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We present a statistical mechanical model of aggregation in colloidal systems with DNA-mediated interac-
tions. We obtain a general result for the two-particle binding energy in terms of the hybridization free energy
�G of DNA and two model-dependent properties: the average number of available DNA bridges �N� and the
effective DNA concentration ceff. We calculate these parameters for a particular DNA bridging scheme. The
fraction of all the n-mers, including the infinite aggregate, are shown to be universal functions of a single
parameter directly related to the two-particle binding energy. We explicitly take into account the partial
ergodicity of the problem resulting from the slow DNA binding-unbinding dynamics, and introduce the concept
of angular localization of DNA linkers. In this way, we obtain a direct link between DNA thermodynamics and
the global aggregation and melting properties in DNA-colloidal systems. The results of the theory are shown
to be in quantitative agreement with two recent experiments with particles of micron and nanometer size.
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I. INTRODUCTION

In the past ten years, there have been a number of ad-
vances in experimental assembly of nanoparticles with
DNA-mediated interactions ��1–6��. While this approach has
a potential of generating highly organized and sophisticated
structures ��7,8��, most of the studies report random aggre-
gation of colloidal particles ��9,10��. Despite these shortcom-
ings, the aggregation and melting properties may provide
important information for future development of DNA-based
self-assembly techniques. These results also have more im-
mediate implications. For instance, the observed sharp melt-
ing transition is of particular interest for biosensor applica-
tions �11�. For these reasons the development of a statistical
mechanical description of these types of systems is of great
importance. It should be noted that the previous models of
aggregation in colloidal-DNA systems were either phenom-
enological or oversimplified lattice models ��12–14��, which
gave only limited insight into the physics of the phenomena.

In this paper, we develop a theory of reversible aggrega-
tion and melting in colloidal-DNA systems, starting from the
known thermodynamic parameters of DNA �i.e., hybridiza-
tion free energy �G�, and geometric properties of DNA-
particle complexes. The output of our theory is the relative
abundance of the various colloidal structures formed
�dimers, trimers, etc.� as a function of temperature, as well as
the temperature at which a transition to an infinite aggregate
occurs. The theory provides a direct link between DNA mi-
croscopics and experimentally observed morphological and
thermal properties of the system. It should be noted that the
hybridization free energy �G depends not only on the DNA
nucleotide sequence, but also on the salt concentration and
the concentration of DNA linker strands tethered on the par-
ticle surface �15�. In this paper �G values refer to hybridiza-
tion between free DNA in solution.

In a generic experimental setup, particles are grafted with
DNA linker sequences, which determine the particle type �A
or B�. In this paper we will restrict our attention to a binary

system.1 These linkers may be flexible or rigid. A selective,
attractive potential between particles of type A and B can
then be turned on by joining the linkers to form a DNA
bridge. This DNA bridge can be constructed directly if the
particle linker sequences are chosen to have complementary
ends. Alternatively, the DNA bridge can be constructed with
the help of an additional linker DNA. This additional linker
is designed to have one end sequence complementary to the
linker sequence of type A particles, and the other end
complementary to type B. The properties of the DNA bridge
formed will depend on the hybridization scheme �see Fig. 1�.

The plan for the paper is as follows. In Sec. II A we
provide a description of the problem. In Sec. II B we deter-
mine the bridging probability for the formation of a DNA
bridge between two colloids, assuming the known thermody-
namic parameters of DNA �hybridization free energy �G�.
Using this bridging probability as input, in Sec. II C we cal-
culate the effective binding free energy �AB for the formation
of a dimer. Sections III A–III C establish the connection be-
tween the theory and the experimentally determined melting
profile f�T�, the fraction of unbound particles as a function of
temperature. In particular, we demonstrate how knowledge
of �AB can be used to determine this profile, including the
effects of particle aggregation. In Sec. III D the theory is
compared with two recent experiments detailing the revers-
ible aggregation of colloids with DNA-mediated attraction
�12,9�. The main results of the model are summarized in Sec.
IV.

II. DNA-MEDIATED INTERACTIONS

A. Description of the problem

We consider particles of type A and B, which form revers-
ible AB bonds as a result of DNA hybridization. The task at

1This restriction to binary systems is consistent with the current
experimental approach. In a recent work we demonstrated that if
each particle has a unique linker sequence, one might be able to
programmably self-assemble nanoparticle clusters of desired geom-
etry �8�.
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hand is to determine the relative abundance of the various
colloidal structures that form as a function of temperature.
From this information we can determine which factors affect
the melting and aggregation properties in DNA-colloidal as-
semblies. To do so we must determine the binding free en-
ergy for all of the possible phases �monomer, dimer,…, infi-
nite aggregate�, and then apply the rules for thermodynamic
equilibrium. As we will see in Sec. III, these binding free
energies can all be simply related to �AB, the binding free
energy for the formation of a dimer. Our task is thus reduced
to determining �AB from the thermodynamic parameters of
DNA and structural properties of the DNA linkers. In our
statistical mechanical framework, �AB is calculated from the
model partition function, taking into account the appropriate
ensemble averaging for the nonergodic degrees of freedom.
The result is related to the bridging probability for a pair of
linkers. By considering the specific properties of the DNA
bridge that forms, the bridging probability can be related to
the hybridization free energy �G of the DNA. In this way,
we obtain a direct link between DNA thermodynamics and
the global aggregation and melting properties in colloidal-
DNA systems.

B. Bridging probability

To begin we relate the hybridization free energy �G for
the DNA in solution to the bridging probability for a pair of

linkers. This bridging probability is defined as the ratio
Pbound

Pfree
,

with Pbound the probability that the pair of linkers have hy-
bridized to form a DNA bridge, and Pfree the probability that
they are unbound. This ratio is directly related to the free-
energy difference of the bound and unbound states of the

linkers �G˜ �throughout this paper we will use units with
kB=1�;

Pbound

Pfree
= exp�− �G˜

T
� =

ceff

c0
exp�− �G

T
� , �1�

ceff =
	 P�r1,r�P�r2,r�d3r


	 P�r,r��d3r�2 . �2�

Here c0=1M is a reference concentration. P�r ,r�� is the
probability distribution function for the linker chain, which
starts at r� and ends at r. The effective concentration ceff is a
measure of the change in conformational entropy of the
linker DNA as a result of hybridization. It will depend on the
properties of the linker DNA �e.g., flexible versus rigid�, and
the scheme for DNA bridging �e.g., hybridization of comple-
mentary ends versus hybridization mediated by an additional
linker�. ceff is the concentration of free DNA, which would
have the same hybridization probability as the grafted linkers
in our problem. As discussed in Sec. III D, the DNA linker
grafting density also plays an important role in determining
the possible linker configurations and hence ceff.

Assuming that the size of the linkers is much smaller than
the particle radius R, we first consider the problem in a pla-
nar geometry. Let the two linkers be attached to two parallel
planar surfaces separated by a distance 2h. Referring to Fig.
2, we see that r� is the location where the linker DNA is
grafted onto the particle surface and r is the position of the
free end.

In this paper we consider hybridization by complemen-
tary, rigid linker DNA �scheme A in Fig. 1�. This scheme is
particularly interesting since it is directly related to several
recent experiments �9,12�. In a future work we will address
other hybridization schemes. We assume that L�Lp and
L�R, where Lp�50 nm is the persistence length of double-
stranded �ds� DNA and L is the ds linker DNA length. In this
regime, the linker chains can be treated as rigid rods tethered
on a planar surface. The interaction is assumed to be point-
like, in which a small fraction � /L of the linker bases hy-
bridize.

We can calculate the effective concentration by noting
that the overlap integral in Eq. �2� is proportional to the
volume of intersection of two spherical shells �red and blue
circles in Fig. 3�,

FIG. 1. �Color online� Graphical depiction of various schemes
for DNA bridging. �A� A freely jointed, rigid bridge constructed
from complementary linker DNA. �B� A flexible bridge can be con-
structed using complementary linker DNA. �C� A rigid bridge con-
structed from short, flexible linker DNA and a long, rigid linker.

FIG. 2. �Color online� The statistical weight of a bound state is
calculated by determining the number of hybridized configurations
for two complementary linker chains relative to the number of un-
hybridized configurations.
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ceff =
2�rA

�2�L2��2 =
��L − r1� − r2�/2�

2�2L2r1� − r2�
, �3�

here A=�2 / sin 	 and r=�L2− r1�−r2�
2 /4 �see notations in

Fig. 3�. We have used the fact that cos 	 /2= r1�−r2�  /2L. ceff
and the binding probability are largest when the linkers are
grafted right in front of each other, i.e., when r1�−r2�  �2h.
By taking the limit h�L we arrive at the following result for
the corresponding “bridging” free energy:

�G˜A � �GA + T log�4�L3c0� . �4�

This free energy remains nearly constant for any pair of
linkers, as long as they can be connected in principle, i.e.,
r1�−r2�  �2L. This limits the maximum lateral displacement
of the linkers: r��2�L2−h2, and therefore sets the effective
cross section of the interaction,

a = �r�
2 = 4��L2 − h2� . �5�

C. Effective binding free energy

We now proceed with the calculation of the effective free
energy �AB, which is associated with the formation of a dimer
from a pair of free particles, A and B. Since the DNA cov-
erage on the particle surface is not uniform, this free energy
and the corresponding partition function Z, would, in prin-
ciple, depend on the orientations of the particles with respect
to the line connecting their centers. The equilibrium binding
free energy would correspond to the canonical ensemble of
all possible orientations, i.e., �AB=−T log 4��Z�. However,
this equilibrium can only be achieved after a very long time,
when the particle pair samples all possible binding configu-
rations, or at least their representative subset. The real situa-
tion is different. After the first DNA-mediated bridge is cre-
ated the particle pair can still explore the configurational
space by rotating about this contact point. However, after the
formation of two or more DNA bridges �at certain relative
orientation of the particles�, the further exploration requires
multiple breaking and reconnecting of the DNA links, which
is a very slow process. We conclude that the system is er-
godic with respect to the various conformations of the linker
DNA for fixed orientations of the particles, but the orienta-

tions themselves are nonergodic variables. The only excep-
tions are the single-bridge states: the system quickly relaxes
to a more favorable orientational state �unless the DNA cov-
erage is extremely low, and finding a second contact is very
hard�. If N denotes the number of DNA bridges constituting
the AB bond, the appropriate expression for �AB in this par-
tially ergodic regime is the so-called component averaged
free energy ��16,17��

�AB = − T�log Z�N
2. �6�

Each DNA bridge between particles can be either open or
closed,

Zbridge = 1 + exp
−
�G˜�h�,r1� − r2��

T
� . �7�

Here ri� is the two-dimensional �2D� position where the
bridge is grafted onto surface i. We now consider a generic

case when the interaction free energy �G˜ depends on the
separation between planar surfaces 2h� and the separation of
grafting points r1�−r2�, without assumption of a particular
bridging scheme. If the probability for bridge formation is
small, two DNA linkers on the same surface will not com-
pete for complementary linkers. In this regime the free en-
ergy can be calculated by summing over the contribution
from each bridge that forms between dimers,

F = − T�
i

�
j

log�1 + exp
−
�G˜�h�,ri� − r j��

T
�� . �8�

We convert the summation to integration by introducing the
linker areal grafting density �

F = − T	 	 �1�r1���2�r2��

�log�1 + exp
−
�G˜�h�,r1� − r2��

T
��d2r1�d

2r2�. �9�

Changing variables to �r=r1�−r2� and = �r1�+r2�� /2, we can
reintroduce the notion of a bridging cross section a�h��, this
time in a model-independent manner;

a�h��log�1 + exp
−
�G˜0�h��

T
��

�	 d2�r log�1 + exp
−
�G˜�h�,�r�

T
�� . �10�

Here �G˜0�h����G˜�h� ,�r=0� is the minimum free energy
with respect to the separation between grafting points �r.
We can now write the free energy,

F = − T	 �1����2���a�h��log�1 + exp
−
�G˜0�h��

T
��d2 .

�11�

We now convert from the planar geometry to the spherical
particle geometry using the Derjaguin approximation �18�

FIG. 3. �Color online� Cross-sectional view of the hybridization
of two complementary rigid linker DNA. The effective concentra-
tion is calculated in a planar approximation to the particle surface.
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d2 = dd� , �12�

h� = h +
2

2R
. �13�

Let �G˜* be the minimal value of the bridging free energy.
Then the result for F can be rewritten as

F = − TN log�1 + exp
−
�G˜*

T
�� . �14�

Here N has a physical meaning as the number of potential
bridges for given relative positions and orientations of the
particles;

N �	 �1����2���a�h��
 log�1 + exp�− �G˜0�h��/T��

log�1 + exp�− �G˜*/T��
�d2 .

�15�

One can calculate the average value of N in terms of the
average grafting density, �= ��1�= ��2�;

�N� � 2�R�2	 a�h��
 log�1 + exp�− �G˜0�h��/T��

log�1 + exp�− �G˜*/T��
�dh�.

�16�

In a generic case of randomly grafted linkers, �N� completely
defines the overall distribution function of N, which must

have a Poisson form: P�N�=
�N�Ne−�N�

N! . The average number of
bridges �N� between two particles depends on both the DNA
linker grafting density � and the bridging probability deter-

mined from �G˜.
The free energy for the formation of a dimer �AB= �F�2+

−T log �. The second term is the entropic contribution to the
free energy, which comes from integration over the orienta-
tional and translational degrees of freedom of the second
particle. Because the system is not ergodic in these degrees
of freedom, the accessible phase space � will be reduced by
a factor of P2+. P2+ is the probability that there are at least
two DNA bridges between the particles. In terms of the av-
erage number of bridges �N� between particles, we have the
following relations:

P2+ = 1 − �1 + �N��e−�N�, �17�

�N�2+ =
�N��1 − e−�N��

P2+
, �18�

�AB = − T��N�2+ log�1 + exp
−
�G˜*

T
��

+ log�P2+4���2R�2c0�� . �19�

Here � is the localization length of the AB bond, which
comes from integrating the partition function over the radial
distance between particles.

We now can calculate �N� for the case of freely jointed
rigid bridging considered earlier �i.e., for scheme A�. In a
previous section we provided a direct calculation of the in-

teraction free energy, �G˜0�h��const=�G˜* �Eq. �4��, and
bridging cross section, a�h��=4��L2−h�2. Applying Eq. �16�
we arrive immediately at the following result:

�N� = 8�2�2R	
0

L

�L2 − h�2�dh� =
16�2�2RL3

3
. �20�

Having determined the free energy, we are now in a position
to determine the melting properties for DNA-colloidal as-
semblies.

III. AGGREGATION AND MELTING IN
COLLOIDAL-DNA SYSTEMS

At this stage of the paper we have calculated the binding
free energy �AB for an AB pair, starting with the thermody-
namic parameters of DNA �hybridization free energy �G�. In
this section of the paper we establish the connection between
that result and the experimentally observable morphological
behavior of a large system. One of the ways to characterize
the system is to study its melting profile f�T�, which is the
fraction of unbound particles as a function of temperature. To
determine the profile we calculate the chemical potential for
each phase �monomer, dimer, etc.� and apply the thermody-
namic rules for phase equilibrium. We will demonstrate how
the single binding free energy �AB can be used to determine
the contribution of each phase to the melting profile, includ-
ing the effects of aggregation.

A. Dimer formation

To begin we discuss the formation of dimers via the reac-
tion A+B�AB. We can express the chemical potential of
the ith species �i in terms of the particle concentrations ci

=
Ni

V

�A = T log�cA� , �21�

�B = T log�cB� , �22�

�AB = T log�cAB� + �AB. �23�

Here �AB is the binding free energy for the formation of a
dimer. In terms of the potential V�r� between A- and B-type
particles we have

�AB = − T log�4��2R�2c0	 dr exp
−
V�r�

T
�� . �24�

In this section we are not particularly concerned with the
specific form of the DNA-induced potential V�r�, having al-
ready determined �AB in the previous section. We simply note
that the prefactor 4��2R�2 arises since the interaction is as-
sumed to be isotropic, with R the particle radius. Equilibrat-
ing the chemical potential of the various particle species, we
obtain the condition for chemical equilibrium

NICHOLAS A. LICATA AND ALEXEI V. TKACHENKO PHYSICAL REVIEW E 74, 041408 �2006�

041408-4



�A + �B = �AB. �25�

The result is a relationship between the concentration of
dimers and monomers.

cAB =
cAcB

c0
exp�− �AB

T
� . �26�

The overall concentration of particles in monomers and
dimers must not differ from the initial concentration,

cA
i = cA + cAB, �27�

cB
i = cB + cAB. �28�

If the system is prepared at equal concentration, cA
i =cB

i

= 1
2ctot, subtracting the two equations we see that cA=cB�c.

Written in terms of the fraction of unbound particles f
= c

1/2ctot
we have a quadratic equation for the unbound fraction

1 = f + exp�− �̃AB

T
� f2. �29�

To simplify we have defined an effective free energy �̃AB for
the formation of a dimer

�̃AB = �AB − T log� ctot

2c0
� . �30�

The solution for the fraction of unbound particles as a func-
tion of temperature is simply

f =
− 1 + �1 + 4 exp� −�̃AB

T �
2 exp� −�̃AB

T � . �31�

Previous studies �9� only included the dimer contribution
to the melting properties of DNA colloidal assemblies. With
the basic formalism at hand, we can now extend the preced-
ing analysis to include the contribution of trimers and tetram-
ers.

B. Trimers and tetramers

Now consider the formation of a trimer via 2A
+B�ABA. The chemical potential is slightly different in
this case,

�ABA = T log�cABA� + �ABA. �32�

Taking into account that there are now two AB bonds in the
structure, one might conclude that �ABA=2�AB. This is not
quite correct, since there is a reduction in solid angle avail-
able to the third particle. To form a trimer, an AB bond forms
first, which contributes �AB to �ABA. Some simple geometry
shows that the remaining A particle only has 3� steradians of
possible bonding sites to particle B. Making this change in
the prefactor of Eq. �24�, one can see that the second bond
contributes �AB−T log� 3

4
� to �ABA,

�ABA = 2�AB − T log
3

4
� . �33�

The equation for chemical equilibrium can once again be
expressed in terms of the particle concentrations

2�A + �B = �ABA, �34�

cABA =
3

4

cA
2cB

c0
2 exp�− 2�AB

T
� . �35�

To include the trimer contribution, we note that there are two
possible varieties, with �ABA=�BAB;

cA
i = cA + cAB + 2cABA + cBAB, �36�

cB
i = cB + cAB + cABA + 2cBAB. �37�

Following the same line of reasoning as before, the resulting
equation for the unbound fraction f is

1 = f + exp�− �̃AB

T
� f2 +

9

4
exp�− 2�̃AB

T
� f3. �38�

For tetramers we will follow the same general reasoning,
however in this case there are two different structure types.
The reaction 2A+2B�ABAB results in the formation of
stringlike structures,

�ABAB = T log�cABAB� + �ABAB. �39�

As in the trimer case, the last particle has 3� steradians of
possible bonding sites, and contributes �AB−T log� 3

4
� to

�ABAB;

�ABAB = 3�AB − T log�
3

4
�2� , �40�

2�A + 2�B = �ABAB, �41�

cABAB = 
3

4
�2cA

2cB
2

c0
3 exp�− 3�AB

T
� . �42�

If an A-type particle approaches a trimer of variety ABA, a
branched structure can result. The reaction 3A+B�AAAB
results in the formation of these branched structures;

�AAAB = T log�cAAAB� + �AAAB. �43�

For the branched case, the last particle has approximately 2�
steradians of possible bonding sites, and contributes �AB

−T log� 1
2

� to �AAAB,

�AAAB = 3�AB − T log
3

8
� , �44�

3�A + �B = �AAAB, �45�

cAAAB = 
3

8
� cA

3cB

c0
3 exp�− 3�AB

T
� . �46�

To include all of the tetramer contributions, note that there
are two branched varieties, with �AAAB=�BBBA. Finally we
impose the constraint that the initial particle concentrations
do not differ from the concentration of all the n-mers, for
n=1,2 ,3 ,4

cA
i = cA + cAB + 2cABA + cBAB + 2cABAB + 3cAAAB + cBBBA,

�47�

STATISTICAL MECHANICS OF DNA-MEDIATED… PHYSICAL REVIEW E 74, 041408 �2006�

041408-5



cB
i = cB + cAB + cABA + 2cBAB + 2cABAB + cAAAB + 3cBBBA.

�48�

The final result is an equation for the unbound fraction f
expressed entirely in terms of the effective free energy �̃AB of
a dimer,

1 = f + exp�− �̃AB

T
� f2 +

9

4
exp�− 2�̃AB

T
� f3

+
21

8
exp�− 3�̃AB

T
� f4. �49�

For high temperatures, the melting profile is governed by
the solution to this polynomial equation for f . For tempera-
tures below the melting point we expect to find particles in
large extended clusters. We now proceed to calculate the
equilibrium condition between monomers in solution and the
aggregate.

C. Reversible sol-gel transition

To understand the basic structure of the aggregate, we
simply note that there are many DNA attached to each par-
ticle. This gives rise to branching, as in the discussion of
possible tetramer structures. Since the DNA, which mediate
the interaction, are grafted onto the particle surface, once two
particles are bound, the relative orientation of the pair is
essentially fixed. The resulting aggregate is a treelike struc-
ture, and the transition to an infinite aggregate at low tem-
peratures is analogous to the sol-gel transition in branched
polymers �19�.

Particles in the aggregate are pinned down by their
nearest-neighbor bonds, so we do not consider their transla-
tional entropy. As a result the chemical potential is simply
��=��. Equilibrating the chemical potential of the monomer
in solution and in the aggregate we have

T log�c� = ��, �50�

�� = �AB − T log���� . �51�

Here ���1 is the configurational entropy of the branched
aggregate per particle.

The concentration of particles in the aggregate c� is the
total concentration minus the n-mer concentration. Here c1
=cA+cB is the total monomer concentration, c2=cAB is the
total dimer concentration, etc.

c� � ctot − c1 − c2 − c3 − c4. �52�

Expressed in terms of �̃AB and the fraction of solid angle
available to particles in the aggregate ��=

��

4� we have

f� =
1

��

exp� �̃AB

T
� . �53�

The transition from dimers, trimers, etc. to the aggrega-
tion behavior is the temperature T* at which f��T*� is a so-
lution to Eq. �49�. In words, T* is the temperature at which
the aggregate has a nonzero volume fraction. The fraction of
unbound particles for these colloidal assemblies will be gov-

erned by Eq. �53� for T�T* and Eq. �49� for T�T*. As
claimed, we can simply relate the unbound fraction to �̃AB for
both n-mers and the aggregate �Fig. 4�.

D. Comparison to the experiment

Let us consider the experimental scheme of Chaikin et al.
�9� �Fig. 5�. In the experiment, R=0.5 �m polystyrene beads
were grafted with ds DNA linkers of length L�20 nm. The
11 end bases of the A- and B-type particles were single
stranded and complementary. We have already determined

FIG. 4. �Color online� The actual unbound fraction f is the con-
catenation of the aggregate profile for T�T*and the n-mer profile
for T�T*. The fraction of particles in dimers, trimers, and tetramers
is also plotted.

FIG. 5. �Color online� Comparison of the melting curves f�T�
determined by our model to the experimental data of Chaikin et al.
�see Fig. 2 in Ref. �9��. The four data sets are for the four different
polymer brushes used. For the model fits we find that �N�2+=2.01
for crosses, 2.07 for solid triangles, 2.13 for empty triangles, and
2.35 for squares.
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the bridging probability in this scenario �see Sec. II B�. In the
experiment �9� a polymer brush is also grafted onto the par-
ticle surface, which will have the effect of preferentially ori-
enting the rods normal to the surface �see Fig. 3�. This con-
finement of the linker DNA can be incorporated quite easily

into our results for �G˜ and �N�. Returning to Sec. II B, when
integrating over linker conformations we simply confine
each rigid rod to a cone of opening angle 2�. The upper
bound for the polar integration is now � as opposed to �

�G˜A � �GA + T log�4�L3c0�1 − cos ��2� . �54�

The alignment effect should also be taken into account
when calculating �N�. If the particles are separated by less
than 2L cos � the end sequences will be unable to hybridize.
Following the same steps as before, the lower bound for the
h� integration is now L cos � as opposed to 0

�N� = 8�2�2R	
L cos �

L

�L2 − h�2�dh� �55�

=
16

3
�2�2RL3�1 +

cos �

2
�cos2 � − 3�� . �56�

In the absence of the brush, and at sufficiently low linker
grafting density �, the alignment effect could be removed by
setting �= �

2 , in which case we recover our previous results.
Since the polymer brush is stiff, it also imposes a minimum
separation of 2h between particles, where h is the height of
the brush. As a result, in the expression for �AB we can ap-
proximate the radial flexibility of the AB bond as ��L−h.

We have now related the free energy �AB to the known
thermodynamic parameters of DNA ��G=�H−T�S, �H
=−77.2 kcal

mol , and �S=−227.8 cal
mol K �, and the properties of

linker DNA chains attached to the particles �grafting density
��3�103 DNA

�m2 and linker length L�20 nm�. The height of
the polymer brush is h=13±5 nm �9�. In fitting the experi-
mental data we have taken the average value �h�=13 nm.
Changing h within these bounds does not have a major effect
on the melting curves. As a result there is one free parameter
in the model, the confinement angle �. This angle determines

�N� and �G˜, which in turn determine �̃AB, and finally the
melting profile f .

With some minor modifications we can also analyze the
“tail to tail” hybridization mode in a recent experiment of
Mirkin et al. �12�. In this experiment, R=6.5 nm gold nano-
particles were chemically functionalized with single-stranded
�ss� DNA linkers. The last 15 bases on the markers for par-
ticles of type A and B were chosen to be complementary to a
30 base ss DNA linker. Since the strands are not ligated after
hybridization, the experimental pictures are similar.

The unhybridized portion of the ss DNA linker simply
serves as a spacer, and the hybridized portions become ds
DNA, which we can again treat as rigid rods �see Sec. II B�.
This experiment is done without the addition of a polymer
brush, but the grafting density is two orders of magnitude
larger than the experiment of Chaikin et al. As a result, there
is still an entropic repulsion �7� associated with compressing
the particles below separation 2h. Here h could loosely be

interpreted as the radius of gyration of the unhybridized por-
tion of the linker. Despite the fact that L�R, our planar

calculation of �G˜, provides a good fit to the experimental
data. The other major difference is that now the attraction
between particles is mediated by an additional DNA linker

�G = �GA + �GB − T log� clink

c0
� . �57�

The first term is the contribution to the free energy from
the hybridization of the end sequence on linker A to the
complementary portion of the 30 base ss linker. The hybrid-
ization free energies �GA and �GB were calculated with the
DINAMelt web server �20�. The last term is the contribution
to the free energy from the translational entropy of the addi-
tional linker DNA, with clink the additional linker concentra-
tion. This highlights some incorrect assumptions of the ther-
modynamic melting model �12�, where the two hybridization
free energies were not calculated separately, and the transla-
tional entropy of the additional linker DNA was ignored. By
introducing dilutent strands to the system, one can probe the
effect of the linker grafting density � on the melting proper-
ties of the assembly �see Fig. 2B in Ref. �12��. The agree-
ment between the experimental data and our theory is good
�see Fig. 6�, except at small f values. This is not surprising,
since comparing the two requires relating the measurement
of optical extinction to the unbound fraction f . This is a
nontrivial matter when dealing with aggregation, which cor-
responds to the small f regime.

IV. CONCLUSION

We have developed a statistical mechanical description of
aggregation and melting in DNA-mediated colloidal systems.
First we obtained a general result for two-particle binding

FIG. 6. �Color online� The effect of the linker DNA grafting
density � on the melting profile f�T�. The results of the model are
compared with experimental data in Ref. �12�. The three data sets
represent grafting densities of 100% �squares�, 50% �circles�, and
33% �triangles� for which �N�2+=2.32, 2.16, and 2.05, respectively.
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energy in terms of DNA hybridization free energy �G, and
two model-dependent parameters: the average number of
available bridges �N� and the effective DNA concentration
ceff. We have also shown how these parameters can be cal-
culated for a particular bridging scheme. In our discussion
we have explicitly taken into account the partial ergodicity of
the problem related to slow binding-unbinding dynamics.

In the second part of the paper it was demonstrated that
the fractions of dimers, trimers, and other clusters, including
the infinite aggregate, are universal functions of a parameter
�̃AB /T=�AB /T−log�ctot /2c0�. We have applied the results of
our theory to a particular scheme when the DNA bridge is
made of two freely jointed rods �ds DNA�. The obtained
melting curves are in excellent agreement with two types of
experiments, done with particles of nanometer and micron
sizes. Furthermore, our analysis of the experimental data
give an additional insight into microscopic physics of DNA
bridging in these systems: it was shown that the experiments
cannot be explained without the introduction of angular lo-
calization of linker ds DNA. The corresponding localization
angle � is the only fitting parameter of the model, which
allows one to fit both the position and width of the observed
melting curves.

There are several manifestations of the greater predictive
power of our statistical mechanics approach, compared to the
earlier more phenomenological models. First, once � is de-
termined for a particular system, our theory allows one to
calculate the melting behavior for an alternative choice of

DNA linker sequences. Second, if the resulting clusters are
separated, for example, in a density gradient tube, the rela-
tive abundance of dimers, trimers, and tetramers can be com-
pared to the values determined from the theory.

Finally, the theory predicts aging of the colloidal struc-
tures, one experimental signature for which is hysteresis of
the melting curves. Such an experiment proceeds by prepar-
ing a system above the melting temperature, and measuring
the unbound fraction of colloids as the temperature is low-
ered. The system is allowed to remain in this cooled state for
a very long time, perhaps months, during which multiple
DNA bridges break and reform. During this time the colloids
relax into a more favorable orientation state, including states
that are not accessible by simply rotating about the contact
point formed by the first DNA bridge between particles. This
favorable orientation state is characterized by an average
number of DNA bridges �N� greater than what we calculate
in the partially ergodic regime. If the unbound fraction is
then measured as the temperature is increased, the melting
curve will shift to a higher temperature, consistent with a
larger value of �N�.
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