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We show that arrival times for electromagnetic pulses measured through the rate of absorption in an ideal
impedance matched detector are equivalent to the arrival times using the average flow of optical energy as
proposed by Peatross et al. �Phys. Rev. Lett. 84, 2370 �2000��. We then investigate the transport of optical
pulses through dispersive media with negative dielectric permittivity and negative refractive index choosing the
geometry such that no resonant effects come into play. For evanescent waves, the definitions of the group
delay, and the reshaping delay get interchanged in comparison to propagating waves. The total delay times for
the evanescent waves can be negative in an infinite plasma medium even for broadband pulses. The total delay
time is, however, positive for broadband pulses in the presence of an interface when the radiation is detected
outside the plasma. We find evidence of the Hartman effect for pulses when the distance traversed in the
plasma is much smaller than the free space pulse length. We also show that for a negative refractive index
medium �NRM� with ����=���� the reshaping delay for propagating waves is identically zero. The total delay
time in NRM is otherwise dominated by the reshaping delay time, and for broadband pulses in NRM the total
delay time is subluminal.
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I. INTRODUCTION

Superluminal propagation of pulses has always been a
fascinating issue for the physics community. Since the origi-
nal analysis of Brillouin and Sommerfeld �1� who showed
that information transport represented by a sharp edge in the
wave field can never be superluminal, group velocities
greater than the speed of light in vacuum are often termed
abnormal or even meaningless. Likewise the time of traverse
through a medium or the seemingly related arrival time for a
wave at a point has always been a contentious issue �see
�2–4� for reviews�. As waves or wave packets are extremely
deformable objects, there can be no well-defined start or fin-
ish lines for them. This has resulted in a variety of time
scales that have been defined depending on what is being
measured �see �2–5� for some of the approaches�.

The Wigner �group� delay time �6� defined

�w = ��/�� , �1�

where � is the phase of the wave, and is based on tracking a
fiducial point on a wave packet that moves with the group
velocity vg=�� /�k, and has been a popular measure for the
time delay. The Wigner delay time can often unsurprisingly
be superluminal or even negative as there is no causal rela-
tionship between the peaks of the input and output wave
packets �7�. This has often been used to term the group delay
time as physically unimportant. But the group delay time,
superluminal or otherwise, has been shown to well describe
the arrival of electromagnetic pulses across absorptive media
�8� and amplifying media �9� particularly for narrow band-
widths and short propagation distances. In such cases the
apparent superluminal propagation of the pulse can be ex-
plained by preferential attenuation or amplification of the
trailing or leading edge, respectively. However, the experi-
ments of Wang et al. �10� on superluminal pulse propagation
in an almost nonabsorptive or nonamplifying medium, but

with highly and anomolously dispersive refractive index has
been a significant achievement in underlining the importance
of the group velocity in pulse propagation. Now ultraslow or
ultrafast group velocities including negative group velocity
have been demonstrated over large distances in optical fibers
as well �11�. Theoretically one notes that any pulse with a
shape described by a holomorphic function of time can ex-
hibit superluminal propagation without violating causality or
special relativity. This is because there is no information in
the peak that is not contained in the leading edge of the
pulse. The peak can, in fact, be obtained by a Taylor series
expansion about any point in the leading edge. Information
can only be encoded by a meromorphic function through
singularities in the function itself or in some derivative of the
function.

For pulses and particularly broadband pulses, Peatross et
al. �12� showed that the arrival time of a pulse at a point r
can be well described by a time average over the component
of the Poynting vector S normal to a �detector� surface at r as

�t�r =

u · �
−�

�

tS�r,t�dt

u · �
−�

�

S�r,t�dt

. �2�

Here u is taken to be the unit vector along the normal to the
given surface. The time of traverse between two points
�ri ,r f� is equal to the difference of the arrival times at the
two points, and was shown analytically to consist of two
parts: a contribution by the spectrally weighted average
group delay at the final point r f,
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�tG =

u · �
−�

�

S�r f,�����Re k/��� · �r�d�

u · �
−�

�

S�r f,��d�

, �3�

and a contribution that could be ascribed to the reshaping of
the pulse

�tR = T�exp�− Im k · �r�E�ri,��� − T�E�ri,��� , �4�

which is calculated with the spectrum at the initial point ri.
Here the operator T is

T�E�r,��� =

u · �
−�

�

Re�− i
�E�r,��

��
	 H*�r,��	d�

u · �
−�

�

S�r,��d�

,

�5�

which represents the arrival time of a pulse at a point r in
terms of the spectral fields and S�r ,��
Re�E�r ,��
	H*�r ,���, represents the Poynting vector. Here we take the
real parts of the quadratic terms since we use complex rep-
resentation for the fields, i.e., ei�k·r−�t� for a plane wave. The
total delay time was shown to remain subluminal for broad-
band pulses for traversal across a medium with Lorentz dis-
persion for the dielectric permittivity. The most significant
aspect of this proposal is that it does not involve any pertur-
bative expansion of the wave number around the carrier fre-
quency.

In any experiment, it is not the flow of radiative energy
that is measured but rather the energy absorbed by a detector.
Although a proportionality is expected between the two
quantities, the equivalence is not clear. Here we first present
our investigations on this aspect and conclude that the two
delay times are equal for an ideal detector with perfect im-
pedance matching.

We then investigate pulse traversal through dispersive me-
dia with negative material parameters �� and ��. Negative
refractive index materials �NRM�, which simultaneously
have �
0 and �
0 at a given frequency, have become
exceedingly popular in recent years �see �13,14� for recent
reviews�, particularly since their experimental demonstration
in artificially structured metamaterials �15–18�. The phase
vector in an isotropic NRM is opposite to the Poynting vec-
tor and pulse propagation in such media can be extremely
interesting. One can have all combinations of positive or
negative phase and group velocities in such media �19�.
Pulse propagation in NRM has been investigated with a pri-
mary focus on the negative refraction at interfaces �20–22�
and nonlinear NRM �23–25�. In the linear regime, Dutta
Gupta et al. �26� have studied the group delay time in a
cavity filled with a NRM in the zero dissipation limit and
have also shown superluminal propagation in the spectral
regions where the medium only has negative �. Negative
group velocities in NRM have also been reported �27,28�.

Here we study the delay time for pulse propagation in
NRM using the time averaged energy flow. We emphasize
the transport of pulses composed of evanescent waves
through a plasmalike medium with �
0. The traversal time
for evanescent waves itself is a very complicated matter
�29,30�. Given that NRM can support a host of surface plas-
mon states which can resonantly interact with evanescent
waves, it becomes even more interesting and imperative to
study the transport of these pulses of evanescent waves. The
paper is organized into the following sections: In Sec. II, we
discuss the arrival times as measured through the rate of
absorption by an ideal detector and its connection to the
energy flow. The delay times for evanescent pulses and pulse
transport through a plasma �infinite and semi-infinite with a
boundary� are presented in Sec. III. The delay times for pulse
propagation in NRM are discussed in Sec. IV and we con-
clude in Sec. V with a discussion of our results and their
implications.

II. ARRIVAL TIMES AT A DETECTOR

In an experiment, it is usually the energy absorbed by a
detector that is observed and not the energy flow directly.
Here we will investigate arrival time of a pulse at a detector
by using a time average over the rate of absorbed energy in a
detector defined as

�t�r =

�
−�

�

t
dA�r,t�

dt
dt

�
−�

� dA�r,t�
dt

dt

, �6�

where �dA /dt� is the rate of absorption of energy per unit
volume inside the detector placed at r. We will call this the
detector arrival time. The rate of absorption locally inside an
absorbing medium is given by �31,32�:

dA

dt
=� � d�d����0� Im������E*����E���

+ �0� Im������H*����H����e−i��−���t. �7�

This is integrated over the detector volume to obtain the total
rate of absorption. Obviously the spatial extent of the detec-
tor is assumed to be small compared to the length scales of
propagation or spatial pulse widths. Here we will assume the
pulse propagation along the z axis and the detector to be a
very thin slab of an absorbing medium placed in the path of
the pulse. Further the relative material parameters �� and ��
are assumed constant over the frequency range of interest,
i.e., the detector is dispersive only over much larger fre-
quency ranges. Here we will assume that the absorbing slab
has �= �9+ i5� and �= �9+ i5� when the detector slab is im-
pedance matched to vacuum, and �= �9+ i5� and �=1 other-
wise.

For our calculations we will use a dielectric medium with
a single resonance Lorentz dispersion:
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���� = �1 +
f�p

2

�0
2 − �2 − i��

	 , �8�

and a nondispersive ����=1. We choose f�p
2 =100�2 and

�0=100�. Now consider a pulse of light initially at z=0
whose electric field in time is given by

E�z = 0,t� = x̂E0exp�−
t2

�2	exp�− i�̄t� , �9�

and the detector slab is at z=c / �10��. The pulse is propa-
gated forward in time using Fourier transform methods and
the fields in the absorbing slab are used to compute the rate
of absorption at subsequent times. The effects of multiple
scattering within the detector slab are included in our calcu-
lations. In Fig. 1�a�, the detector arrival times are shown for
a narrowband pulse with �=10/�. These parameters are the
same as those used in Fig. 2�a� of Ref. �12�. In Fig. 1�b�, we
plot the difference of this detector time and the arrival time
using the energy flow given by Eq. �2�, and find that there are
small differences between them particularly near the reso-
nance frequency. However, for an impedance matched detec-
tor when ����=����, these differences tend to zero as
shown in Fig. 1�b�. This can be traced to the finite reflectivity
of the detector slab. It is well-known that the reflected por-
tion of the pulse will interfere with the incoming part of the
pulse and can change the traversal or delay times. For broad-
band pulses ��=1/�� also, we find that the detector arrival
times and the arrival times calculated from the average en-
ergy flow tend to be the same when an impedance matched
detector is used. We show the detector arrival times and the
difference between the times in Figs. 1�c� and 1�d�.

Thus we conclude that the detector arrival times and the
times obtained from the average energy flow of Ref. �12� are
equivalent for an ideal impedance matched detector. In the
remainder of this paper, we will only calculate the arrival
times using the average of the Poynting vector.

III. ARRIVAL TIMES FOR EVANESCENT WAVES

Now we will consider the arrival times for pulses com-
posed entirely of evanescent waves. This is analogous to the
quantum mechanical tunneling of a particle under a barrier.
Such situations arise directly in the transport of radiation
across a metal slab or under conditions of total internal re-
flection. Since the phase vectors for the evanescent waves are
imaginary, interesting questions arise regarding their tra-
versal times �2,3�. One of the most paradoxical aspects is the
saturation of the Wigner delay time with the barrier
thickness—also known as the Hartman effect �33�.

Now consider the complex wave vector in a medium,

k2 = ��
�2

c2 . �10�

In the limit of small imaginary parts of � and �, one can
write

kr = Re�k� � ��r�r − �i�i
�

c
, �11�

ki = Im�k� �
�r�i + �i�r

2��r�r − �i�i

�

c
, �12�

where the subscripts r and i indicate the real and imaginary
parts of the quantities. Thus for propagating waves, the real
part of the wave vector depends primarily on �r and �r while
the imaginary part is directly proportional to �i and �i or the
dissipation. This however, becomes different for evanescent
waves �34�. To make clear the discussion for evanescent
waves, we will consider an absorbing electric plasma with
�r
0, �i�0, and �=�r. Now,

kr �
1

2
� �r

�r
�i

�

c
, �13�

ki � ��r�r
�

c
. �14�

Thus the real part of the wave vector depends on the levels of
dissipation in the medium ��i� and the imaginary part of the
wave vector which determines the decay of the wave de-
pends on �r. This implies, in turn, that the definitions of the
group delay time and the deformation delay time given by
Eqs. �3� and �4�, respectively, get interchanged for evanes-
cent waves. This is an important difference for the arrival
times of evanescent waves from that of propagating waves
�5�. Note that the same behavior holds for the case of eva-
nescent waves in total internal reflection when the parallel
component of the wave vector becomes important. This be-
havior can also be analytically continued for larger values of

(a) (b)

(c) (d)

FIG. 1. �a� The total delay times as a function of frequency
when measured by using the rate of absorbed energy in a detector
and a time expectation integral over the Poynting vector for narrow-
band pulses, where �c is the carrier frequency. �b� The difference of
the arrival time by the detector and the arrival time of the pulse
using the energy flow equation for an impedance matched and a
mismatched detector for a narrowband pulse. �c� and �d�, respec-
tively, repeat �a� and �b� for broadband pulses.
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the imaginary parts. This essential difference arises because
the decay length for evanescent waves is determined by �r
and not �i.

A. Pulse traversal in an unbounded plasma

Now we will investigate the arrival times for evanescent
pulses inside a plasma. To be specific, we will consider the
relative dielectric permittivity of the plasma to be of the
causal form

�p��� = 1 −
�p

2

��� + i��
, �15�

where effectively �0=0 and f =1 in Eq. �8� and the relative
magnetic permeability �=1. For convenience of comparison,
since the pole of the dielectric function is at zero frequency,
there is a need to redefine what we mean by broadband and
narrowband phenomena. To compare phenomena across dif-
ferent frequencies, we note that the product �̄�, where �̄ is
the carrier frequency and � is the pulse duration in Eq. �9�
gives a criterion for broadband or narrowband pulses. Typi-
cally we take �̄�=1000 or 100 for narrowband pulses and
�̄�=10 for broadband pulses.

We consider that both the source of the radiation and the
detector are embedded inside the plasma and that the plasma
is unbounded. This is to avoid any effects of scattering from
the boundaries and study the inherent effects of the plasma
on the traversal times. The distance between the source and
the detector is taken to be �r.

In Fig. 2, we plot the delay times obtained for pulse tra-
versal inside the unbounded plasma with a plasma frequency
�p=10�. First of all, we note that the total delay time is
negative for a large range of frequencies and mostly super-
luminal below the plasma frequency. The total delay time is
also dominated by the reshaping delay time at frequency �̄
less than �p. Above the plasma frequency for propagating
waves, this reshaping delay smoothly goes over to the group
delay which dominates the total delay. The dominance of the
reshaping delay below the plasma frequency can be under-
stood that inside an infinite plasma, the energy flow for the
evanescent waves at any point in the dissipative medium is
determined by the absorbed energy in the region of space
beyond that point up to infinity. Hence the absorption deter-
mines the energy transport, and hence the delay time as well.
In the limit of a monochromatic wave, one would expect
only this reshaping delay. For larger bandwidths, the contri-
bution of the group delay becomes appreciable at higher fre-
quencies ��̄�7� to 10� in Fig. 2�b��. We also note that the
qualitative behavior of the delay time does not change appre-
ciably with the increase in distance between the source and
the detector except for the difference in scales �Figs. 2�a�,
2�c�, 2�b�, and 2�d�, respectively�.

B. Pulse traversal through a bounded plasma

Here we will consider the situation of a plasma with a
semi-infinite extent. We will consider the source of the radia-
tion is inside the plasma at a distance �r from the planar
interface with vacuum. The detector is taken to be in vacuum

just outside the interface. This is more physical because there
would be an interface �impedance mismatched� involved
with the detector anyway. A corresponding physical situation
would be an atom located within the plasma and emitting
radiation, whose leakage is detected outside the plasma. For
simplicity, we consider only waves with a zero parallel wave
vector. Then the radiation does not couple to any surface
plasmon modes of the plasma-vacuum interface. Thus our
source would be an infinite shield of current parallel to the
interface. The interface has an important effect of changing
the amount of energy that reaches the detector via the trans-
mittance of the interface given by

Tp =
2�� f

��p + �� f

, �16�

where Tp is the Fresnel transmission coefficient for the
P-polarized light. � f =1 is the relative dielectric permittivity
in free space. Thus the field at the detector is given by

H�r f,�� = Tp���eik·�rH�ri,�� , �17�

where k is the wave vector in the plasma. Note that the final
delay times however do not depend on the polarization at
normal incidence �k� =0�. The geometry of a semi-infinite
plasma that we consider here also avoids any coupling with
the slab resonances such as Fabry-Pérot resonances or sur-
face plasmon polaritons. Thus, we can study purely the ef-
fects of the intrinsic plasma on the traversal time.

FIG. 2. �Color online� The total delay time, the reshaping delay
time, and the group delay time represented by –, � and 	 as a
function of the carrier frequency �̄ in an unbounded plasma. �a�
Delays for narrowband pulses ��̄�=100� and �r=ẑc /100�. �c�
Same as �a�, for large distance �r=ẑc /10�. Frames �b� and �d�
correspond to broadband pulses ��̄�=10� and are similar to �a� and
�c�. The vertical line drawn at �̄ /�=10 separates the propagating
waves from the evanescant waves. Note that the group delay and
the reshaping delay times interchange their roles for the evanescent
waves in comparison to the propagating waves. The straight line
going across the graphs denoted as LL, is the light line for free
space propagation ��t=�r /c�.
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In Fig. 3, we plot the delay times for pulses from a source
within a plasma for different bandwidths and distances of the
source from the boundary. First of all, we note that the re-
shaping delay time is negligible compared to the group delay
time even for �̄
�p. The group delay dominates the total
delay time for small source to interface distances ��r
=ẑc /10� and ẑc /100��. This important difference from the
case of an unbounded plasma results because the presence of
the boundary causes a reflected evanescent wave. Now en-
ergy transport is primarily determined by the phase differ-
ence of the incident evanescent wave and the reflected wave,
and not only by the dissipation in the medium. Thus the
group delay time plays the determining role. Secondly it
should be noted that the total delay time is almost always
positive except near the plasma frequency for narrowband
pulses and small �r�=ẑc /10� and =ẑc /100��. One notes that
negative delay times result for narrowband pulses ��̄�
=100� and small �r even for propagating waves ���0� near
�̄=�p. This is a consequence of the k=0 mode at �=0. This
negativity goes away for larger bandwidths.

At a much larger source to interface distance ��r
=ẑc /��, the deformation of the pulse contributes appreciably
to the total delay time. We show the delay times in Figs. 4�a�
and 4�b� for �r=ẑc /� at different bandwidths. The behavior
of the reshaping delay time ��̄
�p� tends to that of the
behavior in an infinite plasma while the group delay time
strongly moderates this contribution to the total delay, and
the total delay time is positive almost everywhere. Surpris-
ingly we note that there is a small region of frequencies
where the total delay time goes negative even for broadband
pulses, and at this large distance involved. However, we note
that the spectral width of the region where the total time
becomes negative, reduces with increasing pulse band width.
Hence in the limit of very large bandwidths, we expect this
spectral width to go to zero asymptotically.

We note the presence of a Hartman effect in our calcula-
tions as well. In Figs. 4�c� and 4�d�, we plot the delay times

with respect to carrier frequency without scaling with respect
to the temporal pulse width. We find that over a large range
of carrier frequencies below the plasma frequency, the delay
time is almost the same for various distances involved ��r
=ẑc /10� and ẑc /1000��. This is seen for both broadband
pulses as well as narrowband pulses for these �r. This satu-
ration of the delay time with distance is a generalization of
the Hartman effect for broadband pulses which is usually
noted for monochromatic evanescent waves. However, for
much larger distances ��r=ẑc /�� which are comparable to
the spatial pulse width in free space �l=c��, the deformation
takes over and the Hartman effect is lost. It is important to
mention that in our case it is the dissipative nature of the
medium that destroys the Hartman effect. Finally, we note
that, the negativity or superluminal delays are always a frac-
tion of the pulse width, and thus does not imply any violation
of causality in all these cases.

IV. ARRIVAL TIMES IN NEGATIVE REFRACTIVE
INDEX MEDIUM

In this section, we will discuss the arrival times for pulses
propagating through negative refractive index medium. A
sufficient condition for negative refractive index is �
0 and
�
0 at any frequency �14�.

First, we note that an unusual situation arises when the
value of � becomes equal to that of � �a case of propagating
waves�. For this case, the reshaping delay turns out to be
zero. Note that the value of the refractive index becomes
equal to � or � when �=�. The electric field at the initial
point is given by

E�ri,�� = x̂
E0

2�2
�e−

�� − �̄�2

4
�2

. �18�

In an unbounded medium, the electric field at the final point
is related to that at the initial point as
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FIG. 3. �Color online� The various delay times plotted for the
bounded semi-infinite plasma. As in Fig. 2, the graphs �a� and �c�
correspond to the narrowband pulses and �b�, �d� correspond to the
broadband pulses for different distances. The symbols are similar to
Fig. 2.

FIG. 4. �Color online� �a� The various delay times plotted for
large source-boundary distance ��r=ẑc /�� and narrowband pulses
��̄�=100� for a bounded semi-infinite plasma. The symbols are
similar to Fig. 2. �b� Same as �a�, but for broadband pulses ��̄�
=10�. The Hartman effect can be observed in graphs �c� and �d�
which correspond to the total delay times for various parameters
shown.
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E�r f,�� = E�ri,��eik·�r, �19�

where r f =ri+�r and k is the wave vector in the medium.
The magnetic field is related to the electric field through the
Maxwell’s equation,

H�ri,�� = ŷ
E0

2�2

1

c�0
�e−

�� − �̄�2

4
�2

, �20�

and

H�r f,�� = ŷ
E0

2�2

1

c�0
�e−

�� − �̄�2

4
�2

eik·�r. �21�

Using these, we calculate the delay time for pulse propaga-
tion between the initial and the final positions and see that
the total delay time consists of only one nonzero term which
is the group delay time,

�t =

�
−�

�

�2e−
�� − �̄�2

2
�2

e−2 Im k·�r���Re k/��� · �r�d�

�
−�

�

�2e−
�� − �̄�2

2
�2

e−2 Im k·�rd�

.

�22�

This means that the reshaping delay time identically vanishes
and no reshaping of the pulse takes place in a medium with
�=�. Even for a bounded medium with an interface separat-
ing the given medium from vacuum, due to perfect imped-
ance matching, we note that the transmission coefficient
through the interface is unity. This means that the dispersion
in the transmission of the pulse through the interface plays
no role and the reshaping delay disappears here too.

For concreteness, we consider the following causal dis-
persive forms for � and �: The Drude Lorentz form for �
given by Eq. �15� and a Lorentz dispersion for � given by

� = 1 +
�m

2

�0m
2 − �2 − i��

. �23�

For convenience, we take �0m=5�, �m
2 =64�2, and the

rate of dissipation � in � to be the same as that in �. This
results in an electric plasma ��
0, ��0� for 0
�
5�, a
negative refractive index medium ��
0, �
0� for 5�
�

9.434�, an electric plasma ��
0, ��0� for 9.434�
�

10�, and a positive refractive index medium ���0, �
�0� for ��10�. The dispersions of � and � are shown in
Fig. 5.

First, we study the behavior in an infinite medium. We
plot the delay times �total, group and reshaping delays� for a
pulse in Fig. 6. We note that at low frequencies, the delay
time is negative as in an infinite plasma. However, there is a
large peak in the total delay time at �̄�3�. The group delay
almost exclusively contributes to this. This is presumably
due to the rapid increase in Re���. In the negative refractive
region, when there are propagating waves in the medium,
there is appreciable contribution from both group and re-
shaping delays. The reshaping delay time is mostly negative.
We note that the total delay time is always positive as well as
subluminal in the negative index frequency region.

Now, we take a semi-infinite medium with the above ma-
terial dispersion. As in Sec. III B, we take the source to be
inside the semi-infinite medium at a distance �r from the
interface with the vacuum and detect the radiation outside.
As before, we consider only waves with a zero parallel wave
vector �k� =0�. In Fig. 7, we plot the delay times for different
distances in both broad and narrowbands. At low frequencies
for narrowband pulses, we have the behavior in a plasma
�Figs. 7�c� and 7�d��. Even for frequencies, �̄�10�, when
the index is positive, the nonunit dispersive magnetic perme-
ability ��
1� gives rise to a large reshaping delay for broad-
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FIG. 5. �Color online� Dispersion of the real and imaginary parts
of � and � given by Eqs. �15� and �23�. The vertical lines at fre-
quencies 5�, 9.434�, and 10� separate the frequency regions where
the field modes are either evanescent or propagating. See text after
Eq. �23�.
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FIG. 6. �Color online� The various delay times plotted as a
function of �̄ in an unbounded medium which behaves like a
plasma and with negative or positive refractive indices for certain
frequency ranges for broadband pulses ��̄�=10� and �r=ẑc /10�.
The vertical lines at frequencies 5�, 9.434�, and 10� separate the
frequency regions where the field modes are either evanescent or
propagating. The symbols are similar to Fig. 2.
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band pulses. We note that the reshaping delay plays a major
role in determining the times in the negative refractive index
region. In fact for broadband radiation, the bulk of the total
delay time comes from the reshaping delay �Figs. 7�a� and
7�b��. The group delay time disperses rather violently near
�̄=�0m. For narrowband pulses ��̄�=100�, the total delay
time can become negative near regions where a change of
sign occurs in � or �. But for broadband pulses ��̄�=10�,
this negativity disappears even for short distances of propa-
gation. We also note that for broadband pulses, the total de-
lay time can be significantly larger �of the order of a pulse
width� and it is always subluminal when the refractive index
is negative.

V. CONCLUSIONS

Pulse propagation through dispersive materials has always
raised counterintuitive issues regarding superluminal propa-
gation and negative delay times. Measuring the arrival times
of electromagnetic pulses via the average flow of energy was
first proposed by Schwinger �35� and the neat decomposition
of this delay time into the average group delay time and the
reshaping delay time by Peatross et al. �12� has made it an
attractive candidate for describing the traversal of pulses. In
fact these times have also been experimentally measured un-
derlining their importance �36�.

In this paper, we have first shown that the arrival times
based on the average energy flow are equivalent to the times
measured by the rate of absorption in the detector volume for
an impedance matched perfect detector. Thus the intuitive
feeling that the two times should be equivalent has been
confirmed by rigorous comparison. An impedance mismatch,
however, renders the two times nonequivalent.

We then investigated the delay times using the average
energy flow for evanescent pulses and demonstrated an im-

portant difference from the propagating pulses. The very
definitions of the average group delay time and the reshaping
delay time for the evanescent pulses get interchanged due to
the �primarily� imaginary wave vector for evanescent waves.
Thus � Re�k� /�� contributes now to the deformation of the
pulse via the dissipation and Im�k� contributes to the group
delay.

We then evaluated the delay times for pulses traversing a
plasma with negative ����. We have shown that in an infi-
nitely extended plasma, the delay time is primarily deter-
mined by the reshaping delay time and is usually negative.
This is because the energy flow at any point in the infinite
plasma is essentially determined by the dissipation in the
regions up to the point of detection. On the other hand, in a
bounded plasma when the radiation is detected outside the
boundary �in vacuum�, the group delay time dominates and
the total delay times are usually positive and subluminal for
large enough frequency bandwidths associated with the
pulses. The interface also modulates the delay times via the
dispersion of the transmission coefficient. The reflected eva-
nescent waves play an important role in the energy transport.
We also note the Hartman effect in the context of energy
transport for evanescent pulses when the source to boundary
distance is small compared to the free space pulse length.

In the case of negative refractive index materials, mod-
eled by causal ���� and ����, the total delay times are domi-
nated by the reshaping delay times. The group delay time
contributes largely near the transition frequencies when
Re��� and Im��� change signs. We have proven an important
result that the reshaping delay time is identically zero for a
medium with ����=����.

We should point out that the delay times that we have
calculated here are due to the intrinsic dispersive nature of
the material parameters, ���� and ����. The geometries that
we have chosen, that of infinite or semi-infinite media con-
taining the source ensure that no geometrical resonances
such as Fabry-Pérot resonances for slabs, are present to af-
fect the times calculated. Although the media with negative
���� and ���� can support a variety of surface plasmon
resonances even on the surface of semi-infinite media, our
calculations for normally incident waves with k� =0 ensures
that radiation cannot couple to these resonances.

Finally we would like to point out that although we obtain
superluminal or negative total delay times in many cases, for
example in a plasma, the superluminality or the negativity is
always a fraction or of the order of the pulse width. Thus for
a Gaussian pulse with an infinite support �in principle�, there
is no violation of causality implied by our results. This is in
spite of our calculations based on energy transport.
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FIG. 7. �Color online� �a� The various delay times plotted as a
function of �̄ in a bounded medium. The parameters and symbols
are similar to Fig. 6. �b� Same as �a�, with �r=ẑc /100�. Frames �c�
and �d� correspond to narrowband pulses ��̄�=100� with source-
boundary distances �r=ẑc /10� and �r=ẑc /100�.
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