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We present lattice Boltzmann simulations of the dynamical equations of motion of a drop of isotropic fluid
in a nematic liquid crystal solvent, both in the absence and in the presence of an electric field. The coupled
equations we solve are the Beris-Edward equations for the dynamics of the tensor order parameter describing
the nematic solvent, the Cahn-Hilliard equation for the concentration evolution, and the Navier-Stokes equa-
tions for the determination of the instantaneous velocity field. We implement the lattice Boltzmann algorithm
to ensure that spurious velocities are close to zero in equilibrium. We first study the effects of the liquid crystal
elastic constant, K, anchoring strength, W, and surface tension, �, on the shape of the droplet and on the
director field texture in equilibrium. We then consider how the drop behaves as the director field is switched by
an applied electric field. We also show that the algorithm allows us to follow the motion of a drop of isotropic
fluid placed in a liquid crystal cell with a tilted director field at the boundaries.
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I. INTRODUCTION

Our aim in this paper is to describe a lattice Boltzmann
algorithm which solves the equations of motion of a liquid
crystalline phase coexisting with an isotropic liquid. This is a
first step towards investigating problems such as the hydro-
dynamics of nematic emulsions, phase ordering in nematic-
isotropic mixtures and the switching behavior of coexisting
nematic and isotropic fluids in liquid crystal devices.
Here we use the algorithm to follow the hydrodynamics of a
drop of isotropic fluid within a nematic as the alignment of
the director is rotated by an external electric field and to
show how the drop can be moved across a nematic cell by a
patterned surface.

Emulsions are dispersions of liquid droplets in a continu-
ous liquid solvent. A type of emulsion, which has particularly
interesting properties, is made up of isotropic droplets dis-
persed into uniformly aligned nematic liquid crystals. The
introduction of the drops leads to the formation of topologi-
cal defects in the liquid crystal close to the droplet surface.
These defects mediate anisotropic droplet-droplet interac-
tions that typically lead to ordered droplet structures, such as
chains and hexagonal lattices �1–6� �see however Ref. �7�
for the case of nanodroplet emulsions�. Recent work has
also shown interesting behavior as the drops approach a
free nematic surface: director deformations caused by the
droplets lead to distortions of the interface and thus to
capillary attraction �8�. Moreover, there have been sugges-
tions that nematic emulsions could prove useful in liquid
crystal devices, for example, as electrically switchable light
modulators �9�.

Due to a considerable body of experimental and theoreti-
cal research the static properties of liquid crystal emulsions
are now rather well understood. Isotropic droplets, with nor-
mal anchoring of the director field at their surface, are nor-
mally accompanied by a hyperbolic hedgehog defect of di-
polar symmetry to satisfy the far field alignment �1,2�.
Weaker surface anchoring, a smaller drop, or the application
of an electric field tends to stabilize a Saturn ring defect of

quadrupolar symmetry �10–12�. In two dimensions the stable
configuration is a defect pair of topological charge −1/2
located symmetrically around the particle �13�.

Nematic-isotropic mixtures also show unexpected effects
when subject to a temperature quench. Loudet et al. �3� re-
ported experiments on a system quenched from a single-
phase nematic to a two-phase region where an isotropic and
a nematic phase coexisted. Isotropic drops grew to a certain
size, but then growth was arrested and the drops formed
chains. Numerical simulations of a quench in a symmetric
liquid-crystal–isotropic mixture led to an asymmetric pattern
of disconnected nematic domains as a result of the coupling
between the director field and the flow field �14�.

Park et al. �15� have investigated drops of isotropic fluid
suspended in nematic phase under an applied field. Drops of
isotropic fluid are deformed into an elliptical shape perpen-
dicular to the field. The deformations were larger than that
found in nonliquid crystal systems due to small surface
tension.

Most numerical work so far has focused on elucidating
the director field in the vicinity of the isotropic droplet. Mo-
lecular dynamic simulations have been used to examine the
disclination structure for very small droplets �16–18�. Other
authors have addressed larger length scales by minimizing a
Landau-de Gennes free energy functional, with either the
director field or Q tensor as order parameter. Defect struc-
tures have been mapped out for a disc �13� or sphere �19,20�,
for a confined particle �21�, for a disc near a free nematic
surface �22� and for a pair of spherical particles �23�. Monte
Carlo simulations have led to similar results �24,25�.

Although the equilibrium properties of isotropic-nematic
mixtures are well studied there has been very little work on
the hydrodynamic and phase ordering behavior of these sys-
tems. Molecular dynamics is able to explore the dynamical
behavior but is restricted to very small length and short time
scales �18�. Fukuda et al. �26� have investigated the effect of
hydrodynamic flow on the orientational order of the nematic
liquid crystal around a fixed particle with a hyperbolic
hedgehog defect. It would be interesting to have a tool to
explore further the rheology of nematic emulsions which is
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expected to be strongly viscoelastic. Therefore here we de-
scribe a lattice Boltzmann algorithm which solves the hydro-
dynamic equations of motion of a nematic coexisting with an
isotropic phase. These are demanding simulations and there-
fore we restrict ourselves to two dimensions. Similar equa-
tions are considered in Ref. �14� and solved using an explicit
Euler scheme. The interface between isotropic and nematic
fluids has been investigated using the lattice Boltzmann
scheme that recovers the Qian-Sheng equations by Care
et al. �27� who investigated the shape of a droplet of an
isotropic fluid immersed in a nematic liquid crystal in the
presence of a surfactant �28�.

In Sec. II we describe the free energy functional that we
shall use to describe the equilibrium properties of the two-
component nematic-isotropic system. We also summarize the
equations of motion for the mixtures. Section III describes
the lattice Boltzmann method and how it can be extended to
nematic-isotropic mixtures. Sections IV–VI present results of
the simulations. First we investigate how the interplay be-
tween elastic energy, surface coupling, and surface tension
affects the shape of the drop. We then investigate the cou-
pling between the movement of the director field and the
drop as the director is rotated by an external electric field.
We also consider how a drop of isotropic fluid moves to
the walls of a cell if there is a suitably patterned director field
at the surface. Section VII summarizes the results and
concludes the paper.

II. THE MODEL

In this section we summarize a model which describes the
equilibrium phase behavior and hydrodynamics of a binary
mixture of an isotropic liquid and a lyotropic liquid crystal.
We first write down the Landau-de Gennes free energy that
corresponds to the system under investigation. The hydrody-
namics is described by the Beris-Edwards equations of mo-
tion for nematic liquid crystals �29� coupled to Cahn-Hilliard
dynamics for the diffusion of the two species. In Sec. III we
introduce a lattice Boltzmann algorithm which solves these
equations.

A. Free energy and thermodynamic quantities

The system we consider is a mixture of an isotropic liquid
and a liquid crystal. Its free energy depends on two order
parameters, �, the liquid crystal concentration, and Q, a ten-
sor describing the liquid crystalline order. We write the total
free energy F�� ,Q� as

F = �
V

dV�fbulk + fel + fE + f��
+ fW� + �

S

dSfa. �1�

The bulk free energy fbulk is

fbulk��,Q� = fmix��� + fani��,Q� , �2�

where fmix is the free energy of a mixture of isotropic liquids.
We choose it to be the Landau mean field free energy density

fmix��� =
A

2
�� − �0�2 +

B

4
�� − �0�4. �3�

The coefficients A and B determine the properties of the bulk
phases. For a nematic emulsion �i.e., two coexisting phases�
A must be negative.

fani�� ,Q� in Eq. �2� is the free energy describing
the nematic ordering of liquid crystals. We use the
Landau-de Gennes expression �30�

fani��,Q� = A0�2�1

2
	1 −

����
3


Q��
2 −

����
3

Q��Q��Q��

+
����

4
�Q��

2 �2� . �4�

�Greek subscripts will be used to represent Cartesian direc-
tions and the usual summation over repeated indices is as-
sumed.� Equation �4� describes a first order, isotropic-
nematic transition at ����=2.7 and A0 is a constant.
Following other studies �31,32� we weight fani�� ,Q� by
A0�2, since only the liquid crystal molecules in the nematic
phase will give this contribution to the free energy. For lyo-
tropic liquid crystal mixtures we assume a linear relationship
between � and � �14,31–34� of the form

� = �0 + �s�� − �̄� �5�

to account for the dependence of the strength of the nematic
ordering—which increases with increasing �—on the num-
ber of liquid crystal molecules. �0, �s, and �̄ are constants
which determine the boundary of the coexistence region. Ex-
amples of typical phase diagrams for a symmetric binary
mixture are shown in Fig. 1. Figure 1�a� is the phase diagram
for A0=1.5, �0=2.6, �s=0.3, and �̄=0.5. For A	0 there is
two-phase coexistence between two isotropic phases. For
�0=2.7 �Fig. 1�b��, however, there is a first order transition at
A=0 to two-phase coexistence between a nematic and an
isotropic phase. The full line is the lattice Boltzmann simu-
lation results, and the square symbols refer to a double-
tangent calculation �34�. Results from the lattice Boltzmann
simulations and the double-tangent construction are com-
pared and shown to agree well. Slight differences between
the two methods of calculation seen in Fig. 1�b� are due to
the surface tension term included in the lattice Boltzmann
calculations, and to the approximation of a uniaxial director
field employed in the double-tangent construction.

In Eq. �1� fel is the analogue in the Q-tensor formalism of
the Frank elastic free energy density. It gives the energy cost
due to any elastic distortion in the director field,

fel =
K1

2
��
Q���2 +

K2

2
��
Q
�����Q��� +

K3

2
Q
���
Q��

����Q�� , �6�

where the Ki are elastic constants. In this work we use
the one elastic constant approximation K1�K�0 and
K2=K3=0. This corresponds to having all three Frank elastic
constants �splay, bend, and twist� equal �30�.
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The contribution to the volume free energy which arises

from an electric field E� is of the form �30�

fE = −
a

12�
E
Q
�E�, �7�

where a is the dielectric anisotropy. We take a�0 corre-
sponding to positive dielectric materials where the director
field of the nematic liquid crystal component of the emulsion
tends to align with the electric field.

Near an interface spatial variations occur in the two order
parameters. The free energy contributions due to this are
given by

f��
=

��

2
�����2 �8�

and

fW = L0�����Q������� . �9�

f��
penalizes gradients in concentrations. It ensures a smooth

concentration profile across an interface, and provides a non-
zero interfacial tension �. fW is a contribution that results
from the coupling between the liquid crystal orientation and
the concentration gradient at the interface between the two
phases �14,27�. L0, the cross-gradient coefficient, encourages

the director to be aligned parallel �L0�0� or perpendicular
�L0	0� to the gradient in � at the interface.

If the liquid crystal is to be anchored at a bounding
surface, we add a free energy

fa = 1
2
s�Q
� − Q
�

0 �2, �10�

where 
s controls the strength of the pinning and Q
�
0

=S0�n

0n�

0 −�
� /3�, with n

0 the preferred direction for the

director at the boundary and S0 determining the magnitude of
surface order.

Minimizing the free energy with respect to concentration
leads to the chemical potential

� =
�F
��

= �A�� − �0� + B�� − �0�3� +
�fani

��

− �����
2�� − 2L0��������Q�� + ��������Q���� .

�11�

Phase equilibrium requires that � is constant in equilibrium.
The thermodynamic contribution to the pressure tensor is

P
� = �
� + �
� + �
�, �12�

where

�
� = − 	�F
��

� − F
�
� −
�F

������
�
� −

�F
����Q���

�
Q��

�13�

and �
� and �
� are the contributions to the stress tensor
which result from the liquid crystalline order. These parts of
the stress tensor were derived phenomenologically in Ref.
�29�. �
� is given by

�
� = − P0�
� − �H
��Q�� + 1
3���� − ��Q
� + 1

3�
��H��

+ 2��Q
� + 1
3�
��Q�H�, �14�

and the antisymmetric stress, �
� is

�
� = Q
�H�� − H
�Q��. �15�

P0 is the isotropic pressure and � is a constant that depends
on the molecular details of a given liquid crystal �29�. H
� is
the molecular field which is defined in the following section.

B. The hydrodynamic equations of motion

We consider isothermal processes at constant volume.
The equation of motion for the liquid crystal order parameter
Q �symbols in boldface denote tensors quantities� can be
written �29�

��t + u����Q − S�W,Q� = �H , �16�

where � is a collective rotational diffusion constant. The
first two terms on the left-hand side of Eq. �16� correspond
to the material derivative describing the time dependence
of a quantity advected by a fluid with velocity u� . This is
generalized for anisotropic molecules by a further term

FIG. 1. Phase diagram of the binary isotropic–liquid crystal
mixture described by the bulk free energy given in Eqs. �2�–�4�.
�a� �0=2.6, A0=1.5, �0=0.5. Below the critical temperature two
isotropic liquid phases I1 and I2 coexist. �b� �0=2.7, A0=1.5,
�0=0.5. There is a first order transition at A=0 to a region where an
isotropic phase I and a nematic phase N coexist. The solid line is
the lattice Boltzmann results and the symbols refer to the double-
tangent calculation.
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S�W,Q� = ��D + ���Q + I/3� + �Q + I/3���D − �� − 2��Q

+ I/3�Tr�QW� , �17�

where D= �W+WT� /2 and �= �W−WT� /2 are the symmet-
ric and antisymmetric parts, respectively, of the velocity gra-
dient tensor, W
�=��u
 and I is the unit tensor. S�W ,Q�
takes into account the rotation of the rodlike molecules by
flow gradients.

The orientational order parameter evolves in such a way
as to lower the free energy, but it must do so subject to the
constraint that it remains traceless. This is ensured by choos-
ing the term on the right-hand side of Eq. �16�, which is
known as the molecular field, H, to be

H = −  �F
�Q

−
1

3
ITr

�F
�Q
� . �18�

By performing the functional derivatives of the different
contributions to the free energy we obtain

�Hbulk�
� � �Hani�
� = A0�2�− 	1 −
����

3

Q
� + ����

�	Q
�Q�� −
1

3
�
�Q��Q��


− ����Q
�Q��Q��� , �19�

�Hel�
� = K����Q
�, �20�

�Ha�
� = − 
s�Q
� − Q
�
0 � , �21�

�HW�
� = − L0	��
������� −
�
�

3
��������
 , �22�

�HE�
� =
a

12�
	E
E� −

1

3
�
�E2
 . �23�

The equation of motion for the concentration � is a
convection-diffusion equation of Cahn-Hilliard type,

�t� + �
��u
� = M�2� , �24�

where M is a mobility constant which controls the diffusion.
This equation states that the order parameter is advected by
the fluid flow and responds to chemical potential gradients
by diffusion.

The fluid velocity, in turn, obeys the continuity and
Navier-Stokes equations

�t� + �
�u
 = 0, �25�

���t + u����u
 = ����
�� + ����
�� + ����
�� + �V����
u�

+ ��u
 + �1 − 3��P0���u��
�� , �26�

where � is the fluid density and �V is the fluid viscosity.

III. LATTICE-BOLTZMANN ALGORITHM FOR NEMATIC
EMULSION HYDRODYNAMICS

The equations of motion for the binary mixture of a nem-
atic and an isotropic phase Eq. �16� and Eqs. �24�–�26� are
solved by using a lattice Boltzmann scheme. This is based on
previous algorithms for a binary fluid �35,36� and for liquid
crystal hydrodynamics �37,38�. The approach reproduces the
equations of motion to second order in the lattice spacing.

In Sec. III A we present a description of how the lattice
Boltzmann algorithm can be extended to model isotropic-
nematic mixtures. We have found that spurious velocities,
which arise as a result of discretization errors at places where
there are gradients in the order parameters, lead to artifacts in
the simulation results. Therefore, in Sec. III B we describe,
following Wagner �39�, a modified scheme that reduces the
spurious velocities by a factor of �103.

A. The lattice Boltzmann algorithm

The lattice Boltzmann algorithm is defined in terms of a
set of partial distribution functions defined on each lattice
site x. For the isotropic-nematic binary mixture three sets
of distribution functions are needed, namely, f i�x�, hi�x�, and
Gi�x�, where i labels lattice directions from the site x.
Physical variables are related to the distribution functions by

� = �
i

f i, � = �
i

hi, Q = �
i

Gi. �27�

The Gi’s are, like Q, symmetric and traceless tensors, with
two independent components in two dimensions and five in
three dimensions.

Each direction i is associated with a velocity vector ei. We
choose a 15-velocity model on a cubic lattice with velocity
vectors ei= �±1,0 ,0�, �0, ±1,0�, �0,0 , ±1�, �±1, ±1, ±1�,
and �0, 0, 0�. Hence the fluid momentum is given by

�u
 = �
i

f iei
. �28�

The distribution functions f i, hi, and Gi evolve in a time step
�t according to the lattice Boltzmann equations,

f i�x + ei�t,t + �t� − f i�x,t�

=
�t

2
�Cfi�x,t, f i� + Cfi�x + ei�t,t + �t, f i

*�� , �29�

hi�x + ei�t,t + �t� − hi�x,t�

=
�t

2
�Chi�x,t,hi� + Chi�x + ei�t,t + �t,hi

*�� , �30�

Gi�x + ei�t,t + �t� − Gi�x,t�

=
�t

2
�CGi�x,t,Gi� + CGi

�x + ei�t,t + �t,Gi
*�� . �31�

The left-hand sides of these expressions represent a stream-
ing step with velocity ei and the right-hand sides a collision
step. f i

*, hi
*, and Gi

* are first order approximations to
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f i�x+eit�, hi�x+eit� and Gi�x+eit�, respectively. They are de-
rived by using just �t Cfi�x , t , f i� on the right-hand side of
Eq. �29� with similar substitutions for Eqs. �30� and �31�.
This discretization is similar to a predictor-corrector scheme.
It removes lattice viscosity terms to second order and gives
improved stability. The collision operators in Eqs. �29�–�31�
are taken to have the form of a single relaxation time
Boltzmann equation, together with forcing terms

Cfi�x,t, f i� = −
1

� f
�f i�x,t� − f i

eq�x,t,�f i��� + pi�x,t,�f i��

+ Fi�x,t,�f i�� , �32�

Chi�x,t,hi� = −
1

�h
�hi�x,t� − hi

eq�x,t,�hi��� , �33�

CGi�x,t,Gi� = −
1

�G
�Gi�x,t� − Gi

eq�x,t,�Gi��� + Mi�x,t,�Gi�� .

�34�

The conservation laws for the order parameters, and
the required equations of motion, follow by imposing
suitable constraints on the equilibrium distribution functions,
f i

eq, hi
eq, and Gi

eq and the driving terms, pi, Fi, and Mi. The
equilibrium distributions functions are constrained by

�
i

f i
eq = �, �

i

f i
eqei
 = �u
, �

i

f i
eqei
ei� = − �
� + �u
u�,

�35�

�
i

hi
eq = �, �

i

hi
eqei
 = �u
,

�
i

hi
eqei
ei� = M��
� + �u
u�,

�
i

Gi
eq = Q, �

i

Gi
eqei
 = Qu
, �

i

Gi
eqei
ei� = Qu
u�.

�36�

The forcing terms are chosen to obey

�
i

pi = 0, �
i

piei
 = ���
�, �
i

piei
ei� = 0, �37�

�
i

Fi = 0, �
i

Fiei
 = ���
�, �
i

Fiei
ei� = 0, �38�

�
i

Mi = �H�Q� + S�W,Q� � Ĥ, �
i

Miei
 = 	�
i

Mi
u
.

�39�

The second moment of f i
eq controls the liquid crystal stress

tensor, �
�, whereas the moments of pi impose the antisym-
metric part of the stress tensor, �
�. The first moment of Fi is
equal to ���
� �see Eq. �13��. This derivative can usefully be
simplified by noting that

− ���
� = �
��� − F� + ��

�F
���Q��

�
Q�� +
�F

���Q��

�
��Q��

+ ��

�F
����

�
� +
�F

����
�
���

= − 	 �F
�Q��

− ��

�F
���Q��


�
Q��

− 	 �F
��

− ��

�F
����


�
� + �
���� ,

=H���
Q�� + ��
��� . �40�

Conditions �35�–�39� can be satisfied, as is usual in lattice
Boltzmann schemes, by writing the equilibrium distribution
functions and forcing terms as polynomial expansions in the
velocity �40�

f i
eq = As + Bsei
u
 + Csu

2 + Dsu
u�ei
ei� + Es
�ei
ei�,

�41�

hi
eq = Hs + Isei
u
 + Ysu

2 + Qsu
u�ei
ei�, �42�

Gi
eq = Js + Ksei
u
 + Lsu

2 + Nsu
u�ei
ei�, �43�

pi = Ts���
�ei
, Fi = Ts���
�ei
, Mi = Rs + Ssu
ei
,

�44�

where s=ei
ei�� �0,1 ,2� identifies separate coefficients for
different absolute values of the velocities. Suitable choices
for the coefficients are

A2 = ���/30, A1 = A2, A0 = � − 14A2,

B2 = �/24, B1 = 8B2,

C2 = − �/24, C1 = 2C2, C0 = − 2�/3,

D2 = �/16, D1 = 8D2,

E2
� = 1
16��
� − � 1

3�����
��, E1
� = 8E2
�,

H1 = H2, H0 = � − 14H2, H2 = M�/10,

I2 = �/24, I1 = 8I2,

Y2 = − �/24, Y1 = 2Y2, Y0 = − 2�/3,

Q2 = �/16, Q1 = 8Q2,

J0 = Q, K2 = Q/24, K1 = 8K2,

L2 = − Q/24, L1 = 2L2, L0 = − 2Q/3,

N2 = Q/16, N1 = 8N2,

R2 = Ĥ/15, R1 = R2 = R0,
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S2 = Ĥ/24, S1 = 8S2,

T2 = 1/24, T1 = 8T2. �45�

B. Reduction of the spurious velocities

Note that the lattice Boltzmann scheme introduced in Sec.
III A is slightly different from that described in Ref. �37�.
Specifically, we introduce the ���
� term as a forcing term
rather than adding �
� to �
� in the second moment con-
straint for the f i

eq distributions �see Eqs. �13� and �14�, re-
spectively, and compare with Eq. �II.6� in Ref. �37��. This is
to overcome the problem of spurious velocities. At equilib-
rium, in a system with no forcing, the fluid velocity must be
zero. However, using most standard lattice Boltzmann algo-
rithms, the velocity profiles calculated in equilibrium show
spurious velocities near interfaces. As the concentration gra-
dient between the two phases increases the spurious veloci-
ties increase in magnitude. For a nematic emulsion such spu-
rious velocities affect the director alignment at the drop
interface, which, in turn, leads to unphysical results. In Ref.
�39� it was shown that, for the case of a standard binary fluid,
spurious velocities are related to numerical errors introduced
by the first order upwind finite difference scheme and that
they can be avoided by a careful choice of the discretization
of the stress tensor and of the gradient of the concentration
order parameter.

It is this observation that we exploit by including ���
�

as a forcing term rather than in the second moment of the
pressure tensor as detailed above. This enables us to ensure
that the pressure tensor and the chemical potential are dis-
cretized in the same way. As the emulsion approaches equi-
librium the molecular field and the derivative of the chemical
potential, Eq. �40� vanish and ���
� becomes negligible.
This reduces the spurious velocities by a factor of �103 in
equilibrium. �An estimate of the spurious velocities off equi-
librium is hard as they are masked by the primary flow.� A
simpler version of this scheme, for a fluid comprising only a
liquid crystalline component, has recently been used to re-
duce spurious velocities in blue phase hydrodynamic flows
�38�.

C. Simulation parameters

We now list the simulation parameters we shall use and
map them, where possible, to physical values. We consider
�0=2.7; A0=1.5 and �0=0.5 giving the phase diagram
shown in Fig. 1�b�. We choose A=−0.016, B=0.8, �̄=0.5,
and �s=0.3. We also use � f =2.4, �h=0.2, �G=1.5, �=0.2,
M =5.0, and a=10.35. The most important parameters
which control the shapes of the isotropic drops are the sur-
face tension coefficient ��, set equal to 0.025 in simulation
units, the cross-gradient coefficient L0, chosen to be between
−0.02 for strong normal anchoring and −0.01 for weak an-
choring, and the liquid crystal elastic constant K, which lies
between 10−3 and 10−1.

Although most of the results will be reported in terms of
dimensionless variables it is of interest to discuss a possible

mapping of the simulation parameters to physical values. We
take the spacing between lattice sites to correspond to
0.1 �m and each time step in the simulation to correspond to
10−6 s. The simulation density �=2 is mapped onto
103 kg m−3. An elastic constant K=10−2 in simulation units
then corresponds to 10−11 N which is a typical value for
liquid crystals. We estimate the anchoring strength as

W =
� dVfW

�
Sd

dS

=
� dxdzL0�����Q�������

�d
, �46�

where Sd denotes the surface of a drop and �d its circumfer-
ence. For strong anchoring we set L0=−0.02, and for weak
anchoring L0=−0.01, both resulting in W�10−6 J m−2,
which is a physically realistic value �41,42�. The surface
tension is calculated from

� =
� dVf��

�
Sd

dS

=
� dxdz

��

2
�����2

�d
. �47�

We are restricted for stability reasons to values of surface
tension less than �10−4 in simulation units. This corresponds
to a physical value �10−6 J m−2 which are too small com-
pared to usual surface tensions ��10−2−10−3� J m−2 �41,42�
but could be achieved by addition of a surfactant.

IV. SIMULATION RESULTS

In this section we present the results of simulating a drop
of an isotropic fluid in a nematic liquid crystal medium, with
an average liquid crystal concentration of �60%. We use the
lattice Boltzmann algorithm summarized in Sec. III to solve
the equations of motion for the nematic emulsion described
in Sec. II. We first consider the equilibrium drop shapes and
director configuration in the absence of an electric field. We
then consider two problems where the drop moves; switch-
ing under an applied electric field and motion towards inho-
mogeneous boundaries. We shall consider the case where the
director field prefers to be normal to the drop surface.

Equilibrium in zero applied electric field: First we con-
sider the case in which there is no applied electric field. An
isotropic drop of radius R=60 lattice units is initialized at the
center of a simulation box of size 200�1�200. Periodic
boundary conditions are imposed in all directions; therefore
the problem is two dimensional �the drops are cylindrical
with circular cross section in the xz plane�. Each simulation
is run to equilibrium for about 300 000 time steps. �Note that
we ran simulations with one-half the resolution finding the
same phenomenology.�

The equilibrium shape of the drop is affected by several
factors, in particular the surface tension, �, the liquid crystal
elastic constant, K and the anchoring strength of the director
at the drop surface, W. Typical values of these parameters
found in the literature �41,42� are �=10−2 J m−2,
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K=10−11 N and W=10−7 to 10−3 J m−2 depending on the na-
ture, quality and treatment of the surface. We introduce the
dimensionless ratio WR /K which measures the strength of
the surface anchoring energy relative to the bulk director
deformations �30�. In general, the drop size observed in nem-
atic emulsions is between 1–10 �m. Therefore, possible val-

ues of WR /K corresponding to experiment are within the
range �10−2–103�. When WR /K	1 the anchoring is consid-
ered weak. Under these conditions one does not observe
clear defects at the equator of the droplet, nor large deforma-
tions in the surrounding nematic phase. When WR /K�1,
however, the anchoring is strong and can deform the director
field. We estimate W, which is the free energy per unit area
of isotropic-nematic interface, using Eq. �46�. For strong an-
choring and small surface tension, the droplet shape is de-
formed �27� and another important dimensionless number is
W /�. To understand the effect of changing W /� it is more
convenient, and equivalent, to use the ratio of simulation
parameters �L0 /���.

The effect of modifying WR /K is illustrated in Fig. 2 for
two different values of �L0 /���. In Figs. 2�a�–2�d� �L0 /���

FIG. 2. �Color online� Equilibrium shapes and director configu-
ration for isotropic drop of radius 60 in a nematic host. First col-
umn, �L0 /���=0.4. Second column, �L0 /���=0.8. �a� K=10−1,
WR /K=0.009, �b� K=10−2, WR /K=0.154, �c� K=10−3, WR /K
=2.27, �d� K=10−4, WR /K=27.1, �e� K=10−1, WR /K=0.026, �f�
K=10−2, WR /K=0.50, �g� K=10−3, WR /K=6.42, �h� K=10−4,
WR /K=68.7.

FIG. 3. Drop of radius 60 at three values of the dimensionless
number �L0 /���. First column corresponds to K=10−2 and the sec-
ond column corresponds to K=10−3. �L0 /��� increases down a
column as �L0 /�� � =0.4, 0.8, and 1.33.

LATTICE BOLTZMANN ALGORITHM TO SIMULATE… PHYSICAL REVIEW E 74, 041708 �2006�

041708-7



=0.4. For Fig. 2�a� WR /K=0.009, which means that the elas-
tic energy dominates the surface energy. Thus the director
does not deform around the drop and no distortion is ob-
served in the nematic phase at its surface. The nematic di-
rector field is tangent to the drop at the equator and no de-
fects can be observed. For slightly larger WR /K, Fig. 2�b�,
small perturbations are introduced into the director field at
the surface of the drop but still no clear defects can be seen.
However, in Figs. 2�c� and 2�d� for WR /K=2.27 and 27.1,
respectively, the surface energy dominates and the director
field is well anchored at the surface of the drop. These con-
figurations result in two defects of strength −1/2 positioned
at opposite poles of the drop �corresponding to a Saturn
ring defect in three dimensions�. As seen in the figure,
the ring defect does not lead to long-range director distor-
tions, in agreement with its quadrupolar nature �2,43�. The
director order parameter tends to zero at the defect core
corresponding to the fluid being in the isotropic phase.

Figures 2�e�–2�h� show how the equilibrium drop shape
and the director field vary with WR /K for a larger value of
�L0 /���=0.8. The values of WR /K are given in the caption of
the figure. The main effect of the larger value of �L0 /��� is
that it is easier for the drop to distort to accommodate normal
anchoring at the surface. For the smallest WR /K case, Fig.
2�e�, the elastic constant is sufficiently large that it dominates
the anchoring at the drop surface. For slightly smaller elastic
constant, the anchoring strength is large enough compared to
the surface tension to distort the circular shape of the drop,
but it is still too weak to produce clear defects at the equator.

For much larger WR /K, Fig. 2�h�, the director can be easily
deformed to satisfy the surface normal boundary condition
and, therefore, the drop shape does not need to deform
greatly.

Figure 3 shows a drop of radius 60 at equilibrium for two
values of the elastic constant K. The dimensionless number
�L0 /��� increases going down a column. As �L0 /��� increases
the anchoring energy dominates over the surface tension and
the drop distorts to more easily allow normal anchoring at its
surface.

V. DYNAMICS IN AN APPLIED ELECTRIC FIELD

In this section we investigate the switching dynamics of
an isotropic drop in a nematic host in the presence of an
applied electric field. The direction of the applied field is
chosen perpendicular to the initial orientation of the nematic
bulk phase. We consider periodic boundary conditions in all
directions. This means that the threshold voltage for the
Freedericksz transition is zero. We consider the two equili-
brated droplets shown in Figs. 2�e� and 2�f�, respectively.
Each has a radius R=60 lattice units in a system of size
200�200. Figure 4 shows the time evolution of a system
with a large elastic constant �WR /K=0.026� when an electric
field of magnitude E=0.02 �in simulation units� is applied

FIG. 4. Snapshots in time of an isotropic drop in a nematic host
after a horizontal electric field is switched on. Boundary conditions
are periodic in both directions and time shown is in thousands of
simulation steps. K=10−1, �L0 /���=0.8, WR /K=0.026.

FIG. 5. Snapshots in time of an isotropic drop in a nematic host
after a horizontal electric field is switched on. Boundary conditions
are periodic in both directions and time shown is in thousands of
simulation steps. K=10−1, �L0 /���=0.8, WR /K=0.026. The director
field is initiated with a random angle between −1° and 1° to the x
axis.
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across the cell. The behavior of the drop is surprisingly com-
plex. The liquid crystal surrounding the drop starts to align
along the direction of the applied field. This distorts the drop
shape so as to satisfy the normal anchoring condition at the
surface, with arms appearing along and perpendicular to the
field direction. As the director field continues to rotate, de-

fects are formed near the tips of the arms perpendicular to E� .
They detach from the drop surface, move to the ends of the

arms parallel to E� and annihilate, Figs. 4�g�–4�i�, allowing
the drop to relax to its equilibrium shape, but perpendicular
to its original position. The large distortions of the drop are
allowed because the surface tension is small; this behavior is
likely only to be seen in a physical system if surfactants are
added.

We also note that the kinetic pathway shown in Fig. 4
depends substantially on the initial conditions used. If the
director field is initialized by adding a random noise, uni-
formly distributed between −1° and 1° to the x axis, the
pathway is similar, as shown in Fig. 5, but the switching is
approximately twice as fast. Note that the tilted droplet in the
last frame of Fig. 5 does, in the end, relax to the same final
condition as Fig. 4 but this is a long process as it corresponds
to a tiny decrease in free energy.

If the director field is instead initialized with a pretilt of 5°
with respect to the x axis the switching time is faster by an
order of magnitude and the transient deformations reported
in Figs. 4 and 5 disappear. This is because all the molecules
rotate in the direction of the pretilt.

Figure 6 shows a system with a smaller elastic constant
�WR /K=0.50� under the same electric field E=0.02. Now
the switching pathway is different and depends crucially on
the existence of neighboring drops �recall that we have peri-
odic boundary conditions�. In the majority of the cell the
director quickly aligns with the field. However, because of
the influence of the drop boundaries it does this by rotating
in different directions leaving areas of distortion at the drop

poles and equator and on the edges of the simulation box,
i.e., the lines midway between the drops. These untwist by a
unzipping mechanism caused by defects moving from the
drop surface to midway between the drops.

Figure 7 compares the free energy contribution during the
switching for the two systems in Figs. 4 and 6. The most
important barrier that the system needs to overcome results
from the elastic free energy. This is, as expected, larger for
the drop in Fig. 4 which has a larger elastic constant. It takes
longer for this barrier to be overcome and for the elastic
energy to start to decrease to its final value. The large distor-
tions of this drop are reflected in the peak in the surface
tension free energy. For comparison, we simulated a nematic
liquid crystal with periodic boundary conditions and same
value of elastic constants and electric field. This aligns with
the field in �4�105 lattice Boltzmann iterations, so the
emulsions both switch slightly faster. �Note that to observe

FIG. 6. Snapshots in time of an isotropic drop in a nematic host
after a horizontal electric field is switched on. Periodic boundary
condition in both directions and time is shown in thousands of
simulation steps. K=10−2, �L0 /���=0.8, WR /K=0.50.

FIG. 7. Variation of the free energy with time for the switching
process shown in Figs. 4 and 6: Solid line, K=10−1 �Fig. 4�; dashed
line, K=10−2 �Fig. 6�. �a� Total free energy, Ftot; �b� surface tension
free energy, F�; �c� anchoring free energy, FW; �d� elastic free en-
ergy, FK; �e� electric field free energy, FE. Time is shown in thou-
sands of simulation steps and the free energy is in simulation units.
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switching with periodic boundary conditions for the pure
nematic, the director must be initialized with a small, e.g.,
10−6, component along the field.�

VI. DYNAMICS IN A CELL WITH SURFACE
PATTERNING

In this section we explore the dynamics of the drop when
it is confined between two flat substrates at z=0 and z=100
that have different director alignment on their surfaces. We
consider an isotropic drop of radius R=30 lattice units. Pe-
riodic boundary conditions are imposed along x and y. In the
simulation we set the boundary condition at the two surfaces
�Q0 in Eq. �10�� to give an angle �p= +20° to the x axis for
x�50 and �p=−20° for x�50. A schematic diagram illus-
trating this initial configuration is shown in Fig. 8. Normal
anchoring is imposed at the surface of the drop.

The normal anchoring condition at the drop surface pro-
duces two −1/2 defects located at the poles of the drop. As is
seen from Fig. 8, this leads to a mismatch between the di-
rector configuration at the z=0 boundary and that imposed
by the anchoring condition on the drop’s surface. If the drop
is fixed in its place, then the director would need to distort in
order to satisfy both boundary conditions. This, however,
costs substantial energy, especially for larger elastic con-
stants. In order to minimize the elastic free energy the drop
will move away from this side of the cell. Figure 9 shows
this dynamic for elastic constant K=0.05. For K=0.1 the
motion is similar but �10% faster.

It is interesting to turn off the back flow to assess
its contribution to the dynamics. This can be done by
decoupling the evolution of the fluid from the liquid crystal
order parameter. We find that the drop has moved slower
by 6%.

VII. CONCLUSIONS

In this paper we have developed a lattice Boltzmann
algorithm to model the equilibrium and dynamical properties

of a nematic emulsion where one or more microdroplets of
an isotropic fluid are immersed in a nematic liquid crystal.
Equilibrium is described by a Landau-de Gennes free energy
functional and the hydrodynamics by the Beris-Edwards
equations of motion written in terms of the Q tensor. This is
a demanding numerical task because of the complexity of the
equations involved. Large enough drops must be simulated
to avoid lattice pinning effects and, to obtain correct inter-
face dynamics, it proved important to use the ideas of
Wagner �39� to minimize spurious velocities.

We first applied the algorithm to study the director field of
the nematic fluid around a two-dimensional isotropic droplet
of radius R for different values of the liquid crystal elastic
constant K, surface tension � and anchoring strength of the
director at the isotropic-nematic interface W. As WR /K
is increased two defects of strength −1/2 appear at the equa-
tor of the drop. As W /� increases the drop shape becomes
increasingly distorted.

We then investigated two problems where hydrodynamics
might play a role. We followed the transient dynamics of an
array of drops as the director was switched through 90° by an
applied electric field. For a large elastic constant there was a
pronounced deformation of the droplet shape during the
switching. For a smaller elastic constant the switching was,
as expected, faster and the drop shape less perturbed.

We also showed that the algorithm is able to follow the
way in which a drop of isotropic fluid moves towards a pat-
terned surface to minimize the elastic free energy. Here back
flow does not affect the dynamics significantly.

The results are a first step towards understanding more
fully the rheology of liquid crystal emulsions and their
possible uses in devices. Investigating the behavior of
liquid crystal drops in an isotropic host and extensions from
nematic to cholesteric ordering are also feasible. There are
several directions for development. For example, it would
be desirable to be able to treat larger values of surface
tension. Moreover, although the current code is fully three
dimensional, obtaining results in three dimensions is very
demanding of computational resources.
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FIG. 8. A drop of an isotropic fluid is placed in a cell containing
nematic liquid crystal. The director field is pinned at the boundary
at an angle �p as shown in the diagram. ��p=20° is exaggerated in
the schematic representation for clarity.�

FIG. 9. Time evolution of an isotropic drop in a nematic host
confined between two flat substrates with different director align-
ment on their surfaces. K=0.05, �L0 /���=0.8. Time is shown in
thousands of simulation steps.
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