2 mode interaction can be readily ex-
tended, except that some of the normal forms for this and
many other cases have not yet been derived.
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FIG. 8. Angular velocity in single cell rotations �1R� measured
in rad/s as a function of noise intensity. Each line represents a series
of simulations in which all parameters were held constant except for
noise intensity �range �0,1.25�10−3��.

FIG. 9. �Color online� For R=13.101, D=0.00125, and �1,2,3 as
in Fig. 1, noise-induced intermittent behavior in a two-ring state is
observed. Here, the transitions visit 9/3, 9/4, 10/3, 10/4 �not shown�,
and 6/3 two-ring states at intermittent intervals.
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