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Within the framework of Ericksen-Leslie continuum theory we analyze the influence of shear flow on the
magnetic-field-induced Fréedericksz transition in nematic liquid crystal with rodlike molecules. We consider
three basic orientational configurations of a nematic planar layer in the uniform magnetic field. Conditions of
rigid director coupling on the boundaries of the layer and constant shear flow gradient inside the layer are used.
We exhibit some flow aligning effects for nematic liquid crystals with various ratio of rotary viscosities and
investigate how unequal elastic constants �elastic anisotropy� alter the magnetic Fréedericksz transition in
sheared nematics. Our calculations predict that surface boundary effects in nematic films and magnetic field
action lead to existence of stationary flow regimes in the so-called nonflow aligning nematics, otherwise,
surface and magnetic forces extend the range of viscous coefficient values corresponding to the flow aligning
regimes. We show that imposing of shear flow on the Fréedericksz transition leads to a threshold behavior or
to a “smoothing” of the transition. It depends on the orientation of the nematic layer in magnetic field and
magnitudes of rotary viscous coefficients.
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I. INTRODUCTION

One of the most interesting effects in the physics of liquid
crystals from both the fundamental and practical points of
view is the Fréedericksz transition �1,2�. In nematic liquid
crystal �NLC� the intermolecular interactions responsible for
the nematic order tend to orient long axes of molecules par-
allel to a common direction n, called the director. The direc-
tor n is uniform throughout the sample in the absence of
external fields or certain boundary conditions. A sufficiently
strong magnetic field applied across a planar nematic layer
for the anisotropy of the diamagnetic susceptibility �a�0
tends to orient the director in the direction of field. If the
field is perpendicular to the unperturbed director alignment
the distortions of orientation take place above a critical field,
i.e., the Fréedericksz transition occurs. The equilibrium ori-
entation of the director in the layer is determined by the
interaction of liquid crystal �LC� with the applied magnetic
field, the elastic LC forces and surface boundary effects. The
Fréedericksz transition underlies of numerous LC display de-
vices, moreover, deformations of LC structure caused by
external fields are employed in experimental techniques to
determine LC elastic constants �3,4�.

The static Fréedericksz transition as a bifurcation problem
was first discussed by Derfel �5�. Using methods of catastro-
phe theory, he reanalyzed a series of static effects discovered
earlier by other authors. The author �5� considered a nematic
layer with pretilted director orientation in obliquely applied
magnetic field. He performed qualitative analysis of hyster-
esis effects caused by a symmetry breaking in a system.
Blake et al. �6� considered the effects of imperfections emer-
gent in the Fréedericksz transition. These imperfections are
produced by special orientation of a magnetic field relative to
the nematic layer or misalignment of the director at the

boundaries. Derfel in Ref. �7� revealed the analogy between
the magnetic-field-induced deformations and flow-induced
deformations in liquid crystals. He predicted new threshold
effects in sheared, weakly anchored nematics.

The purpose of the present paper is to analyze the com-
bined effect of shear flow and magnetic field on the nematic
orientational structure. We study the influence of shear flow
on the magnetic-field-induced Fréedericksz transition in a
planar layer of a nematic liquid crystal with rodlike mol-
ecules. Linear approximation of a velocity profile and rigid
coupling of the director on the plates bounding the NLC
layer are used. We consider three basic orientations of the
layer in the uniform magnetic field. In all studied configura-
tions the external magnetic field counteracted to the surface
forces aligning the director on the boundaries. We reveal
some flow aligning effects for the nonflow aligning nematics
and investigate how unequal elastic constants change the
director deformations.

Recently, the Fréedericksz transition as a bifurcation at
the presence of shear flow was considered by Mukherjee et
al. �8�. They made assumptions strongly restricted to the area
of applicability of the solutions and some of them were not
correct. The authors �8� used the so-called one-constant ap-
proximation for the Frank modules �elastic isotropy�, but real
nematics have unequal elastic modules �elastic anisotropy�,
and so the assumption of elastic isotropy is unrealistic. In the
present paper, we take into account the anisotropy of Frank
modules. The authors �8� have also supposed that the rotary
viscous coefficient �1 and the irrotational torque coefficient
�2 have the same value and sign. Due to positiveness of
entropy production the viscous coefficient �1�0, but �2 can
have any sign �1,2�, nevertheless, for all known rodlike LCs
the coefficient �2�0 �1–4,9�. The case �2�0 considered in
Ref. �8� concerns, apparently, the disklike nematics �10–14�.
Furthermore, the authors �8� have considered the planar ap-
proximation for the director field in the case of its three-
dimensional deformations caused by magnetic field and
shear flow �see configuration �B� in Ref. �8��. Their solution
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does not satisfy the equations of the NLC motion for this
configuration.

In the present paper, we employ the values of viscous
coefficients, which are suitable for the planar director field of
NLC with rodlike molecules in all basic orientations of the
NLC layer in magnetic field. We analyze the role of nematic
elastic anisotropy and viscous anisotropy on the nematic or-
dering in magnetic-field-induced Fréedericksz transition un-
der shear flow. We predict that surface boundary effects in
LC layer and magnetic field action lead to existence of sta-
tionary flow regimes in the so-called nonflow aligning nem-
atics. We show that imposing of shear flow on the Fréeder-
icksz transition leads to a threshold behavior or to a
“smoothing” of the transition.

The paper is organized as follows. In Sec. II, we summa-
rize the nematodynamic equations of the Ericksen-Leslie
continuum theory. In Sec. III, we discuss the effect of shear
flow on the Fréedericksz transition for the basic orientations
of the nematic layer in magnetic field. Our conclusions are
presented in Sec. IV.

II. NEMATODYNAMIC EQUATIONS

In order to describe the dynamics of a liquid crystal we
use the continuum theory proposed by Ericksen and Leslie
�1,2,15�. We consider shear flow of an incompressible nem-
atic liquid crystal with the velocity v and the director n fields
varying in time and space.

The density of the bulk free energy of a nematic
liquid crystal in magnetic field for the small isothermal
deformations is given by �1�

F = Fd + Fm,

Fd = 1
2 �K1��n�2 + K2�n · � � n�2 + K3�n � � � n�2� ,

Fm = − 1
2�a�n · H�2. �1�

Here K1, K2, K3 are the splay, twist, and bend modules of
NLC orientational elasticity, known as Frank elastic con-
stants, n is the director of a liquid crystal, �a is the aniso-
tropy of a magnetic susceptibility, H is the external magnetic
field strength.

The first term Fd in Eq. �1� represents the bulk free energy
of the director field elastic deformations �the Oseen-Frank
potential�, and the following one Fm in �1� is the bulk free
energy of a magnetic field interaction with a nematic.

According to the Ericksen-Leslie continuum theory
�1,2,15� the equations of NLC motion can be written as

�
dv

dt
= � · �� , �2�

� · v = 0, �3�

h = �1N + �2n · A� . �4�

Here � and v are the mass density and the velocity of fluid,
respectively; d /dt denotes the convective time derivative

� /�t+v�. Equations �2�–�4� present the balance of forces
acting on the fluid, the incompressibility condition and the
balance of torques acting on the director n, respectively.

The stress tensor �� in Eq. �2� is determined as a sum

�� = ��� + �e� , �5�

where viscous stress tensor ��� has the form

�ki� = 	1nkninlnmAlm + 	2nkNi + 	3niNk + 	4Aki + 	5nknlAli

+ 	6ninlAlk,

here the summation over repeated indices is implied.
The vector N=dn /dt−�� ·n represents the rate of change
of the director relative to the background liquid,
Aik= �1/2���kvi+�ivk� and 
ik= �1/2���kvi−�ivk� are symmet-
ric and antisymmetric parts of the velocity gradients
tensor, respectively. The six viscosity coefficients 	s
are called Leslie coefficients. Only five of them are indepen-
dent due to the relationship first derived by Parodi �1,2�,
	2+	3=	6−	5. The correlation of rotary viscosity coeffi-
cients �1 and �2 with Leslie coefficients defined by Onsager
reciprocal relation may be written as �1=	3−	2, �2=	3
+	2. The coefficient �1 characterizes the viscous torque as-
sociated with an angular velocity of the director, while �2
gives the contribution to this torque due to a shear velocity in
LC.

The elastic part of stress tensor �5� known as Ericksen

tensor �e� is given by

�ki
�e� = − p�ki −

�F

���knl�
�inl,

where p is the pressure, �ki is the Kronecker symbol, and
�i�� /�xi.

The vector of the molecular field h in the equation of the
director motion �4� includes elastic and magnetic-field terms
and can be expressed in the following form:

hi = −
�F

�ni
+ �k

�F

���kni�
.

Thus, Eqs. �2�–�4� represent the total set of the
nematodynamic equations.

III. SHEAR FLOW INFLUENCE ON THE FRÉEDERICKSZ
TRANSITION

We consider the NLC layer of thickness d, sandwiched
between two parallel plates moving relatively to each other.
We introduce rectangular coordinate system with the x axis
directed along the trajectory of the moving plate and the z
axis perpendicular to the plates. The coordinate origin is cho-
sen in the middle of the layer. The layer bounded at
z=−d /2 and z=d /2 has an infinite extension in the x and y
directions �see Figs. 1, 7, and 8�. The lower plate is at rest in
our coordinate frame while the upper one moves with con-
stant velocity U. We consider the stationary solutions of Eqs.
�2�–�4� corresponding to the three basic types of NLC layer
arrangement in the uniform magnetic field H �Figs. 1, 7, and
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8�; we suppose also that anisotropy of a diamagnetic suscep-
tibility �a is positive, hence the director n tends to align in
the field direction.

A. Configuration (A)

Let the magnetic field H= �0,0 ,H� be directed perpen-
dicularly to the plates of the layer and the velocity of nematic
flow has the form v= (vx�z� ,0 ,0) �see Fig. 1�. We assume
rigid planar coupling of the director on the boundaries of the
layer. In the absence of the magnetic field and the flow, the
director is uniform and directed along the x axis in the layer.
If we impose the shear flow and magnetic field to the layer
the perturbed director n in this configuration can be written
as

n = „cos ��z�,0,sin ��z�… , �6�

where ��z� is the tilt angle of the director n from the x axis.
We use the linear approximation of the velocity field

v= �Uz /d ,0 ,0� in the layer �8,16�, here U is the velocity
of the upper plate. In the real situation a transverse flow
�vy �0� exists and the gradient of shear rate �vx /�z depends
on z. We disregard these effects which would make the
calculations much more complicated.

We choose the thickness d of the layer as the unit of
length and introduce the dimensionless coordinate z̃=z /d.
Stationary ��n /�t=0� equation of the director motion �4�
with the help of Eq. �6� can be expressed as

fA���
d2�

dz̃2 +
1

2

dfA���
d�

�d�

dz̃
�2

= − h sin 2� + �1 − � cos 2��

�7�

with boundary conditions

��− 1/2� = ��1/2� = 0, �8�

where fA���=cos2 �+k sin2 �. Here we introduce the
following dimensionless parameters: h=�aH2d2 / �2K1�,
=U�1d / �2K1�, k=K3 /K1, and �=−�2 /�1. The parameter h
represents the square of dimensionless magnetic field
strength,  is the dimensionless gradient of NLC shear rate
known as Ericksen number, which is the ratio of the viscous
��U�1 /d� to elastic forces ��K1 /d2�. The coefficient k char-
acterizes the anisotropy of Frank elastic constants, � is the

reactive parameter. The case ��1 corresponds to the so-
called flow aligning liquid crystals. In these materials the
director tends to align inside the shear plane at the angle
defined by relation �1,2�

cos 2�L = 1/� , �9�

where �L is the flow alignment angle, known as Leslie angle,
which determines possible planar solutions for NLC director
field in the absence the external forces and boundary effects
�the unbounded NLC�. For the case 0���1 there is no
solutions of Eq. �9� and this inequality defines nonflow align-
ing liquid crystals, which have no steady state orientation of
the director in the shear plane. Relation �9� follows from Eq.
�7� for the uniform ��� /dz̃=0� director configuration in the
magnetic field absence.

Under the influence of a magnetic field the uniform
solution of Eq. �7� is given by

tan � =
h + 	h2 + 2��2 − 1�

�1 + ��
, �10�

which has been received earlier in Ref. �15�. In the magnetic
field absence �h=0� Eq. �10� reduces to Eq. �9�. As it is seen
from Eq. �10� the stationary planar solutions exist for � val-
ues determined by the inequality �2�1− �h /�2. It means
that in the unbounded NLC subjected to the magnetic field
and shear flow the uniform solutions exist for wider range of
� values than in sheared nematics solely.

It should be pointed out that in the absence of flow
�=0� and magnetic field �h=0� Eq. �7� has the uniform
solution �=0 satisfying boundary conditions �8�. As it is
seen from Eq. �7�, this solution is valid for arbitrary h
without shear flow or with shear flow for �=1.

We consider the nonuniform solutions for a director field.
For that purpose we multiply Eq. �7� by d� /dz̃ and integrate
it twice. Then the stationary solutions describing the per-
turbed state of the director in the middle of the layer can be
found from the following integral equation:

1

2
= ± 


0

�0 	 fA���
�A��,�0�

d� , �11�

where �A�� ,�0�=h�cos 2�−cos 2�0�+2��−�0�+�
��sin 2�0−sin 2��. Here �0=��0� is the angle of the direc-
tor rotation in the middle of the layer. The plus sign in Eq.
�11� corresponds to positive values of �0 and the minus sign
to negative ones. In the absence of flow Eq. �11� is invariant
under the replacement �→−�, i.e., positive and negative
solutions are symmetrical under this condition.

Let us estimate the magnitudes of h and  for typical
values of NLC parameters. Assuming �a�10−7 SGSE units,
K1�10−6 dynes, the rotary viscous coefficients �1�10−1

poise and choosing the thickness of the layer d�10−3 sm,
the velocity of the upper plate U�10−2 sm/s and the
magnetic field strength H�104 Oe, we obtain h�10 and
�1.

1. Critical magnetic field of a transition

For �=1 Eq. �7� has the trivial solution �=0 correspond-
ing to uniform nematic state with the director orientation

FIG. 1. Orientation of a nematic layer between moving plates in
magnetic field H �configuration �A��.
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along the x axis. Such a solution, however, becomes unstable
in the field h exceeding some threshold value hc. Close to a
bifurcation point ��1 and so it is possible to look for a
solution of Eq. �7� as the expansion in terms of the small
parameter describing the proximity of a magnetic field
strength h to the critical value hc. In the low order approxi-
mation with the help of boundary conditions �8� we obtain

hc = �2/2, �12�

��z̃� =
3�

8
�h − hc�cos �z̃ . �13�

Expression �13� characterizes the behavior of the angle of the
director orientation near the phase transition point from the
uniform state into the distorted one. The symmetry of Eq. �7�
solutions is broken under the shear flow influence. As it is
seen from Eq. �13�, the derivative �� /�h is positive and fi-
nite at the transition point �see Figs. 3 and 4�. Besides, the
quantity hc coincides with a square of the critical value of
dimensionless magnetic field strength in static Fréedericksz
transition, which in dimension form is given by �1,2�

Hc =
�

d
	K1

�a
.

2. Weak shear flow and magnetic field

The trivial solution �=0 of Eq. �7� is absent at
�1−���0. For small values of this parameter, for example,
at �1 �weak flow� or ��1, when � is small, Eq. �7� is
possible to linearize

�� + 2h� = �1 − �� .

Hereinafter the prime denotes z̃-coordinate derivative.
The general solution of this equation satisfying boundary
conditions �8� becomes

��z̃� =
�� − 1�

2h
� cos�	2hz̃�

cos 	h/2
− 1� . �14�

Let us consider the behavior of the director at weak mag-
netic fields �h�1�. The first order expansion of Eq. �14� in
terms of small h gives

��z̃� =
1

8
�� − 1��1 − 4z̃2��1 +

h

24
�5 − 4z̃2�� . �15�

Expression �15� describes the small deviations of the director
from the unperturbed state at weak shear rates and magnetic
fields �see Figs. 5 and 6�. The solution in the middle of the
layer �at z̃=0� is given by

�0 = 1
8�� − 1��1 +

5

24
h� . �16�

Expression �16� at ��1 in weak fields describes only per-
turbed state of the director field. The increase of a magnetic
field strength causes the growth of absolute value of the di-
rector angle. In flow aligning NLC ���1� the angle �0 is
positive and in nonflow aligning NLC �0���1��0 is
negative due to positiveness of  and h.

As it is seen from Eq. �16� in the magnetic field absence
�h=0� the director angle �0 can be expressed as

�0 = 1
8�� − 1� . �17�

Let us notice, that the orientation of the director inside a
layer is determined by the velocity gradient  and the ratio
of nematic viscous coefficients �. In the case of shear flow of
an unbounded nematic the angle of the director rotation
depends on viscous coefficients only �see Eq. �9��.

3. Strong magnetic fields

In strong magnetic fields �h�hc, �h� for �0�0 from
Eq. �11� we obtain

	h

2
= 


0

�0 	1 + k tan2 �d� .

Assuming �0=� /2−�, ��1, we can write

�0 =
�

2
− 2	ke−	h/2k+	�1−k�/k arctan 	�1−k�/k for k � 1,

�0 =
�

2
− 2	ke−	h/2k−	�k−1�/k arctanh 	�k−1�/k for k � 1.

�18�

Equations �18� determine the asymptotic behavior of
positive �0 values at large magnetic field strength for various
anisotropy of elasticity �see Figs. 3–6�.

4. Numerical simulation

The results of Eq. �11� numerical simulation are shown in
Figs. 3–6. In static Fréedericksz transition without shear flow
�=0�, besides the trivial solution �Fig. 2, �=0�, existing for
arbitrary values of a magnetic field strength, there are two
nontrivial symmetric solutions at h�hc �1,2�. They describe
the perturbed state of the director �Fig. 3, solid line�. One of
the solutions corresponds to the counter-clockwise rotation
of the director �Fig. 2, ��0�, the other—to the clockwise
one �Fig. 2, ��0�. Hereinafter the critical value of a square
of dimensionless magnetic field strength in static Fréeder-
icksz transition �see Eq. �12�� is designated by means of hc.

As we have noticed previously, the presence of shear flow
��0� does not change the threshold character of a transi-
tion for �=1 only, that corresponds to the equality of the
magnitudes of rotary viscous coefficients. The value of the
critical field hc in this case is the same �see Eq. �12��, as well

FIG. 2. The basic types of director field deformations in static
Fréedericksz transition without shear flow �configuration �A��.
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as in the static transition �1,2�, but the symmetry of non-
trivial solutions is broken now �Fig. 3, dashed line�. The
presence of shear flow results in the absence of Eq. �7� in-
variance under the replacement �→−�. The trivial solution
still exists for arbitrary values of h. The branches of solutions
corresponding to the nonuniform state of the director are
displaced downward in accordance with expression �13� de-
scribing the asymmetry of the solutions close to the bifurca-
tion point �see Figs. 3 and 4�. The values of the angle �0 in
the top branch are less on the magnitude than the values
belonging to the bottom branch and corresponding to the
same h. Besides from Eq. �13� it follows, that the derivative
�� /�h at the critical point hc is positive and finite, therefore
the transition to the positive branch of solutions ��0�0� is
carried out as the second order phase transition, and the tran-
sition to the negative branch ��0�0� is the first order one.

The case =k=1 and �=−1 was considered in Ref. �8�.
The value ��0 of the reactive parameter chosen by authors
�8�, is not confirmed in the experiments �1–4,9�. It is possible
to assume that only NLC with disklike molecules has the
values ��0 �10–14�. Equation �7� in the case �=−1 has no
solutions describing the undistorted orientation of the direc-
tor in the system �see Fig. 6 in Ref. �8��. One of the branches

of the solution in Ref. �8� is continuous and exists for arbi-
trary values of h. It locates in the lower half-plane
corresponding to the negative angles of the director rotation.
Two other branches of the solution correspond to the positive
values of the director angle and are situated in the upper
half-plane. The bifurcation point in Ref. �8� is born at larger
values of a magnetic field strength, than in the case �=1.

Let us now consider the modification of Eq. �11� solutions
with the variation of Frank elastic constants and rotary vis-
cous coefficients. Elastic anisotropy caused by the greater
magnitude of bend elastic constant than splay constant
�k�1� leads to increase of the director rotation angle �Fig. 4,
solid line�. In the opposite case �k�1� the angle of the
director rotation �Fig. 4, dashed line� decreases.

Our calculations demonstrate the “smoothing” of the
phase transition �see Figs. 5 and 6� at the reactive parameter
��1, i.e., the shear flow of arbitrary intensity aligns the
director at some nonzero angle to the direction of flow. The
trivial solution describing a nonperturbed configuration of a
director field disappears. Here the shear flow plays the same
role as the external field in Landau theory of second order
phase transitions.

In flow aligning NLC ���1� the continuous branch of the
solutions in the upper half-plane ��0�0� appears; it exists at
arbitrary h �Fig. 5, dashed line�. It is possible to explain by

FIG. 3. Dependence of the angle �0 of the director rotation on
the reduced square of magnetic field strength h /hc in Fréedericksz
transition �configuration �A�� at isotropy of elasticity �k=1�. Solid
line corresponds to the solutions without shear flow �=0�; dashed
line describes the director behavior of a flow aligning NLC ��=1�
under shear flow influence �=1�.

FIG. 4. Dependence of the angle �0 of the director rotation
on the reduced square of magnetic field strength h /hc in Fréeder-
icksz transition �configuration �A�� for flow aligning NLC ��=1�
with two values of elastic anisotropy �k=0.7,2� under shear flow
influence �=1�.

FIG. 5. Dependence of the angle �0 of the director rotation on
the reduced square of magnetic field strength h /hc in Fréedericksz
transition �configuration �A�� for flow aligning NLC with elastic
isotropy �k=1� and two values of reactive parameter ��=1,2� under
shear flow influence �=1�.

FIG. 6. Dependence of the angle �0 of the director rotation on
the reduced square of magnetic field strength h /hc in Fréedericksz
transition �configuration �A�� for flow aligning ��=1� and nonflow
aligning NLC ��=0.5� with elastic isotropy �k=1� under shear flow
influence �=1�.
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the fact that in the absence of a magnetic field the shear flow
aligns the director under a positive angle to the direction of
flow �see Eq. �17��. Imposing of a field and the subsequent
increase of its strength �see Eq. �16�� leads to the growth of
positive �0 values. Moreover, two branches of the solutions
arise in the lower half-plane ��0�0�. The bifurcation occurs
at the values h larger than hc.

In nonflow aligning NLC �0���1� the continuous
branch of solutions belongs to the lower half-plane ��0�0�
�Fig. 6, dashed lines�. According to Eq. �16�, in this case �0
is negative, and increase of a magnetic field strength pro-
vides its further reduction. The appearance of the nontrivial
solutions describing the counter-clockwise rotation of the di-
rector ��0�0�, as well as in the previous case, takes place at
values h larger than in the static Fréedericksz transition.

B. Configuration (B)

Let us direct the magnetic field H= �0,H ,0� perpendicu-
larly to the velocity of flow v= �vx�z� ,0 ,0� in a plane of a
nematic layer how it is shown in Fig. 7.

We assume conditions of rigid planar coupling for the
director on the boundaries of the layer. In the absence of a
magnetic field and shear flow the director inside the layer is
uniform and directed along the x axis. As it is shown in the
configuration �A�, without magnetic field a shear flow aligns
the director under some angle to a flow in the xOz plane �see
Eq. �17��. Imposing a magnetic field in a plane of a layer
perpendicular to the direction of flow for reactive parameter
�=−�2 /�1�1 leads to three-dimensional deformations of a
director field.

Let us consider the problem for the planar director field.
We choose �=1, as only in this case the director is aligned
by flow along the x axis. In the presence of shear flow and
magnetic field it is possible to search the director n in the
following form:

n = „cos ��z�,sin ��z�,0… , �19�

where ��z� is the angle between the director n situated in the
plane of the plates, and the x axis.

By substituting Eq. �19� into the equation of the director
motion �4� for the stationary case ��n /�t=0� we obtain

K2
d2�

dz2 = −
�aH2

2
sin 2� , �20�

��1 + �2�
du

dz
cos � = 0. �21�

Equation �21� satisfies identically for �=1 �i.e., �1=−�2� and
Eq. �20� for dimensionless coordinate z̃=z /d can be written
as follows:

�� = − h sin 2� �22�

with boundary conditions

��− 1/2� = ��1/2� = 0, �23�

where h=�aH2d2 / �2K2�.
The solution of Eq. �22� in the middle of the layer has the

form

	h/2 = K�sin �0� , �24�

where K�sin �0� is the complete elliptic integral of the
first kind �17�, and �0=��0� is the angle of the director
orientation in the middle of the layer.

Equation �24� describing the Fréedericksz transition at
presence of shear flow ��0� coincides with the well-
known equation for the static case �=0� �3,4�. Except for
the solution �0=0 corresponding to the nonperturbed state of
the director field, Eq. �22� supposes two symmetric solutions
at h�hc with positive or negative values of an angle of
director rotation. In the considered approach the angle �0 of
director n rotation does not depend on the velocity of relative
movement of plates.

In Ref. �8� the authors assumed �1=�2, that corresponds
to reactive parameter �=−1. In this case Eq. �21� has only
the trivial solution �=� /2 which is not satisfied, however,
we have the boundary conditions �23�. In this case it is im-
possible to use the director profile n in form �19� due to
three-dimensional deformations of the director field.

C. Configuration (C)

Let the magnetic field H= �H ,0 ,0� be directed parallel to
the velocity of shear flow v= (vx�z� ,0 ,0) as is shown in Fig.
8. On the boundaries of a layer we use the conditions of rigid
homeotropic coupling. For that case in the absence of a mag-
netic field and flow the director in the layer is uniform and
directed along the z axis. In the presence of flow and a
magnetic field the director n can be written in the form

FIG. 7. Orientation of a nematic layer between moving plates in
magnetic field H �configuration �B��.

FIG. 8. Orientation of a nematic layer between moving plates in
magnetic field H �configuration �C��.

D. V. MAKAROV AND A. N. ZAKHLEVNYKH PHYSICAL REVIEW E 74, 041710 �2006�

041710-6



n = „sin ��z�,0,cos ��z�… , �25�

where ��z� is the angle between the director n and the z axis.
We use the approximation of linear distribution for the

velocity field in the layer �8,16� v= �Uz /d ,0 ,0�, here U is the
velocity of the top plate, d is the thickness of a layer.

Equation of the director motion �4� in a stationary
case ��n /�t=0� with the help of Eq. �25� for dimensionless
coordinate z̃=z /d becomes

fC���
d2�

dz̃2 +
1

2

dfC���
d�

�d�

dz̃
�2

= − h sin 2� − �1 + � cos 2��

�26�

with boundary conditions

��− 1/2� = ��1/2� = 0, �27�

where fC���=sin2 �+k cos2 �. The dimensionless parameters
h, , k, and � are defined in the same way as in configuration
�A�.

As it is seen from Eq. �26� the uniform state of the direc-
tor corresponding to trivial solution �=0 is possible at the
presence of flow and magnetic field for the reactive param-
eter �=−1 only. For NLC with rodlike molecules the uni-
form solution is impossible, because the reactive parameter
is positive.

Let us find nonuniform solutions for a director field. For
this purpose we multiply Eq. �26� by d� /dz̃ and integrate it
twice. The stationary solutions for the perturbed state of the
director in the middle of the NLC layer is possible to obtain
from the following integral equation:

1

2
= ± 


0

�0 	 fC���
�C��,�0�

d� , �28�

where �C�� ,�0�=h�cos 2�−cos 2�0�+2��0−��+�
��sin 2�0−sin 2��. Here �0=��0� is the angle of the director
orientation in the middle of the layer. The plus sign in
Eq. �28� corresponds to clockwise rotation of the director
��0�0�, and the minus sign corresponds to counter-
clockwise rotation of the director ��0�0�.

1. Weak flows and magnetic fields

In this configuration the trivial solution �=0 of Eq. �26�
for arbitrary values of h exists only in the absence of flow,
i.e., at =0. We consider the case of weak flow � /k�1�
when the angle ��1. The first order expansion of Eq. �26� in
terms of small � gives

k�� + 2h� = − �1 + �� ,

and using boundary conditions �27�, we find

��z̃� =
�1 + ��

2h
� cos�	2h/kz̃�

cos 	h/2k
− 1� . �29�

In weak magnetic fields �h�1� the linear order
approximation of Eq. �29� has the form

��z̃� =
1

8k
�1 + ���1 − 4z̃2��1 +

h

24k
�5 − 4z̃2�� . �30�

Expression �30� describes small distortions of the director
angle at weak flows and magnetic fields �Figs. 10–12�. From
Eq. �30� for the angle of director rotation in the middle of a
layer we obtain

�0 =
�1 + ��

8k
�1 +

5h

24k
� . �31�

As it is seen from Eq. �31� the director angle is always posi-
tive in weak fields for reactive parameter ��0. It means,
that it is possible to expect the identical character of
“smoothing” of the transition in flow aligning ���1� NLC
and nonflow aligning �0���1� NLC �see Fig. 12�. Further-
more, the growth of �0 can be caused either by the increase
of magnetic field strength h or gradient of shear rate  �see
Fig. 10�.

2. Strong magnetic fields

In strong fields �h�hc, �h� for �0�0 from Eq. �28� we
obtain

	h

2
= 


0

�0 	k + tan2 �d� . �32�

Assuming �0=� /2−�, ��1, we find

�0 =
�

2
−

2
	k

e−	h/2−	1−k arctanh 	1−k for k � 1,

�0 =
�

2
−

2
	k

e−	h/2+	k−1 arctan 	k−1 for k � 1. �33�

Equations �33� describe the asymptotic behavior of positive
�0 values at large magnetic field strength for various
anisotropy of elasticity �see Figs. 10–12�.

3. Numerical simulation

Results of numerical solution of Eq. �28� are shown in
Figs. 10–12.

In considered configuration in the absence of a flow
�=0�, as well as in the configuration �A�, in addition to the
trivial solution �Fig. 9, �=0�, existing at arbitrary values of
magnetic field strength, there are two symmetric solutions
�1,2�. They describe the perturbed state of the director and
appear at critical field strength hc=�2 /2 �Fig. 10, solid

FIG. 9. The basic types of director field deformations in static
Fréedericksz transition without shear flow �configuration �C��.
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lines�. One of the solutions corresponds to clockwise rotation
of the director �Fig. 9, ��0�, the other to counter-clockwise
rotation �Fig. 9, ��0�.

The presence of shear flow ��0� in configuration �C�
leads to the impossibility of existence of undistorted director
conformation for arbitrary h values because Eq. �26� has no
�=0 solution in this case. The behavior of NLC with reactive
parameter �=1 and equal values of Frank elastic constants
�k=1� is shown in Fig. 10 �dashed lines�. In the considered
configuration the phase transition is smoothed stronger in
more intensive flow �i.e., at higher �, in accordance with
Eq. �31�.

The violation of elastic isotropy corresponding to the
smaller bend module than splay module �k�1�, leads to in-
crease of positive values of the angle of the director rotation
�Fig. 11, solid lines�. Such a behavior of the director is con-
sistent with the preceding results �see Eq. �31��. The bifurca-
tion point is shifted in area of smaller h values, than in the
isotropic case �see Fig. 10�. At k�1 the opposite tendency
�Fig. 11, dashed lines� takes place: the decrease of the direc-
tor rotation angle for the solutions lying in the upper half-
plane ��0�0�. The solutions corresponding to negative �0 at
k�1 are found out in stronger fields, than at k�1. For re-

active parameter ��1 �a case of flow aligning NLC� the
calculations show the increase of positive values of �0 in
weak fields �see Eq. �31��. Further increase of a field strength
leads to appearance of two branches of solutions in the lower
half-plane ��0�0� �Fig. 12, solid lines�.

In nonflow aligning NLC �0���1� at small h the reduc-
tion of positive �0 values �see Eq. �31�� is observed. Solu-
tions lying in the lower half-plane at ��1 �Fig. 12, dashed
lines� appear in weaker fields than at ��1. The character of
“smoothing” of phase transition in configuration �C� for flow
aligning and nonflow aligning NLC is identical. Due to
��0 for rodlike nematics the sign of the angle of the direc-
tor orientation in shear flow does not depend on the reactive
parameter �see Eq. �31��, in contrast to the configuration �A�
�see Eq. �17��.

In Ref. �8� authors supposed that �=−1, therefore Eq.
�26� had the trivial solution, and so they obtained the essen-
tially different behavior of the director angle �0 in external
field for this configuration �see Fig. 5 in Ref. �8��.

IV. CONCLUSIONS

In the present paper we have examined the influence of
shear flow on the Fréedericksz transition induced by mag-
netic field in a planar layer of a nematic liquid crystal. Con-
ditions of rigid director coupling on the boundaries and lin-
ear distribution of a velocity field inside the nematic layer
have been assumed. We have obtained stationary solutions
for a planar director field n in the middle of the layer for
different values of Frank elastic modules and viscous coeffi-
cients. We have considered both flow aligning ���1� and
nonflow aligning �0���1� NLC with rodlike molecules for
three basic orientations of NLC layer in magnetic field. Con-
figuration �A� corresponds to magnetic field which is perpen-
dicular to the plane of the layer and the direction of flow. In
configuration �B� the magnetic field lying in the plane of the
layer is directed perpendicularly to the flow. And, at last, the
magnetic field is in the plane of the layer and parallel to the
flow direction in configuration �C�.

The solutions received above are applicable far from
oriented plates, on distances, large compared with the

FIG. 10. Dependence of the angle �0 of the director rotation on
the reduced square of magnetic field strength h /hc in Fréedericksz
transition �configuration �C�� at isotropy of elasticity �k=1�. Solid
lines correspond to the solutions without shear flow �=0�; dashed
lines describe the transition in flow aligning NLC ��=1� under
shear flow influence �=1�.

FIG. 11. Dependence of the angle �0 of the director rotation on
the reduced square of magnetic field strength h /hc in Fréedericksz
transition �configuration �C�� for flow aligning NLC ��=1� with
two values of anisotropy of elasticity �k=0.7,1.3� at presence of
shear flow �=1�.

FIG. 12. Dependence of the angle �0 of the director rotation on
the reduced square of magnetic field strength h /hc in Fréedericksz
transition �configuration �C�� for flow aligning ��=2� and nonflow
aligning NLC ��=0.5� at presence of shear flow �=1� and isot-
ropy of elasticity �k=1�.
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dimensionless length � determined by the relation �15�

�2 =
1

2	h2 + 2��2 − 1�
,

which coincides with magnetic coherence length in the limits
of strong magnetic fields or for equal absolute values of NLC
rotary viscous coefficients �1,2�. The presence of shear flow
in configuration �A� leads to symmetry breaking of perturbed
state solutions of the director. The existence of nonperturbed
field of the director at arbitrary values of magnetic field
strength is possible at reactive parameter �=1 only. In con-
figuration �B� there are no changes in the Fréedericksz tran-

sition associated with imposing of shear flow, at �=1 only.
In the considered approach the solution does not depend on
relative velocity of the plates. The situation varies in con-
figuration �C�, where the presence of shear does not suppose
the existence of nonperturbed director field for arbitrary val-
ues of magnetic field strength in nematics with rodlike mol-
ecules. At any allowable values of reactive parameter the
“smoothing” of phase transition takes place.
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