RAPID COMMUNICATIONS

PHYSICAL REVIEW E 74, 045202(R) (2006)

Noise-induced intermittent cellular patterns on circular domains
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We study the effects of thermal noise in a stochastic Langevin formulation of a typical example of a

pattern-forming system with two-dimensional circular domain. A greater tendency towards dynamic cellular

states is observed when the pattern-forming system is subjected to noise, which seems to explain the prevailing

behavior of related laboratory experiments. We also report on two-dimensional numerical observations of

certain dynamic states, homoclinic intermittent states, which until now, had only been observed in laboratory

experiments.
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Cellular patterns are common features of many nonlinear
phenomena. In material science, they are observed in poly-
crystalline metals, soap suds, bubbles in lipid monolayers,
bubbles in fluidization and solidification processes, and mag-
netic bubbles [1]. They are also found in biological [2] and in
vibrated granular systems [3]. Understanding the mecha-
nisms that govern the spatial and temporal evolution of cel-
lular patterns, and their response to noise, is important be-
cause such knowledge can lead, for instance, to novel
designs and developments of new materials. With this per-
spective in mind, we investigate the effects of noise in a
stochastic (Langevin) version of a typical example of a
cellular-pattern-forming dynamical system, known as the
Kuramoto-Sivashinsky (KS) equation

du

o = =1+ V22U = 7y (Vu)* = g’ + E(3,1), (1)
where u=u(x,) represents the perturbation of a planar front
(typically assumed to be a flame front) by thermodiffusive
instabilities in the direction of propagation. In Eq. (1), 7,
measures the strength of the perturbation force, 7, is a pa-
rameter associated with growth in the direction normal to the
circular domain (burner), 7;u® is a term that is added [4] to
help stabilize the numerical integration, and &(x,) represents
Gaussian white noise, which models thermal fluctuations, di-
mensionless in space and time. We assume &(x,7) to be dis-
tributed with zero mean (&(x,#))=0, and to be uncorrelated
over space and time, i.e., (&x,0)&X",t'))=2D8(x-x")8t
—t"), where D is a measure of the intensity of the noise, (- )

represents the time average over a range of observations.
The Kuramoto-Sivashinsky equation has been studied in
different contexts by Cross and Hohenberg [5], Armbruster,
Guckenheimer, and Holmes [6], and by Palacios et al. [7].
These studies show that, overall, thermodiffusive instabilities
can lead to complex stationary and dynamic cellular patterns,
which emerge from the geometry of the domain through the
universal properties of symmetry-breaking bifurcations. In
recent work [8], we developed a Crank-Nicolson based inte-
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gration scheme that solves a numerical instability problem of
the first truly two-dimensional numerical integration scheme
developed by Zhang et al. [9]. In the present study we build
on this numerical scheme in order to study the effects of
noise on the formation of cellular patterns. Computer simu-
lations of Eq. (1) shows a predominant tendency towards
stationary states, in the absence of noise. In the presence of
noise, the preferred patterns are, however, dynamic states.
We also report on the two-dimensional numerical observa-
tion of certain intermittent states, some of which had only
been observed, until now, in laboratory experiments. Similar
results have been studied in the context of turbulence [10];
theoretical and simulation results are available for the one-
dimensional (1D) KS equation [11].

Numerical method. The numerical scheme used to inte-
grate the stochastic version of the KS model (1) employs
distributed approximating functionals for calculating the spa-
tial derivatives [8,9,12]. Time integration is Crank-Nicolson
based [13], second order accurate, and linearly uncondition-
ally A stable. The nonlinearities are handled by Newton it-
eration in each time step, where the resulting sequence of
linear systems are solved using the preconditioned Bi-
CGSTAB method [14]. The preconditioner is chosen to be
the unchanging linear part of the discretized operator. The
stochastic contribution to the system &(x,f) only affects the
linear systems in the form of a constant, over each time step,
addition to the right-hand side.

Simulations. Computer simulations of the KS model (1)
show an increased propensity for stationary over dynamic
states, whenever noise is absent. The former states are or-
dered states with petal-like cellular structures and well-
defined spatial symmetries, see Fig. 1. As the radius of the
circular domain increases, the ordered states undergo various
symmetry-breaking bifurcations, which increase the com-
plexity of the patterns; more cells form, and eventually ad-
ditional concentric rings of cells appear.

Dynamic states are sometimes observed in the transition
region between two stationary states. In previous work [7],
we studied the selection mechanism in this transition. We
now study the effects of noise on these transitions. Under
noise-free conditions, corresponding to D=0 in the bifurca-
tion diagram of Fig. 2, a dynamic one-cell rotating (1R) state
appears in a very narrow range of radii, between the one-cell
(1S) and the two-cell stationary (2S) states, i.e., a 1-to-2
mode interaction. The shape of the single rotating cell re-
sembles the 1S state (i.e., Fig. 1, panel 1).
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FIG. 1. (Color online) Samples of stationary states found
through numerical simulations of the KS model (1) without noise.
The cells organize in concentric rings, with an increasing number of
cells in the outer rings. The cell sizes within each pattern are ap-
proximately constant. The radii corresponding to the panels are
[4.2, 5.0, 6.0, 8.0] and [8.625, 11.0, 13.75, 14.0]; with the simula-
tion parameters (7, 7,, 73)=(0.32,1.0,0.17) being identical for all
eight simulations.

In order to get insight into the effects of noise, we focus
our attention around this 1-to-2 mode interaction that leads
to a 1R-state, though the analysis still captures many essen-
tial features of the effects of noise on more complex patterns.
With increasing noise intensity, the range of radii yielding
1R-states is extended, and additional patterns emerge, see
Fig. 2. For very weak noise, an unsteady dynamic pattern
(1U) appears between the 1S and IR states. The 1U pattern,
similar in shape to the 1R state, does not sustain rotations;
instead, it visibly rocks back and forth. Increasing the noise
intensity further leads to the formation of a one-cell rotating
pattern which intermittently changes its direction of rotation;
this pattern is observed between the 1U and 1R patterns, we
denote this pattern by (1RI) in the bifurcation diagram. At
this noise level we now have a 1S-1U-1RI-1R-2S transition.
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FIG. 2. Schematic behavior of the KS model for various param-
eter values of radius and noise intensity. Notation: 1=single cell,
2=two cells. S=stationary, U=unsteady, RI=rotating intermittent,
R=rotating, 1-2I=1/2-cell intermittent (heteroclinic cycle). Noise
levels are actually low noise levels since the dynamic range of u in
the Kuramoto-Sivashinsky equation is order 10. Beyond D=1.25
X 1073 no static patterns are observed.
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FIG. 3. (Color online) Representative snapshots of simulations
of the KS model with simulation parameters R=4.285, D=0.0008,
and 7, , 3 as in Fig. 1. Here we see the 1-2I state, in which extinc-
tion and subsequent reformation of the second cell occurs at inter-
mittent intervals.

Between the 1R and 2S (or, for higher noise intensities,
2U) patterns, an intermittent 1-2 cell pattern forms, represen-
tative snapshots are shown in Fig. 3. This dynamic pattern is
very peculiar: one of the two cells in the 2S state is extin-
guished; the remaining one-cell state is short-lived, the pat-
tern immediately splits into a new 2S state, the orientation of
which is roughly a quarter rotation of the previous 2S state.
Each appearance of the 2S state lasts an irregular amount of
time, ranging from a few to several hundreds of frames. This
is qualitative evidence of a heteroclinic connection where the
stable (unstable) manifold of a two-cell equilibrium is also
the unstable (stable) manifold of another two-cell equilib-
rium. Until now, this pattern had only been observed in labo-
ratory experiments [15,16] but not in 2D simulations of the
KS model. Finally, a two-cell analog 2U of the 1U pattern
forms between the 1-2I and 2S patterns.

Analysis. In order to explain, quantitatively, the origin and
formation mechanisms of the noise-induced dynamic pat-
terns that we described above, we consider the influence of
noise on the normal form equations for a 1-to-2 cell mode
interaction in a system with O(2) symmetry, i.e., the symme-
try group of rotations and reflections of the circular domain.
Projecting the KS equation (1) onto Fourier-Bessel modes,
we obtain (after rescaling) the desired normal forms

G =21z + 21 (g + ez + eplzal?) + 22(0),
G= 27+ (g + eqllzi P + exlzof) + eh(0), (2)

where g(¢) and h(t) are Gaussian white noise functions, un-
correlated with zero mean, with amplitude €. The two-
parameter bifurcation diagram for the noise-free case, i.e.,
D=0, shown in Fig. 4 indicates the region of existence and
stability of related patterns (see Refs. [6,17]).
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FIG. 4. Two-parameter bifurcation diagram of the KS
equation (1). Notation: PM=pure modes, MM=mixed modes,
TW=traveling waves, MTW=modulated traveling waves,
HC=heteroclinic cycles. Arrows indicate direction by which a
given solution becomes stable.

The deterministic version of the normal forms (2) has
been thoroughly studied by Armbruster et al. [17]. The
Langevin version where g(¢) and h(r) are Gaussian white
noise functions, uncorrelated with zero mean, with amplitude
g, has also been studied (with particular emphasis on the
effects of noise on heteroclinic connections) by Stone and
Holmes [18]. Among their findings, most relevant to this
work, is the realization that intermittent states are noise-
induced “stochastic limit cycles” that are created from the
perturbation of heteroclinic orbits connecting saddle-node
equilibria of the deterministic (¢=0) normal forms. The pas-
sage time of a typical orbit lingering near one of these equi-
librium points obeys the following probability distribution
function
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FIG. 5. Passage times calculated (vertical bars) from numerical
simulations of the 1-2I intermittent pattern and (bold curve) by
fitting the probability distribution function of Eq. (3) with param-
eters A=0.28, £=0.030, and 6=0.20.
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FIG. 6. (Color online) The phase space corresponding to the first
three empirical orthogonal basis functions for the snapshot se-
quence of the 1-2I simulation of the KS model with simulation
parameters as in Fig. 3. We clearly see the saddle-node connections
between the stable and unstable manifolds associated with each
individual ordered pattern, one with one cell and one with two cells.

3)

where A(f)=d(e2/\)(e*M=1)]"2, \ is the largest unstable
eigenvalue of the equilibrium points, ¢ is the noise amplitude
seen in Ref. (2), and & is the size of a neighborhood around
the equilibrium points. In Fig. 5 we calculate the passage
times (vertical bars) for the numerical simulations of the 1-21
pattern of Fig. 3. The equilibrium points correspond to the
two different orientations of the two-cell states that appear
intermittently. The bold curve is a fitting of the probability
distribution function P(¢) given by Eq. (3).
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FIG. 7. (Color online) Phase-space reconstruction of the 1-2I
state of Fig. 3 via solutions of normal form equations (2).
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FIG. 8. Angular velocity in single cell rotations (1R) measured
in rad/s as a function of noise intensity. Each line represents a series
of simulations in which all parameters were held constant except for
noise intensity (range [0,1.25 X 1073]).

Together, (i) the numerical calculations yielding the curve
fitting of P(7); (ii) the close structural correspondence of the
phase-spaces related to the KS simulation (Fig. 6) and the
normal form simulation (Fig. 7, top panel); as well as (iii) the
matching of the reconstruction of the dynamics described by
the normal form simulation (Fig. 7, bottom panels) to KS-
simulation behavior (Fig. 3); are all strong indicators that the
1-21 intermittent state is indeed a stochastic limit cycle cre-
ated from the perturbation of a heteroclinic connection. Such
connections would be unobservable in the 2D simulation un-
der noise-free conditions.

We have now extended the analysis of Stone and Holmes
[18] of the Langevin normal forms (2) to other regions of
parameter space where other dynamic patterns, beyond het-
eroclinic cycles, exist. We summarize the results next but
details of the analysis can be found in an companion publi-
cation [19]. A mode analysis (via proper orthogonal decom-
position and Fourier-Bessel decomposition) shows that all
three intermittent patterns 1RI, 1U, and 1-2I, emerge from
the mutual interaction of two pairs of spatial modes, with
wave numbers in a 1:2 ratio. Analysis of the phase dynamics
[relative to the rotation of the O(2)-symmetry] of the ampli-
tude coefficients associated with the basis modes further re-
veals a single frequency in the Fourier spectrum of the phase
of the IRI pattern. It is then reasonable to classify the 1RI
pattern as a traveling wave solution, subject to noise, of the
1:2 mode interaction. As noise increases, the angular velocity
of the 1R and IRI patterns increases as is shown in Fig. 8.

Similarly, the phase of the 1U (and 2U as well) pattern
remains almost constant while it lies in an invariant subspace
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FIG. 9. (Color online) For R=13.101, D=0.00125, and 7, , 3 as
in Fig. 1, noise-induced intermittent behavior in a two-ring state is
observed. Here, the transitions visit 9/3, 9/4, 10/3, 10/4 (not shown),
and 6/3 two-ring states at intermittent intervals.

spanned by a pair of basis Fourier-Bessel modes. This sug-
gests that the 1U (and 2U) state are standing wave patterns in
which noise perturbations cause the observed rocking back-
and-forth motion. We note that the noise-free dynamic pat-
terns were already stable; noise is not stabilizing these pat-
terns. Instead, it is changing their dynamic characteristics.
Again, details of the normal form analysis can be found in an
upcoming paper [19]. As a closing remark, we wish to
emphasize that more complex intermittent transitions, see
Fig. 9, are also found in simulations of the KS model (1).
Our analysis of the 1:2 mode interaction can be readily ex-
tended, except that some of the normal forms for this and
many other cases have not yet been derived.
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