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Minority games with score-dependent and agent-dependent payoffs
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Score-dependent and agent-dependent payoffs of the strategies are introduced into the standard minority
game. The intrinsic periodicity is consequently removed, and the stylized facts arise, such as long-range
volatility correlations and “fat tails” in the distribution of the returns. The agent dependence of the payoffs is
essential in producing the long-range volatility correlations. The new payoffs lead to a better performance in
the dynamic behavior nonlocal in time, and can coexist with the inactive strategy. We also observe that the
standard deviation o”/N is significantly reduced, thus the efficiency of the system is distinctly improved. Based
on this observation, we give a qualitative explanation for the long-range volatility correlations.
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I. INTRODUCTION

In past years a great deal of attention from physicists has
been drawn to complex socioeconomic systems. Methods
and concepts in statistical physics have been applied in un-
derstanding markets and economies. On the one hand, the
phenomenological analysis of the financial data has led to the
characterization of certain empirical statistical regularities,
known as the “stylized facts,” such as long-range volatility
correlations and “fat tails” in the distribution of the returns
[1-12]. On the other hand, different microscopic models
have been built for describing the financial markets [13-24].
Among them, the minority game (MG) is one of the impor-
tant examples.

The standard MG [16,25] was initially designed as a sim-
plification of Arthur’s famous El Farol’s Bar problem [26]. Tt
describes a system in which many heterogeneous agents
adaptively compete for a scarce resource, and it captures
some key features of a generic market mechanism and the
basic interaction between the agents and public information.
However, it is a highly simplified model. To make it more
realistic in comparison with the real markets, the microeco-
nomic behavior of the agents should be taken into account.

Consequently, different variations [20,27-31] of the stan-
dard MG have been proposed. For example, the inactive
strategy is introduced, which grants the agents with the pos-
sibility of not trading in the market, to mimic the real mar-
kets. In this case, the number of agents actively trading at
each time step varies throughout the game. This type of ex-
tension is called the grand canonical MG. The inactive strat-
egy in the grand canonical MG is considered to be the key
ingredient leading to the stylized facts.

However, in the standard MG and its many variations, the
double periodicity is quite annoying. Although the inactive
strategy eliminates the periodicity from certain observables,
the grand canonical MG still suffers from an intrinsic annoy-
ance of the periodic dynamics [23,32]. For example, it fails
in correctly characterizing the dynamic behavior nonlocal in
time [32].

In most MGs, payoffs are generally referred to as rewards
to the agents: each agent in the minority group is awarded
one point, while each agent in the majority group is awarded
nothing. In a recent variation of the MG, payoffs depending
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on the size of the minority group have been introduced to
quantify the performance of the strategies [33,34]. Thus the
payoffs are generalized to be the rewards to the strategies.
The results in Refs. [33,34] indicate that the main features of
the standard deviation ¢2/N, which characterizes the fluctua-
tion of the active agents, are not modified by the new forms
of the payoffs.

Looking for more reasonable payoffs, which could mimic
the financial markets, is also of great interest. There may be
thousands of forms of the payoffs for the strategies. How-
ever, we may assume that the payoff of each strategy is
mainly determined by two factors: the global information of
the outcome after all the agents make their own decisions,
i.e., the number of the agents in the minority group; and the
cumulative performance of the individual strategy, i.e., the
score of the strategy itself. Since the resource in the market is
limited, the payoffs increase with a decreasing size of the
minority group [33]. On the other hand, we assume that the
strategies with higher scores should be rewarded or punished
more than those with lower scores, since people would be
more attentive to the outstanding strategies. More impor-
tantly, even for a same strategy, each agent may indepen-
dently evaluate the performance of the strategies, and this
gives rise to the agent-dependent payoffs.

In this paper, we propose a type of payoff that can be
score-dependent and/or agent-dependent. Interestingly, the
double periodicity is essentially removed. The stylized facts,
especially the long-range volatility correlations and dynamic
property nonlocal in time, can be reproduced. The efficiency
of the system is also enhanced.

In Sec. II, the payoffs both score-dependent and agent-
dependent are introduced to the standard MG. The autocor-
relation function of the volatilities and the probability distri-
bution of the returns are studied, and the agent-dependent
essence of the payoffs will be revealed. In Sec. III, the new
type of payoffs is introduced to the grand canonical MG, and
the persistence probability is investigated for different varia-
tions of the MG. In Sec. IV, the market efficiency is con-
cerned, and a qualitative explanation is given for the long-
range volatility correlations. Section V contains the
conclusion.
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II. STANDARD MG WITH SCORE-DEPENDENT AND
AGENT-DEPENDENT PAYOFFS

A. Model

The MG takes the form of a repeated game with an odd
number of agents N who must choose an action indepen-
dently whether to buy or sell. Those agents in the minority
group are winners. Each agent chooses his or her decision at
a given time step according to the prediction of a strategy
based on the history, namely, the m most recent outcomes of
the winner side. Since there are a total of 2" possible history
bit strings of the winner side, and there are two possible
options (buy or sell) for each history bit string, there are a

total of 22" strategies.

At the beginning of the game, each agent i randomly
picks S strategies from the full strategy space and keeps track
of the cumulative performance of his or her trading strategy
s, s=1,...,8 by assigning a score U, to it. The initial scores
of the strategies are set to be zero. At each time step, each
agent i adopts the strategy s;(t) with the highest score, and
the action will then be a,(1) =Uf§f(f),),
u(t"), which is the common information shared by all the

according to the history

agents. o‘f‘fl - 1, or —1 denotes buying or selling. When a

(")
tie results from the strategies with the highest score, one of
them is picked randomly. The excess demand is then defined
as A(t") =3 a,(t'). We assume that the payoffs g; (t') gen-
erally depend on the scores of the strategies, then

Ups(t' +1) = Uy (1) + g,(1"), (1)

. oo alU (1) = Ugl+b
gi,s(t ):_ 0-{:?[ )A(t ) S : .

> {alU; (1" - Up] + b}

s'=1

2)

Here U, is the lowest score of the strategies of the agent i at
time . To ensure a positive weight {a[U;(t")-U,]
+b}/2f,=1{a[U,-,S,(t’)—U0]+b}, the parameters a and b are
taken to be real and positive. Thus the strategies with higher
scores will be rewarded or punished more than those with
lower scores. Actually, the parameters a and b are not inde-
pendent. If both the numerator and denominator in the
weight are multiplied by a factor 1/b, only the ratio a/b
remains. Therefore, we simply put b=1.0. For the parameter
a=0, the standard MG is recovered. The payoff is given by
gis(t") ~—ot" f’I)A(t’). Those strategies giving the prediction
consequentl}; proved to be in the minority are rewarded with
the same payoffs regardless of their scores, so the payoffs
and the scores of the strategies are naturally not agent depen-
dent.

The payoffs in Eq. (2) are not only score-dependent, but
also agent-dependent, since the weight {a[U,(1")—U,]
+b}/2§,=1{a[U,-,sr(t’)— U,]+b} is agent dependent. The score
dependence of the payoffs is based on the assumption or
plausible observation that people may be more attentive to
the outstanding strategies. Once a high-score strategy gives a
prediction, which is subsequently proved to be in the major-
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ity, it will be restrained from the market for a longer time.
When it gives a prediction which is subsequently proved to
be in the minority, it will likely be adopted in the future for
making more profits. For a low-score strategy, it is not so
much affected by the outcome of the game. The agent depen-
dence of the payoffs is assumed, since the evaluation of the
strategies should vary with agents. In this sense, the agents in
our model are heterogeneous. An agent evaluates his strate-
gies according to their relative performances.

Following Refs. [20,35-37], a simple price dynamics of
the returns r(¢') in terms of the excess demand A(¢') is de-
fined as

r(t") =A(t'). (3)

B. Autocorrelation function and cumulative distribution
function

MGs behave differently in different regimes of the param-
eter space. In literature it is reported that the stylized facts of
the financial market emerge in the region 2"'/N=< «a, with
a,.~0.32 [38-40]. For a bigger 2"/N, the dynamics tends to
be a random walk. Therefore we mainly present our results
for a small m and a big N. Meanwhile, we take S much
smaller than 22m, the total number of the strategies, otherwise
for a big S every agent may have almost the same strategies.

For the standard MG with a small m and a big N, how-
ever, a crowd of agents choose a particular strategy and thus
induce the so-called double periodicity [41,42]. Assuming
that the game visits each possible history bit string with an
equal probability, a particular history bit string will be en-
countered about every 2™ time steps. If the odd occurrences
of a particular history result in the increase of the scores of
certain strategies, the even occurrences will lead to the de-
duction of the scores of the same strategies due to the over-
crowded use of these strategies, which predict correctly in
the previous occurrence of the history. This is a kind of pe-
riodic behavior with a period of 2 X 2™ time steps.

After introducing the new payoffs in Eq. (2), the dynamic
evolution of the standard MG is then modified. For a same
strategy, it may be the best strategy for one agent, but it can
be a worse strategy for another agent. Thus the overcrowded
use of certain strategies are avoided and the double period-
icity is eliminated.

The long-range temporal correlations of the volatilities is
a well-known stylized fact. The autocorrelation function of
the volatilities decays by a power law

c(r) ~ 1™, (4)

and the exponent A is estimated to be about 0.3 in real finan-
cial markets [43,44]. In this paper, we define the volatility as
|A , and then the autocorrelation function

JAE[AGC +0) - (A
(AP = aamn -
where (- -+) represents the average over the time ¢'. We have

performed extensive numerical simulations of our improved
MG. Here we present the results for N=5001, S=2, and m

c@t)= (5)
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FIG. 1. Autocorrelation functions of the volatilities for different
values of the parameter a: (a) a=0.0, (b) @=0.01,0.1,1.0, and 10.0
for the standard MG with the payoffs both score dependent and
agent dependent with N=5001, S=2, and m=2. The dashed line has
a slope of —0.25.

=2. Obviously the parameter a plays a key role.

In Fig. 1, the autocorrelation function for different values
of a are plotted. For each value of a, an average is taken over
100 runs with 10° iterations per run. Before collecting the
data in each run, 5000 iterations have been performed for
equilibration. The figure shows that as a changes from 0.0 to
10.0, a crossover behavior occurs. According to Eq. (2), the
payoff for a=0.0 is equal to —%oﬁ(t/)A(t’) (here S=2). This is
just the payoff of the standard MG except for a factor of 1/2.
As it is shown in Fig. 1(a), the curve for a=0.0 exhibits a
strong periodic behavior with a period 2 X 22, and the shape
is the same as that of the standard MG.

In Fig. 1(b), the autocorrelation function for a # 0.0 are
plotted on a log-log scale. For clarity, the curves for a
=10.0 and @=0.1,0.01 are shifted slightly upward and down-
ward, respectively. We observe that as a increases, the auto-
correlation function tends to show a power-law behavior,
though for a relatively small @ <<0.001 the periodic behavior
still remains. The exponent A changes from —1.05 to —0.21
as a changes from 0.01 to 10.0. The large a limit will be
discussed in the next subsection.

In real markets, the cumulative probability distribution
function (CDF) of the returns is known to have a fat tail such
as

P(|A]) ~ |A]™", (6)

with an exponent ¥~ 3.0 on average [44]. The CDF of our
model is also carefully investigated. Since the CDF for posi-
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FIG. 2. Cumulant distribution functions of the volatilities for
different values of the parameter a: (a) a=0.0, (b) @=0.01,0.1,1.0,
and 10.0 for the standard MG with payoffs both score dependent
and agent dependent with N=5001, S=2, and m=2. The dashed line
has a slope of —3.9.

tive and negative returns are symmetric, the CDF of the mag-
nitude of the returns is computed.

The CDF also shows a crossover behavior similar to that
of the autocorrelation function. In Fig. 2, the CDF for the
parameter a=0.0 0.01, 0.1, 1.0, and 10.0 are plotted on a
log-log scale. For a=0.0, the CDF decays rapidly to zero,
displaying a Gaussian-type shape. As the parameter a in-
creases, a crossover behavior occurs. For a big value of a, a
power-law tail of the CDF is observed. The exponent v is
equal to 3.9 for a=1.0.

In summary, the main features of our improved MG are
dominated by the parameter a, which is a measure of the
intensity of the reward and punishment. The larger a is, the
more the high-score strategies are rewarded or punished, and
the more heterogeneous the agents are. For a=0.0, the model
behaves the same as the standard MG. As a increases, the
dynamic behavior gradually stabilizes. For a=1.0, as is
shown in Figs. 1 and 2, the autocorrelation function and CDF
show a power-law behavior, and the exponents are estimated
to be A=0.25 and v=3.9, close to those of the real markets.

C. Agent-dependent payoffs

It is inspiring that the new payoffs in Eq. (2) make a
distinct improvement on the dynamic behavior of the stan-
dard MG, and one may wonder what is the underlying
mechanism responsible for it. To address the essence of the
new payoffs, we consider the following two cases: the MG
with the payoffs only score dependent and the MG with the
payoffs only agent dependent.

For the MG with the payoffs only score dependent, we
slightly modify the denominator in Eq. (2) such that

(1) == ot On () =Dl L )
2 {a[Ui,s’(t,) - Upl+ 1}

s'=1

with M=2%" being the total number of the strategies. Now
U, is the lowest score of all the strategies at time ¢’. Since
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FIG. 3. Autocorrelation functions of the volatilities for the MGs
with different types of payoffs for N=5001, S=2, and m=2: the
payoffs only agent dependent, payoffs both score dependent and
agent dependent, and payoffs only score dependent, respectively,
denoted by solid lines from top to bottom.

the denominator sums over all the possible strategies, the
payoffs are only score dependent, not agent dependent. In
Fig. 3, the autocorrelation function of the MG with the pay-
offs only score dependent for a=1.0 is plotted. For a direct
comparison, the autocorrelation function of the MG model
with the payoffs both score dependent and agent dependent
in Eq. (2) for a=1.0 is also plotted. Obviously, the payoffs
only score dependent distinctly suppress the strong periodic-
ity of the standard MG, but the autocorrelation function de-
cays somewhat faster than a power law. For the MG with the
payoffs both score dependent and agent dependent, the auto-
correlation function exhibits a better power-law behavior,
with an exponent close to that of the real markets.

For the MG with the payoffs only agent dependent, we
consider the large a limit for the payoffs in Eq. (2). In this
case, only the score of the strategy with the highest score of
each agent at that moment is updated, but there may be more
than one strategy with the highest score. Since the agent
adopts one of the strategies with the highest score, let us
further simplify the game and just update the strategy, which
is actually adopted by the agent, and the others remain un-
changed. Since the strategy with the highest score varies for
different agents, the payoffs are agent dependent, not score
dependent.

In Fig. 3, the autocorrelation function of the MG with the
payoffs only agent dependent is also plotted. It follows a nice
power-law behavior with an exponent slightly smaller than
that of the MG with the payoffs both score dependent and
agent dependent. But a weak periodic oscillation is still ob-
served. We have also investigated other stylized facts of the
MG with the payoffs only agent-dependent, e.g., the CDF,
the persistence probability (see the next section), etc. The
results indicate that the MG with the payoffs only agent de-
pendent and the MG with the payoffs both score dependent
and agent dependent behave not much differently.

In summary, the score dependence of the payoffs removes
the strong periodic behavior of the standard MG, and the
agent dependence of the payoffs brings a better power-law
behavior of the autocorrelation function. The weak periodic
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behavior of the MG with the payoffs only agent dependent
may come from the oversimplified mechanism of scoring
presented in this subsection. At this stage, the payoffs both
score dependent and agent dependent are a better choice.

III. GRAND CANONICAL MG AND PERSISTENCE
PROBABILITY

A. Grand canonical MG with payoffs score dependent and
agent dependent

The grand canonical MG, in which an inactive strategy is
included, has been proposed to mimic the real markets. In
fact, the grand canonical MG reproduces most stylized facts
[20,27-31], except for certain dynamic properties, such as
the dynamic behavior nonlocal in time, etc. [32]. In the pre-
ceding section, we assume that the payoffs both score depen-
dent and agent dependent is an essential ingredient of the
MG, which also leads to the long-range temporal correla-
tions. Theoretically, one expects that the score-dependent
and agent-dependent payoffs could coexist with the inactive
strategy in the MG. Therefore, we introduce the payoffs both
score dependent and agent dependent to the grand canonical
MG [20].

The model consists of two types of agents: speculators
and producers. Speculators are assigned a number S+ 1 of the
strategies, among which § are active strategies, and the other

is an inactive strategy with o-f‘ (()[’):O. Each speculator keeps
track of the cumulative performances of his or her strategies,
and adopts the strategy with the highest score. The scores of
the active strategies take the same updating form as in Egs.
(1) and (2). In the grand canonical MG, the score of the
inactive strategy is usually set to be zero, since it does not
predict any action. Sometimes such a scheme may be too
simple. One may think that all strategies, including the inac-
tive strategy, should be reasonably rewarded or punished.

Therefore, we assume that the payoffs of the inactive
strategy could be evaluated according to the performance of
the active strategy with the highest score,

alU; (") - 1
giolt") =0 (inA') —5 Uio() = Uol + . (8

2 {alU; (1) = Ugl + 1}

s'=0

where s;(¢') is the active strategy with the highest score of
the agent i. If the active strategy with the highest score
makes a prediction, which is consequently proved to be in
the minority group, the score of the inactive strategy should
be deducted because one may lose the profit from the active
strategy. If the active strategy with the highest score makes a
prediction, which is consequently proved to be in the major-
ity group, the score of the inactive strategy should be in-
creased because it may help avoid the loss caused by the
active strategy. With this updating form, the payoff of the
inactive strategy is regulated to be both score dependent and
agent dependent like other active strategies.

041111-4



MINORITY GAMES WITH SCORE-DEPENDENT AND...

The other type of agents are producers who offer the in-
formation to feed the speculators [20]. The producers only
have one active strategy randomly picked at the beginning of
the game. Let N, and N, be the number of speculators and
producers, both of them contribute to the outcome of the
game, thus the excess demand is defined as A(¢')
=2?§1+N1’ai(t’).

In the literature, both the real history and random history
have been adopted in the numerical simulations of the stan-
dard MG [45,46] and the grand canonical MG
[15,20,28,31,38]. A random history bit string is drawn ran-
domly and independently from the integers 1, ...,2". Some-
times the random history is convenient for the analytical
study. In Refs. [45,46], it has been argued that for some
observables, the history of the standard MG is irrelevant. For
the grand canonical MG, the real history and random history
usually produce qualitatively similar results. Only in some
cases the dynamic behavior of the grand canonical MG with
the real history is somewhat uneven. For example, for a very
small § and m such as §=2 and m=2, the periodic behavior
still remains. The random history yields a relatively clean
power-law behavior for the autocorrelation function, etc. In
this subsection, we have also performed the numerical simu-
lations with both the real history and random history. For a
very small § and m such as S=2 and m=2 and with the real
history, the grand canonical MG with the payoffs both score
dependent and agent dependent also show certain irregular
behavior. But as suggested above, this should not be the
defect of the score-dependent and agent-dependent payoffs.

Here we report the simulations for a=1.0, and with a
medium m and S, which are still small enough compared
with N and N,,. In addition to the scoring of the inactive
strategy in Eq. (8), we have also used an alternative scoring
of the inactive strategy for comparison, which sets the score
of the inactive strategy to be a random walk: U, (t'+1)
=U,o(t')+&, with & being a small random variable corre-
sponding to the random noise of the social environment.
Both types of scoring lead to qualitatively the same results.

In Fig. 4 we show the long-range temporal correlations of
the volatilities in the grand canonical MG with the score-
dependent and agent-dependent payoffs. The solid line is for
N,=500, N,=1001, §=3, and m=6 with the random history,
and the scoring in Eq. (8) for the inactive strategy. The slope
of the curve in a time interval 100, 4000] is measured to be
—0.14. The lower dotted line is for N;=500, N,= 1001, S=4,
and m=7 with the random history, and the score of the inac-
tive strategy is set to be the random walk. The curve obeys a
nice power-law behavior with an exponent —0.43. The upper
dotted line is for N,=500, N,= 1001, S=4, and m=7 with the
real history, and the score of the inactive strategy is set to be
the random walk. The slope of the curve in a time interval
[100, 4000] is measured to be —0.35, close to that of the real
markets.

B. Persistence probability distribution

In the preceding sections and subsections, we have dem-
onstrated that both the MG with the inactive strategy [20]
and the MG with the score-dependent and agent-dependent
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FIG. 4. Autocorrelation functions of the volatilities for the grand
canonical MGs with the payoffs both score dependent and agent
dependent for Ns=500 and Np=1001. The solid line is obtained
with the random history for a=1.0, S=3, and m=6, and the inactive
strategy is evaluated by the highest score of the active strategy.
Dotted lines are for a=1.0, S=4, and m=7, and the inactive strategy
has the score of a random walk: the upper dotted line is obtained
with the real history, the lower dotted line is with the random his-
tory. The dashed line has a slope of —0.35.

payoffs are rather successful in producing the stylized facts
of the financial markets. In this subsection, we show that the
MG with the inactive strategy still suffers from certain char-
acteristics of the periodic dynamics, especially with respect
to the dynamic behavior nonlocal in time. On the other hand,
the MG with the payoffs both score dependent and agent
dependent correctly produce the dynamic behavior nonlocal
in time.

In recent years, much attention in nonequilibrium dynam-
ics has been drawn to the dynamic behavior nonlocal in time
[47]. Such a concept has also been introduced to the financial
dynamics. An example is the persistence probability distribu-
tion [22,32,48,49], which describes the dynamic behavior
nonlocal in time, and also corresponds to the cumulative dis-
tribution function of the first passage time [50,51].

Starting from a time ¢’ and |A(t)|, the persistence prob-
ability P_(¢) [P,(t)] is defined as the probability that |A(¢'
+7)| has always been below (above) |A(¢')| in a time ¢, i.e.,
At +7) | <|A(t")| [JA(t' +7)| >|A(¢")|] for all 7<t. The av-
erage is taken over t'. In general, the persistence probability
distribution provides additional information to the autocorre-
lation function.

In Fig. 5, we compare the persistence probability distribu-
tion P_(r) of the daily data of the German DAX with that of
a random walk, the MG with the inactive strategy [20], the
MGs with the payoffs only score dependent, only agent de-
pendent, and both score dependent and agent dependent. For
the daily data of the German DAX, P_(r) obeys a universal
power law

P_()~r", ©)

with an exponent € estimated to be 0.90(2). The exponent
0<1.0 indicates a long-range correlation nonlocal in time.
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FIG. 5. The persistence probability distribution P_(z) of the
daily data of German DAX is compared with those of a random
walk and the MGs. Crosses denote P_(r) measured with the daily
records of the German DAX from October 1959 to January 1997.
The dashed line is P_(¢) of the MG with the payoffs both score
dependent and agent dependent at a=1.0, and circles denote that of
the MG with the payoffs only agent dependent. The dotted-dashed
line is P_(t) of the MG with the payoffs only score dependent. The
solid line denotes P_(¢) of the random walk and stars denote that of
the MG with the inactive strategy.

P_(z) of the random walk and the MG with the inactive strat-
egy obey a power-law behavior with the same exponent of
1.0, different from that of the German DAX. The MG with
the inactive strategy fails to produce the long-range correla-
tion nonlocal in time, and may still suffer from an implicit
periodicity.

P_(1) of the MG with the payoffs both score dependent
and agent dependent is consistent with that of the daily data
of German DAX. P_(r) of the MG with the payoffs only
agent dependent yields a curve with an exponent 6=0.82,
slightly smaller than that of the German DAX. The power-
law behavior of P_(z) of the MG with the payoffs only score
dependent is less clean, with an effective exponent bigger
than 1.0. This further confirms our observation that the agent
dependence of the payoffs enhances the temporal correlation
and the score dependence of the payoffs helps mainly re-
move the intrinsic periodicity.

P.(1) behaves much differently from P_(¢) and decays
faster than a power law. The behavior of P,(z) is not univer-
sal, for example, in the sense that it depends on the time
scale [32,49]. In Fig. 6, P.(r) and P_(¢) of the minute-to-
minute data of the German DAX and the MG with the pay-
offs both score dependent and agent dependent are plotted.
Within the errors the exponent #=0.88(2) for P_(r) measured
with the minute-to-minute data of the German DAX is con-
sistent with #=0.90(2) with the daily data. P.(r) decays
faster than P_(r). We observe that P,(¢) of the MG with the
payoffs both score dependent and agent dependent behaves
similarly to that of the minute-to-minute data of the German
DAX. The grand canonical MG leads to qualitatively the
same results, but the standard MG fails (not shown in the
figure). As one gradually changes the time scale from a
minute to a day, and to a week, etc., P,(f) tends to come
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FIG. 6. Persistence probability distributions P_(¢) and P, (z) of
the minute-to-minute data of the German DAX are compared with
those of the MG with the payoffs both score dependent and agent
dependent. P_(r) and P.(r) measured with the minute-to-minute
records of the German DAX from December 1993 to July 1997 are
denoted, respectively, by the solid line and the dashed line. P_(7)
and P.(7) of the MG with the payoffs both score dependent and
agent dependent at a=1.0 are denoted, respectively, by crosses and
circles.

closer to P_(¢). None of the above models could exactly fol-
low this crossover.

In the MGs, the total number of the strategies is usually
rather limited, and every agent selects § strategies and keeps
them unchanged during the dynamic evolution. Even though
the inactive strategy can modulate the number of the agents
who share a same strategy with the highest score, it is not
sufficient to completely change the periodic nature of the
dynamics. After introducing the score-dependent and agent-
dependent payoffs, however, a same strategy is indepen-
dently evaluated by different agents. It looks like many de-
grees of freedom are generated, and therefore, a correct long-
range correlation nonlocal in time emerges and the double
periodicity of the dynamics is essentially eliminated.

IV. MARKET EFFICIENCY AND LONG-RANGE
VOLATILITY CORRELATIONS

To understand the efficiency of the system, let us define
the standard deviation of the number of the agents in the

buyer group,
f — l (N (l‘,) N)Z
N N\ 2) /"

N,,(¢") is the number of the agents in the buyer group at each
time step, and (---) represents the average over the time ¢'.
o?/N is a convenient reciprocal measure of how efficient the
system 1is at distributing resources. The smaller it is, the
smaller the magnitude of the excess demand A(z') is. In Ref.
[33] it has been suggested that the main features of the stan-
dard deviation do not depend on the choice of the payoffs. In
this paper, different types of payoffs are introduced. Here we
are interested in the effect of the new payoffs on the standard

(10)
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FIG. 7. 0*/N as a function of z=2"/N for the standard MG with
the payoffs both score dependent and agent dependent with a=1.0,
S§=2, and N=101, 501, 1001 denoted by squares, triangles, and
crosses, respectively, in comparison with those for the standard MG
denoted by circles, stars, and pluses.

deviation. We report the result of o2/N at a=1.0, since it
provides a power-law behavior for the autocorrelation func-
tion and CDF with the exponents close to those of the real
markets.

In Fig. 7, 02/N for the standard MG is shown to be a
function only of z=2"/N [42]. In a certain sense, the system
undergoes a phase transition: (1) for a small z, 02/N is very
large, and decreases as z increases; (2) at the transition point
7=2,, it reaches a minimum; (3) as z goes beyond z., 0°/N
slowly increases and approaches the value for a random walk
for a large z.

In Fig. 7, we also plot 0>/N as a function of z for §=2
and N=101,501,1001 for the MG with the payoffs both
score dependent and agent dependent in comparison with the
standard MG. We find that the main phase structure of the
standard MG remains, and for a large z, o2/N also ap-
proaches the value for a random walk. Different from that of
the standard MG, however, o2/N is a function not only of
z=2"/N when z is small. Different N lead to different curves,
although the curves look similar in shape. This phenomenon
can be qualitatively understood. We note that 2" ~1In M and

M=22" is the total number of the strategies. Since now the
agents independently evaluate their strategies, the effective
number of the strategies increases with the number N of the
agents. Therefore, o does not increase in proportion to N,
and ¢?/N as well as the critical value z, decreases as N
increases. This strongly indicates that the MG with the pay-
offs both score dependent and agent dependent makes a dis-
tinct improvement in the utilization of the overall resource at
the small value of z. It confirms also our conjecture that the
new payoffs could efficiently remove the crowd effect of the
standard MG.

If one can calculate the effective number M, of the strat-
egies, in principle, 0?/N might be a function only of
In M4/ N. But we have not been able to find M, and there-
fore this remains as an interesting problem.

To further understand the payoffs both score dependent
and agent dependent, we investigate the average frequency

PHYSICAL REVIEW E 74, 041111 (2006)
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FIG. 8. The average frequency f() of the strategies cited con-
tinuously in time ¢ for each agent. The results are for S=2 and m
=2, and averaged over 100 runs. The upper solid line is for a
=1.0 and the lower solid line is for a=0.0.

f(2) of the strategies cited continuously in time 7 for each

agent. The results for a=0.0 and 1.0 are averaged over 100
runs and are shown in Fig. 8. The curves for a single run
look similar but with larger fluctuations.

For a=0.0, f(r) displays a periodicity of 2X2™, and it
consists with that of the standard MG [41]. For a=1.0, f(z)
shows a power-law behavior and no periodic behavior is ob-
served. Since the payoffs both score dependent and agent
dependent could efficiently remove the crowd effect, the
payoffs of the strategies for the even occurrences of a par-
ticular history may be positive, thus the strategies could be
cited continuously in a long period of time, and the period-
icity is consequently eliminated. This has also been con-
firmed in the calculations of the autocorrelation function.

When we look more carefully at the curves of f(z) in Fig.
8, we observe (i) at the early stage of the time evolution, for
example, r €[ 1,16], f(r) for a=0.0 decays almost 4 orders of
magnitude, while the frequency for a=1.0 decays only 3
orders of magnitude; (ii) for 1>500, f(¢) for a=0.0 drops
rapidly to zero, while f(r) for a=1.0 obeys a power-law be-
havior. Therefore, for a=1.0 the agents continuously cite cer-
tain strategies for quite a long time until the performances of
his or her strategies are reversed. It seems that the agents are
more cautious of their choices after introducing the payoffs
both score dependent and agent dependent. This may lead to
the long-range volatility correlations.

In summary, we testify that the payoffs both score depen-
dent and agent dependent efficiently remove the crowd effect
of the standard MG. The periodicity of the standard MG is
consequently eliminated and the efficiency is essentially in-
creased. On the other hand, since the agents could continu-
ously cite the strategies for a long time, a nonperiodic and
long-range time correlation is observed.

V. CONCLUSIONS

In summary, we introduce the payoffs both score depen-
dent and agent dependent into the standard minority game
(MG), and testify that this kind of payoff of the strategies
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may serve as an alternative dynamic mechanism of reproduc-
ing the stylized facts of the real markets, and can coexist
with the inactive strategy. The agent dependence of the new
payoffs is essential in producing the long-range volatility
correlations. Compared with the MG with the inactive strat-
egy and other variations of the MG, the MG with the payoffs
both score dependent and agent dependent makes a distinct
improvement in removing the intrinsic periodicity, and espe-
cially in the dynamic behavior nonlocal in time. In addition,
the efficiency of the system is significantly enhanced at the

PHYSICAL REVIEW E 74, 041111 (2006)

small value of z by avoiding the overcrowded use of certain
strategies. Based on this observation, an explanation is given
for the long-range volatility correlations.
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