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We present an analytical description of free-electron-laser �FEL� oscillations in a perfectly synchronized
optical cavity by solving the one-dimensional FEL equations. It is shown that the radiation stored in the cavity
eventually evolves into an intense few-cycle optical pulse in the high-gain and low-loss regime despite the
lethargy effect. The evolution of the leading slope of the optical pulse, which is defined from the front edge
toward the primary peak, is found to play an important role in generating the intense few-cycle optical pulse.
The phase space evolution of electrons which interact with the leading slope is solved analytically in a
perturbation method, leading to an analytical solution for the optical pulse evolution. The peak amplitude and
the pulse length at saturation are found to scale with the electron beam density and optical cavity loss. Those
scalings agree well with the intense few-cycle pulses recently observed in a high-power FEL.
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I. INTRODUCTION

A free-electron laser �FEL� is one of the most important
coherent sources of radiation. It can produce intense, ul-
trashort laser pulses at any wavelength. These unique capa-
bilities will open up new research fields in chemical, biologi-
cal, and material science �1�, e.g., quantum control of atomic
and molecular states �2�.

The FEL dynamics is affected by the slippage that is
caused by the velocity difference between the electron bunch
and the optical pulse inside an undulator. The group velocity
of the optical pulse becomes slightly slower than the vacuum
speed of light, since the trailing slope of the optical pulse is
mainly amplified due to the slippage. This phenomenon,
called the laser lethargy �see Ref. �3� and references therein�,
can be compensated in oscillators by slightly shortening the
optical cavity length from the perfect synchronism ��L=0�,
where the cavity length exactly matches with the injection
period of the electron bunches. The FEL dynamics of the
oscillators with shorter cavity length ��L�0� has been stud-
ied extensively �4,5�. At �L=0, the optical pulse centroid
continues to be retarded on successive passes through the
undulator, and the optical pulse finally dissipates, as shown
in theoretical studies �6–8�.

The parameters used in the above theoretical studies for
FELs at �L=0 are similar to those of the first FEL oscillation
at Stanford University �9�, where Colson’s dimensionless
current j0=2�4��Nw�3 was a small value, j0=5 �6�. Here � is
the fundamental FEL parameter proportional to the cubic
root of the electron beam density ne �10�, and Nw is the
number of undulator periods. After the first FEL oscillation,
high-gain FEL oscillators with j0�5 such as FELIX �11�
have been developed worldwide, but no experimental obser-
vation of lasing at �L=0 was reported until recently. A pos-
sible reason is that the number of interactions between the
round-trip optical pulse and incident electron bunches was
restricted to a few hundreds, since normal conducting linacs
operating in the L or S band were used as driver accelerators
for the high-gain oscillators.

The development of a high-power FEL driven by a super-
conducting linac has resulted in a FEL operating in the high-
gain regime such as j0=50 with pass number greater than
1000, at the Japan Atomic Energy Research Institute
�JAERI� FEL facility �12�. An experiment at the JAERI FEL
showed that an intense, ultrashort optical pulse was gener-
ated at �L=0.0±0.1 �m despite the lethargy �12,13�. The
optical power curve measured with respect to �L is well
reproduced by the time-dependent simulation code based on
one-dimensional �1D� FEL equations �14�, if shot-noise ef-
fect is included in every fresh electron bunch as suggested by
Brau �15�. A few theoretical studies have attempted to ex-
plain the FEL oscillation at �L=0, proposing that sideband
instability �16� or superradiance in short-pulse FELs �17� is
the fundamental physics responsible for the lasing at �L=0.
Nevertheless, the underlying physics responsible for the FEL
oscillation at �L=0 has not been clearly explained yet.

A distinguishing feature of the oscillation at �L=0 from
those where �L�0 is that the amplitude of the optical pulse
increases exponentially along the leading slope, which is de-
fined from the front edge toward the primary peak amplitude
in the present paper. The amplitude at the front edge remains
at the spontaneous emission level, since the position of the
front edge is the same as that of every incident electron
bunch at the entrance to the undulator �18�. The optical pulse
energy is mainly carried by the primary peak area at satura-
tion �14� and the leading slope of the FEL pulse plays an
important role in the FEL oscillation at �L=0. The intensity
gradient of the leading slope with respect to the longitudinal
position increases with the pass number n and the optical
field is sustained in saturation, as shown in a numerical simu-
lation �see Sec. III�. These features of the oscillation at �L
=0 observed in the simulation cannot be explained by the
shot-noise effect only.

In this paper, we investigate the FEL evolution and satu-
ration at �L=0 by analytically solving the 1D FEL equations.
A set of nondimensional parameters and the 1D FEL equa-
tions described in Sec. II are employed for the present study.
The optical pulse on the first pass, which is equivalent to the
output of a self-amplified spontaneous-emission �SASE�
FEL and represented by the solution of the cubic equation
�10,19,20�, is reflected back into the undulator for subse-*Electronic address: nishimori.nobuyuki@jaea.go.jp
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quent amplifications in FEL oscillators. The phase space evo-
lution of electrons on the second pass that interact with the
leading slope of the FEL pulse is obtained in a perturbation
method similar to that used in our previous work for the
phase space evolution of electrons in a SASE FEL �21�,
which is briefly described in Sec. IV. Consequently, an ana-
lytical solution for the optical growth of the leading slope
during the second pass is derived. The leading slope of the
output pulse is shown to be approximated by that of a SASE
FEL with FEL parameter greater than � in Sec. V. The same
process can thus be applied to pass numbers greater than n
=2 and the evolution of the leading slope with respect to n is
obtained analytically. The output field similar to that of a
SASE FEL accounts for the exponential increase of the field
amplitude in the leading slope from the front edge toward the
primary peak, and the amplitude gradient with respect to the
longitudinal position is shown to increase with n. With the
increasing gradient, the field gain per pass decreases down to
the level of optical cavity loss �, and a self-similar radiation
pulse is generated at saturation �see Sec. VI�, as already seen
in our previous numerical simulation �14�. The evolution of
the leading slope leads to sustained FEL oscillations at �L
=0 and thus disappearance of the lethargy effect. The peak
intensity of the intracavity radiation field in saturation is
found to reach approximately 37�−4/3 times higher than that
of a long-pulse SASE FEL with the same �. The pulse length
is shown to be given by 0.036�1/3 /� in units of FEL wave-
length, which can go down to a few wavelength cycles in the
regime of high-electron-beam density � and low loss �. The
peak intensity and pulse length obtained in the present study
agree well with experiments performed at the JAERI FEL
�see Sec. VII�. Finally, our conclusions are given in Sec.
VIII.

II. 1D FEL EQUATIONS

A relativistic electron beam traveling through an undula-
tor emits spontaneous radiation along the undulator axis. The
bandwidth of the radiation field decreases due to the spec-
trum narrowing as the beam passes through the undulator
�6�. The field within the bandwidth is then amplified by in-
teracting with the undulating electrons. The electron dynam-
ics in the radiation field and evolution of the laser field are
represented by 1D FEL equations �6,15�.

The dimensionless 1D FEL equations of Colson are used
in the present study under the slowly varying envelope ap-
proximation �22�, while the variables used here are similar to
Bonifacio’s variables �10�. The simplest situation is consid-
ered in the present study. The electron beam energy is given
by �0mc2 with small energy spread. The initial electron
bunch has a rectangular shape with density of ne and a uni-
form distribution in phase. The fundamental FEL parameter
in MKSA units is given by

� =
1

�0
�eawF�ne/��0m�/�4ckw��2/3. �1�

Here 	w=2� /kw is the period of the undulator, aw is the
undulator parameter, and F is unity for a helical undulator or
a Bessel function �JJ� for a planar undulator �10�. The di-

mensionless time is defined by 
=4��ct /	w, so that �
=1
corresponds to the transit time of light through one gain
length of 	w / �4���. The longitudinal position of the ith elec-
tron is defined by �i�
�=4���zi�t�−ct� /	r, so that ��=1 cor-
responds to the cooperation length defined by Lc=	r / �4���.
Here 	r=	w�1+aw

2 � / �2�0
2� is the resonant wavelength. The

dimensionless field envelope is defined by

a��,
� =
2�eaw	wF

�4���2�0
2mc2E��,
�exp�i���,
�� , �2�

with phase ��� ,
�, which is equivalent to Bonifacio’s enve-
lope �10�. Here E�� ,
� is the rms optical field strength. The
dimensionless energy and phase of the ith electron are re-
spectively defined by �i�
�= ��i�t�−�0� / ���0� and i�
�
= �kw+kr�zi�t�−�rt, where kr=2� /	r is the wave number of
the resonant wavelength 	r. The dimensionless energy �i�
�
also means the dimensionless energy change at 
 from 
=0,
since the energy spread of the initial electron beam is as-
sumed to be small, i.e., �i�0�=0.

In the present definition, the evolutions of the field enve-
lope a�� ,
�, the energy �i�
�, and the phase i�
� of the ith
electron during FEL interaction are respectively given by �6�

d�i�
�
d


= a��i�
�,
�exp�ii�
�� + c.c., �3�

di�
�
d


= �i�
� , �4�

�a��,
�
�


= − �exp�− ii�
����i�
�=�. �5�

The angular brackets indicate the average of all the electrons
in the volume V around �.

III. NUMERICAL SIMULATIONS

Our numerical simulations, which solve the time-
dependent 1D FEL equations with the macroparticle model
�15,14�, have already reproduced the FEL efficiency curve
measured at the JAERI FEL as a function of �L �12�. The
macroparticle model allows us to easily deal with the shot
noise of an electron bunch. A method developed by Penman
and McNeil has been employed in the simulations to give an
appropriate shot-noise effect by compensating for the limited
number of macroparticles �23�. The number of macropar-
ticles used is 100 for every resonant wavelength 	r and the
typical electron bunch length is 100	r, which corresponds to
400�� in units of Lc. The optical field is described at points
separated by 	r. The time evolutions of the optical field and
the phase space of electrons are calculated every �
 � 4��
from Eqs. �3�–�5� and are integrated over the whole undula-
tor length in a similar way as described in Refs. �14,15�.

One of the most important conclusions of our previous
numerical simulations is that the small shot noise needs to be
included in every fresh electron bunch to reproduce the high
extraction efficiency at zero detuning length of an optical
cavity observed at the JAERI FEL �14�. On the other hand,
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the simulations also show that a distinguishing feature of the
oscillation at �L=0 from those where �L�0 is that the am-
plitude of the optical pulse increases exponentially along the
leading slope from the front edge toward the primary peak
amplitude, while the amplitude at the front edge remains at
the spontaneous emission level �18�. The intensity gradient
of the leading slope with respect to the longitudinal position
increases with pass number n and the optical field is sus-
tained in saturation, as shown in Fig. 1, which depicts the
temporal profiles of optical amplitudes with respect to � on a
semilogarithmic scale obtained in the simulation at the en-
trance to the undulator on the second, tenth, and 1000th
passes. These features of the oscillation at �L=0 cannot be
explained by the shot-noise effect only. The incident electron
bunch used in the simulations has a length of Lb and a con-
stant FEL parameter � independent of �. Both Lb and the
slippage distance Ls=4��Nw in units of Lc are longer than
the distance from �=0 to the peak position at saturation, �p.
Here �=0 stands for the front edge of the optical pulse and
agrees with that of the incident electron bunch at the entrance
to the undulator, and �p represents the position of the primary
peak amplitude of the optical pulse. The region from �=0 to
�p is defined as the leading slope in the present paper.

The leading slope is similar to that in a high-gain SASE
FEL �10�. In both cases, the amplitude at �=0 is at the spon-
taneous emission level, while the subsequent portions of the
amplitude increase exponentially with the distance from the
front edge �18�. The gradient of the amplitude increases
along with the pass number n and is kept almost constant in
saturation. This evolution of the leading slope as well as the
phase space evolution of electrons are analyzed in Secs. IV
and V.

IV. OPTICAL FIELD AND ELECTRON PHASE SPACE
EVOLUTIONS ON THE FIRST PASS

The optical field and electron phase space evolutions on
the first pass, which are equivalent to those in a SASE FEL,

are presented in our previous work �21� and summarized
briefly in this section. The startup process known as spec-
trum narrowing in the frequency domain �24� or longitudinal
phase mixing in the time domain �25� leads to a uniform field
in time and space. The phase of the field ��0� is almost
uniform over the length N	r along the propagation direction
when the incident electron beam passes through N undulator
periods �6,25�. In the present study, the initial uniform field
is assumed to be given by �a�0� �ei��0� for simplicity. The
initial field evolves through electric interaction with undulat-
ing electrons as it passes through the undulator. The incident
electron beam is assumed to be uniformly distributed in
phase i�0� with resonant energy �i�0�=0 and interacts with
the SASE FEL field in the steady-state region due to the
slippage �10�. The evolution of the uniform field as a func-
tion of time is derived from Eqs. �3�–�5�, as described by
Colson et al. in Ref. �20�.

The electron phase can be expressed as i�
�=i�0�
+�i�
� where �i�
� is the first-order perturbation in a�
�.
The field at time 
 for the steady-state region where ��−
 is
given by

a�
� = a�0� + i	
0




�exp�− ii�0���i�
����i�
�=�d
�. �6�

The ith electron interacts with the field in the steady-state
region due to the slippage, and the energy modulation at 
�
during �
� is given from Eq. �3� by ��i�
��= �a�
��eii�0�

+c.c . ��
�. The energy change of the ith electron at time 
,
�i�
�, is given by the sum of those modulations during 
:

�i�
� = 	
0





a�
��exp�ii�0�� + c.c.�d
�. �7�

The electron phase perturbation is given from Eq. �4� by

�i�
� = 	
0




�i�
��d
� �8�

=	
0




d
�	
0


�

a�
��exp�ii�0��

+ c.c.�d
�. �9�

Substitution of Eq. �9� into Eq. �6� leads to

a�
� = a�0� + i	
0




d
�	
0


�
d
�	

0


�
a�
��d
�. �10�

The integral equation �10� can be written in a differential
form by taking successive derivatives, a��
�= ia�
�. The solu-
tion is expressed in the form a�
�=�n=1

3 an exp��n
� where
the �n are three complex roots of the cubic equation �3= i
�10,19,20�. When the initial conditions ȧ�0�= ä�0�=0, the
field at time 
 for the steady-state region where ��−
 is
given by

FIG. 1. Temporal profiles of optical amplitudes �a�� ,0�� at �L
=0 on the second �solid line�, tenth �dotted line�, and 1000th passes
�dash-dotted line� plotted on a semilogarithmic scale. The position
of the incident electron bunch at the entrance to an undulator is
schematically shown as well. The parameters in the simulation are
�=0.0045, Lb=5.6, Ls=3.4, and the optical cavity loss �=0.05.
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a�
� =
�a�0��ei��0�

3
�exp�
ei�/6� + exp�− 
e−i�/6�

+ exp�
e−i�/2�� , �11�

where the first term is an exponentially growing term, the
second term is an exponentially decaying term, and the third
is an oscillating term. Equation �11� is valid in the linear
regime before saturation when the incident electron beam is
resonant.

The integration of Eq. �7� after substitution of Eq. �11�
yields

�i�
� =
2�a�0��

3

e�3
/2 cos�i�0� + ��0� + 
/2 − �/6�

− e−�3
/2 cos�i�0� + ��0� + 
/2 + �/6�

+ cos�i�0� + ��0� − 
 + �/2� . �12�

The integration of Eq. �8� after substitution of Eq. �12� yields

�i�
� =
2�a�0��

3

e�3
/2 cos�i�0� + ��0� + 
/2 − �/3�

+ e−�3
/2 cos�i�0� + ��0� + 
/2 + �/3�

+ cos�i�0� + ��0� − 
 + �� . �13�

Equations �12� and �13� are the analytical expressions for the
phase space evolution of electrons in a SASE FEL operating
in the linear regime �21�. The gain of the steady-state field at
time 
 is obtained by substitution of Eq. �13� into Eq. �5� as
follows:

da�
�
d


=
�a�0��ei��0�

3
�exp�
ei�/6�ei�/6 − exp�− 
e−i�/6�e−i�/6

+ exp�
e−i�/2�e−i�/2� , �14�

when ��i�
� � �1. Equation �14� is the same as differentia-
tion of Eq. �11� with respect to 
.

V. OPTICAL FIELD AND ELECTRON PHASE SPACE
EVOLUTIONS ON THE nTH PASS

In this section, we first study the optical field and electron
phase space evolutions on the second pass �n=2� in an ana-

lytical way and then show that the analytical method can be
applied to the nth pass with reasonable approximations. At
first the notation n is thus used for n=2.

A. Optical field and electron phase space
evolutions on the second pass

The input field for the second pass, an���=an�� ,0�, is the
same as the output of a SASE FEL with FEL parameter �
except for a decrease of the amplitude due to the cavity loss
�. The leading slope of the input field for the second pass is
therefore given as a function of � by

an��� =
�an�0��ei�n�0�

3
�exp�− �n�ei�/6� + exp��n�e−i�/6�

+ exp�− �n�e−i�/2�� , �15�

where �2=1 and �a2�0� � �1−� /2� �a�0��. Equation �15� can
be used where �� � �Ls and �� � �Lb before the field reaches
saturation. The phase space evolution of electrons during in-
teraction with the leading slope given by Eq. �15� is quite
similar to that of a SASE FEL described in the preceding
section, since the electrons with initial position � interact at
time 
 with a field represented by

�an�0��ei�n�0�

3

exp��n�
 − ��ei�/6� + exp�− �n�
 − ��e−i�/6�

+ exp��n�
 − ��e−i�/2�� ,

which is similar to Eq. �11�. The perturbation method used in
Sec. IV can be applied to a study of the optical growth dur-
ing the second pass, as long as the growth is small and the
field an��� remains almost unchanged during the FEL inter-
action. The electron phase can be expressed as i�
�=i�0�
+�i�
� where �i�
� is the first-order perturbation in
an��i�
�� /�n

2, since the field in the leading slope divided by �n
2

is weak even after saturation except for a narrow range near
�p �see Fig. 1�. When the ith electron is modulated in energy
by interacting with the leading slope, the energy modulation
at 
� during �
� is expressed from Eq. �3� by ��i�
��
= 
an��i�
���eii�0�+c.c . ��
�. The energy change of the ith
electron at time 
, �i�
�, is given by the sum of those modu-
lations during 
:

�i�
� = 	
0





an��i�
���exp�ii�0�� + c.c.�d
�. �16�

The integration of Eq. �16� after substitution of Eq. �15�
yields

�i�
� =
2�an�0��

3�n

e−�3�n�i�
�/2 cos�i�0� + �n�0� − �n�i�
�/2 − �/6� − e−�3�n�i�0�/2 cos�i�0� + �n�0� − �n�i�0�/2 − �/6�

− e�3�n�i�
�/2 cos�i�0� + �n�0� − �n�i�
�/2 + �/6� + e�3�n�i�0�/2 cos�i�0� + �n�0� − �n�i�0�/2 + �/6� + cos�i�0� + �n�0�

+ �n�i�
� + �/2� − cos�i�0� + �n�0� + �n�i�0� + �/2�� . �17�
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The integration of Eq. �8� after substitution of Eq. �17� yields

�i�
� =
2�an�0��

3�n
2 
e−�3�n�i�
�/2 cos�i�0� + �n�0� − �n�i�
�/2 − �/3� − e−�3�n�i�0�/2 cos�i�0� + �n�0� − �n�i�0�/2 − �/3�

− �n
e−�3�n�i�0�/2 cos�i�0� + �n�0� − �n�i�0�/2 − �/6� + e�3�n�i�
�/2 cos�i�0� + �n�0� − �n�i�
�/2 + �/3�

− e�3�n�i�0�/2 cos�i�0� + �n�0� − �n�i�0�/2 + �/3� + �n
e�3�n�i�0�/2 cos�i�0� + �n�0� − �n�i�0�/2 + �/6� − cos�i�0�

+ �n�0� + �n�i�
�� + cos�i�0� + �n�0� + �n�i�0�� − �n
 cos�i�0� + �n�0� + �n�i�0� + �/2�� , �18�

where �i�
�=�i�0�−
 is used, which is valid as long as the electron energy change �i�
� is small and d�i�
� /d
=−1 holds.
Equations �17� and �18� represent the phase space evolution of the ith electron during the second pass.

The field gain dan��� /d
 caused by the electron microbunch in units of 	r whose initial position is �i�0�=�+
 is derived
from substitution of i�
�=i�0�+�i�
� into Eq. �5� as follows:

dan���
d


=
�an�0��ei�n�0�

3�n
2 
exp�− �n�ei�/6�ei�/6�1 − exp�− �n
ei�/6��1 + �n
ei�/6�� − exp��n�e−i�/6�e−i�/6�1 − exp��n
e−i�/6��1

− �n
e−i�/6�� + exp�− �n�e−i�/2�e−i�/2�1 − exp�− �n
e−i�/2��1 + �n
e−i�/2��� , �19�

when ��i�
� � �1.
The field an��� is sequentially amplified from 
=0 to 
=

−� by the electron microbunches whose initial position are
�i�0�=�+
 as it passes through the undulator. The field gain
per pass is given by

dan���
dn

= 	
0

−� dan���
d


d


=
�an�0��ei�n�0�

3�n
3

�
− �n��exp�− �n�ei�/6�ei�/6 − exp��n�e−i�/6�e−i�/6

+ exp�− �n�e−i�/2�e−i�/2� − 2�exp�− �n�ei�/6�

+ exp��n�e−i�/6� + exp�− �n�e−i�/2�� + 6� . �20�

The leading slope of the output field for the second pass is
thus given by

an��� +
dan���

dn
=

�an�0��ei�n�0�

3�n
3

�
− �n��exp�− �n�ei�/6�ei�/6

− exp��n�e−i�/6�e−i�/6

+ exp�− �n�e−i�/2�e−i�/2�

+ ��n
3 − 2��exp�− �n�ei�/6�

+ exp��n�e−i�/6� + exp�− �n�e−i�/2�� + 6� .

�21�

The amplitude and phase of the output field given by Eq.
�21� are plotted as solid circles in Figs. 2�a� and 2�b�, respec-
tively, as a function of �. The solid line shows the output
field of the second pass obtained in a time-dependent nu-
merical calculation, which solves Eqs. �3�–�5� with an input

field given by Eq. �15� with �n=1 and represented by the
dotted line. In the calculation, the shot-noise effect is ne-
glected. One can see that the field given by Eq. �21� agrees
well with the numerical calculation where �� � �3.5 but the
phase gradually deviates from the calculation where �� �
�3.5. This is because the assumption that the field remains
almost unchanged during the passage through an undulator
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FIG. 2. �Color online� The amplitude �a� and phase �b� of the
output field an���+dan��� /d� as a function of �. The solid circles
stand for the output field of the second pass given by Eq. �21� with
�n=1, and the solid line is that obtained from a numerical calcula-
tion where Eq. �15� with �n=1, which is represented by the dotted
line, is used as an input field envelope. The dash-dotted line ex-
presses an approximated output field of the second pass given by
Eq. �15� with �n=1.28. The amplitude of the front edge �an�0� �
=3.7�10−5 is used.
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no longer holds where �� � �3.5 for the second pass. Never-
theless, the deviation does not affect significantly the evolu-
tion of the leading slope during the subsequent passes, since
the position of the primary peak amplitude �p shifts toward
the front edge with pass number n and the field at large ���
stays behind the leading slope at saturation �see Fig. 1�.

B. Optical field and electron phase space evolutions on pass
numbers greater than 2

The output field of the second pass is equivalent to the
input field for the third pass except for amplitude decrease
due to the optical cavity loss �. If the input field for the third
pass is found to be approximated by Eq. �15�, the same pro-
cedure described in the previous subsection can be used for a
study of the optical growth during the third pass. The dash-
dotted line in Fig. 2 shows the field given by Eq. �15� with
�n=1.28. The amplitude of this field is different from that
obtained in a numerical calculation �solid line� by only 10%
to −20% where �� � �5, and the phase is different from the
numerical calculation by only ±0.17 rad. These results sug-
gest that the input field for the third pass can be approxi-
mated by Eq. �15� with �3=1.28.

The same procedure used for the second pass is thus em-
ployed to obtain the output field of the third pass. The solid
circles in Fig. 3 represent the output field given by Eq. �21�
when �3=1.28. The solid line is the field obtained in a time-
dependent numerical calculation where the input field is
given by Eq. �15� with �3=1.28 �dotted line� and shot-noise

effects are neglected. One can see that the agreement be-
tween Eq. �21� and the numerical calculation for the third
pass is better than that for the second pass. This is because
the field gain decreases with increase of �n as seen in Eq.
�20�, and the assumption that the field remains unchanged is
valid over a wider range of � as �n increases. The output field
can be approximated by Eq. �15� with �4=1.52, which is
shown by a dash-dotted line in Fig. 3. In a similar way, one
can obtain �n of the input field for pass numbers greater than
n=4 as well. For example �5=1.73, �6=1.90, and �7=2.05.

As �n increases, �n
3−2��n

3 and Eq. �21� asymptotically
approaches

an��� +
dan���

dn
� an��� +

�an�0��ei�n�0�

3

1

�n
3

�
− �n��exp�− �n�ei�/6�ei�/6

− exp��n�e−i�/6�e−i�/6

+ exp�− �n�e−i�/2�e−i�/2�� , �22�

The field evolution per pass can also be obtained by differ-
entiation of Eq. �15� with respect to the pass number n under
the assumption that �n is independent of � as follows:

dan���
dn

=
�an�0��ei�n�0�

3

d�n

dn

− ��exp�− �n�ei�/6�ei�/6

− exp��n�e−i�/6�e−i�/6 + exp�− �n�e−i�/2�e−i�/2�� .

�23�

Equation �23� should be equal to Eq. �22� subtracted by an���
as long as the gain is much higher than the optical cavity loss
and �n is large enough for Eq. �22� to hold. This yields

d�n

dn
=

1

�n
2 . �24�

When we assume that Eq. �22� holds when �n�2, Eq. �24�
gives

�n  �3n − 12�1/3 �25�

for n�7. Substitution of Eq. �25� into Eq. �23� yields

1

�an����
d�an����

dn
 − ��3/2���3n − 12�−2/3, �26�

when exp�−�3�n� /2��1. Equation �26� shows that the gain
per pass decreases with increasing pass number n.

The parameter �n can be derived from gradients of the
FEL amplitude and phase with respect to � in the leading
slope, which are obtained in a time-dependent numerical
simulation. Figure 4 shows a simulation result at �=−2.8
performed with the same parameter values as used in Fig. 1.
The simulation values increase proportionally to Eq. �25�
when n�100, and deviate gradually as the pass number in-
creases for n�100. This deviation can be attributed to the
effect of the optical cavity loss, which is neglected in the
derivation of Eq. �25�. The simulation results obtained at
different �’s are also similar to that at �=−2.8.

The dependence of the gain on n represented by Eq. �26�
agrees well with the simulation, as shown in Fig. 5. Once the

FIG. 3. �Color online� The amplitude �a� and phase �b� of the
output field an���+dan��� /d� as a function of �. The solid circles
stand for the output field of the third pass given by Eq. �21� with
�n=1.28, and the solid line is that obtained from a numerical cal-
culation where Eq. �15� with �n=1.28, which is represented by the
dotted line, is used as an input field envelope. The dash-dotted line
expresses an approximated output field of the third pass given by
Eq. �15� with �n=1.52. The amplitude of the front edge �an�0� �
=3.7�10−5 is used.
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gain decreases down to the same level as the loss, the gain
remains almost constant. The decrease of the gain with re-
spect to n that is seen for small pass numbers is attributed to
the increase of intensity gradient of the leading slope for the
following reason. The field an��� is amplified by interacting
with the electron microbunches modulated by the preceding
field an����, where ����. The ratio of �an����� to �an���� de-
creases with increasing gradient of the amplitude. The gain at
� therefore decreases with increase of �n.

The discussion developed in the present section not only
is based on the approximation that the output field of the nth
pass is expressed by Eq. �15� with �n+1, but also neglects the
shot-noise effect. However, the agreement between the
present analytical study and numerical simulations is excel-
lent. This implies that the approximation is physically ac-
ceptable and the shot noise does not play a major role in the
evolution of the leading slope. It is the �n evolution of the
leading slope that explains the field evolution of the FEL
oscillation at �L=0.

C. Phase space evolution of electrons at �L=0

The time evolution of the electron distribution in a longi-
tudinal phase space during interaction with the leading slope

at �L=0 is similar to that in a SASE FEL, which is studied in
our previous work �21�. We have shown that the longitudinal
phase space composed of phase change �i�
� and energy
change �i�
� is suitable to see the time evolution of the elec-
tron microbunching in a SASE FEL, especially in the early
stage of evolution. In the present paper, the phase space used
in Ref. �21� is employed and the electrons at 
=0 are num-
bered depending on their longitudinal positions from the
front to the rear. The relative position between two adjacent
electrons is represented by zi�0��zi+1�0�, and the relative
phase is given by i�0��i+1�0� by definition. One can cal-
culate the values of Eqs. �17� and �18� for each i and plot the
point in the phase space of �i�
� and �i�
�. The electrons
within the resonant wavelength 	r are distributed along an
ellipse and are lined up along the ellipse counterclockwise as
the identification number i increases. The electron distribu-
tion within 	r at time instant 
 in the longitudinal phase
space of

��i�
� = �i�
�
3�n

2

�an�0��e−�3�n�i�
�/2 �27�

and

Mi�
� = �i�
�
3�n

�an�0��e−�3�n�i�
�/2 �28�

is shown in Fig. 6 for various initial positions. In the calcu-
lation of Eqs. �27� and �28� for each �i�0�, Eqs. �18� and �17�
are used, respectively. The shape of the distribution gradually
changes when �n
�4 and remains almost constant when
�n
�4. This threshold value �n
=4 is quite similar to that of
a SASE FEL �21�. The difference of the phase space evolu-
tion at �L=0 from that of the SASE is that the evolution
depends on the initial position of the electron microbunch
when �n
�4 and ��n�i�0� � �4, as shown in Fig. 6. The
phase space evolutions are similar to each other where
��n�i�0� � �4.

In the following, the field and electron phase space evo-
lutions are studied in the high-gain regime, which is defined
by �n
�4 in the present paper. In the high-gain regime, the
exponentially growing terms only survive in Eqs. �15�, �17�,
and �18�, and the field is given by

an��� �
�an�0��

3
exp�− �3�n�/2 + i�n���� , �29�

where �n���=−�n� /2+�n�0�. The energy and phase of the
ith electron are respectively given by

�i�
� �
2�an�0��e−�3�n�i�
�/2

3�n
cos
i�0� + �n��i�
�� − �/6� ,

�30�

�i�
� �
2�an�0��e−�3�n�i�
�/2

3�n
2 cos
i�0� + �n��i�
�� − �/3� .

�31�

FIG. 4. The parameter �n as a function of the pass number n.
The solid line is Eq. �25�. The dotted and dash-dotted lines are
simulation results derived from gradients of optical amplitudes and
phases, respectively, at �=−2.8. The parameter values used in the
simulation are the same as those in Fig. 1.

FIG. 5. Amplitude gain per pass as a function of the pass num-
ber n. The solid line is Eq. �26�. The dotted line is the simulation
result at �=−2.8. The parameter values used in the simulation are
the same as those in Fig. 1.
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The longitudinal phase space composed of ��i�
� and
Mi�
� is simply represented by the ellipse ��i�
�2+Mi�
�2

−�3��i�
�Mi�
�=1. The ellipse rotates clockwise as
�n��i�
�� increases linearly with 
, while its size remains
constant. This shows that the electron microbunching devel-

ops exponentially in size with the FEL amplitude and the
position of the microbunch center shifts linearly with the
FEL phase.

The center of the microbunch is the place where electrons
within the resonant wavelength 	r are concentrated. The
electron at the microbunch center, satisfies the condition of
�c�
�=0, since �i�
�=−� j�
� when i�0�=c�0�+��
and  j�0�=c�0�−�� from Eq. �18�. The �c−1�th electron,
which is located just in front of the microbunch center, sat-
isfies the condition of �c−1�
��0, and the �c+1�th electron
satisfies �c+1�
��0. The intersection of the ellipse and the
line �i�
�=0 where �i�
��0 is the location of the mi-
crobunch center. Thus the microbunch center in the high-
gain regime is located at ���i�
� ,Mi�
��= �0,−1� in Fig. 6
and the electrons inside the microbunch are concentrated
around i�0�+�n��i�
��−� /3=� /2 when �n
�4. The phase
of the microbunch center is � /6 ahead of a resonant electron
every resonant FEL wavelength. This phase relation is simi-
lar to that in a low-gain FEL where an electron beam above
resonance is injected, explaining the positive FEL gain. In
the longitudinal phase space of �i�
� and �i�
�, the size of
the ellipse expands exponentially with time due to the expo-
nential increase of �an��i�
���, while that in a SASE FEL
expands with increase of a�
�. The exponential decrease of
the energy of the microbunch center corresponds to the ex-
ponential decrease of the energy of the microbunch as a
whole. The energy radiated by the microbunch is used for
field amplification.

This phase space evolution in the high-gain regime is
quite similar to that in a SASE FEL �21�, but there is a
noticeable difference between them. The electron mi-
crobunches lose almost the same amount of their energy at
the same position in a frame moving at the speed of light but
at different times in the FEL oscillations at �L=0, while the
electron microbunches operating in a SASE FEL lose almost
the same amount of their energy at the same time but differ-
ent positions.

VI. SATURATION

A. The optimum bunching

When optimum microbunching occurs, the electron mi-
crobunch generates the maximum amount of radiation and
amplifies the optical pulse most strongly. This optimum
bunching is thus closely related to the primary peak ampli-
tude of the optical pulse. Insertion of Eq. �31� into Eq. �5�
gives the amplitude gain at time 
:

d�an����
d


= − �cos�i�0� + �n��� +
2�an����

�n
2 cos�i�0� + �n���

− �/3���
�i�
�=�

, �32�

where a�� ,
�a�� ,0�=an��� due to the small gain at �L
=0. The amplitude gain calculated as a function of �an��� � /�n

2

is denoted by a solid curve in Fig. 7. In the calculation, the
value of i�0�+�n��� is uniform over 2�. When

FIG. 6. �Color online� Electron distributions in a normalized
phase plane of ��i�
� given by Eq. �27� and Mi�
� given by Eq.
�28� for various initial positions �n�i�0�’s when �n
=1,2 ,3 ,4 ,6.
The electrons are asymptotically distributed along an ellipse ex-
pressed by ��i�
�2+Mi�
�2−�3��i�
�Mi�
�=1. The center of the
electron microbunch is asymptotically located at ���i�
� ,Mi�
��
= �0,−1�.
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�an��� � /�n
2�1, the amplitude gain is also derived from Eq.

�19�, which is denoted by a dotted line in Fig. 7. The ampli-
tude gain begins to deviate from the dotted line around
�an��� � /�n

2=0.4 and reaches the maximum value of 0.5 at
�an��� � /�n

2=0.92. The maximum value is confirmed by the
simulation shown in Fig. 8, which displays a contour plot of
the intensity gain ��a�� ,
��2 /�
 as functions of � �x axis� and

 �y axis� and shows ��a�� ,
��2 /�
=2 �a�� ,
� ���a�� ,
� � /�

�a�� ,0�� around �=�p. After the optimum bunching, the
gain begins to decrease because of the overbunching as in a
SASE FEL �24�.

The primary peak amplitude of the optical pulse is thus
given by

�an��p�� =
�an�0��

3
e−�3�n�p/2 = 0.92�n

2, �33�

which is 80% of 1.2�n
2, the peak amplitude of the SASE with

FEL parameter �n� in the steady-state regime �10�. The pulse
length during which the intensity �an����2 rises from 10% to
90% of the primary peak is given by

ln 9
�3�n

=
1.27

�n
�34�

in units of Lc. The synchrotron oscillation of electrons caused
by the overbunching leads to formation of subsequent peaks

where ���p. The intensities of such secondary peaks are
lower than half that of the primary peak �14�. Thus the full
width at half maximum �FWHM� pulse length is nearly equal
to the value of Eq. �34�. Figure 9 shows the primary peak
intensity as a function of the FWHM pulse length in units of
Lc in saturation. The theoretical curve given by Eq. �33� as a
function of the corresponding value of Eq. �34� qualitatively
agrees with time-dependent simulation values denoted as
points for many different parameter sets of � and �, though
the absolute value of the theoretical curve is somewhat dif-
ferent from the simulations. The difference can be attributed
to the estimation of the pulse length of Eq. �34�, in which the
field is approximated by Eq. �15� even near �p. The ampli-
tude profile near �p should be represented by a more realistic
pulse shape like a hyperbolic secant pulse. In this case, the
pulse length becomes 1.15 times longer than that given by
Eq. �34�, which leads to better agreement between the simu-
lation values and the present theoretical curve.

B. The primary peak field at saturation

The gain per pass decreases almost linearly with decreas-
ing ���, as seen in Eq. �20�. This means the evolution of �n at
smaller ��� stops on the smaller pass number when the gain
decreases down to the level of the optical cavity loss �. The
optical field reaches saturation when the gain at �p becomes
as small as �, and a self-similar pulse is generated every
pass, as shown in Ref. �14�, establishing the sustained FEL
oscillation at �L=0 and resulting in disappearance of the
lethargy effect. Thus �n at saturation, which is defined by �s
in the present paper, should depend on � and increase with
increasing ���. This is supported by the temporal profile of
the optical pulse at saturation depicted in Fig. 1, which
shows a slight increase of the exponent of the field function
on the leading slope with increase of ���. It might, however,
be useful to estimate �s��� near the position of the peak am-
plitude �p under the assumptions that �s��� has a constant
value independent of � and that the amplitude gain at the
peak is equal to � /2 in saturation. These assumptions to-
gether with Eq. �20� result in

FIG. 7. The amplitude gain at time 
, d �an��� � /d
, as a function
of �an��� � /�n

2 given by Eq. �32� �solid curve�. The dotted line is
derived from Eq. �19� when �an��� � /�n

2�1.

FIG. 8. A contour plot of the intensity gain ��a�� ,
��2 /�
 as
functions of � �x axis� and 
 �y axis� on the 1000th pass �a� and the
corresponding optical intensity profile �a�� ,0��2 plotted in linear
scale �b�. The parameters used in the simulation are the same as
those used in Fig. 1.

FIG. 9. �Color online� Semilogarithmic plot of the primary peak
intensity �a��p ,0��2 as a function of the pulse length, during which
the intensity rises from 10% to 90% of the peak. The points are
time-dependent numerical simulation results. The solid line is the
theoretical curve obtained from Eqs. �33� and �34�.

ANALYTICAL DESCRIPTION OF FREE-ELECTRON-¼ PHYSICAL REVIEW E 74, 036502 �2006�

036502-9



1

�an��p��
d�an����

dn


1

�s
3�−

�3�s�p

2
− 2� =

�

2
, �35�

since Eq. �20� asymptotically approaches dan��� /dn�an���
��−�n�e−i�/6−2� /�n

3 when ��n� � �4. Substitution of Eq. �35�
into Eq. �33� yields

�an�0��
3

exp��s
3�

2
+ 2� = 0.92�s

2. �36�

The parameter �s is represented as a function of �, as de-
scribed in the following paragraph when �an�0�� is derived.

In the front portion of the leading slope where the single-

pass gain 1
�an����2

d�an����2

dn is smaller than �, the field an�0� is a

random superposition of spontaneous radiation emitted over
n passes and is given by �an�0� � = �a�0� ��n for the pass num-
ber n�1/� and �an�0� � = �a�0� � /�� for n�1/�. Here �a�0��
is equivalent to the amplitude of spontaneous radiation for a
single pass emitted in about one gain length �24� and is es-
timated to be �a�0� � =�2�� /Ne from Eq. �5�, since the vari-
ance of �cos�i�
����i�
�=� per the cooperation length is given
by �4��� / �2Ne� from a statistical consideration �23�. Here
Ne=ne	r� is the number of electrons contained in a unit
volume of 	r�. The electron beam density is given by ne
= �16�3�0

3�0mc2kw
2 � / �e2aw

2 F2� from Eq. �1�, and thus

Ne = �4���3	r�0��0
3mc2

�e2aw
2 	w

2 F2 . �37�

Substitution of Eq. �37� into �a�0� � =�2�� /Ne gives

�a�0�� =
1

�

e
�32�mc2�0

Faw	w

��0
3�	r

. �38�

The effective radiation area is �=	rZR /2 where ZR
=R	w / �4��� is the Rayleigh range and R�1 for 1D SASE
FEL theory �24�. Substitution of �=R	w	r / �8��� into Eq.
�38� yields �a�0� � = P /��R, where

P =
e

�mc2�0

� F2aw
2 �0

	w�1 + aw
2 �2 . �39�

The parameter P ranges from 1�10−6 to 2�10−5 for almost
all the Compton FELs �26�, � ranges from 0.001 to 0.01, and
R is of the order of unity. The amplitude at �=0 when n
�1/� is given by

�an�0�� = P/���R . �40�

Insertion of Eq. �40� into Eq. �36� gives

�s
3� = ln���R� − 2 ln P + 4 ln��s� − 1.97. �41�

Parameters such as aw, 	w, and �0 used in the simulation
shown in Fig. 1 yield P=2.5�10−6. Substitution of this
value of P into Eq. �41� gives �s as a function of �−1/3 rep-
resented by the solid curve in Fig. 10. The dashed curve in
Fig. 10 stands for �s when �=0.01 and P=1.0�10−6 and the
dash-dotted curve when �=0.001 and P=2.0�10−5. The
curve �s as a function of �−1/3 falls in the area surrounded
between the dashed and dash-dotted lines when � varies from

0.001 to 0.01 and P ranges from 1�10−6 to 2�10−5. From
the figure, �s is approximately given by

�s  2.8�−1/3. �42�

Equation �42� can be applied to almost all Compton FELs
�26�. The variations of P and � causes uncertainty of ±10%
for the coefficient 2.8 in Eq. �42�.

The position of the primary peak at saturation is derived
from Eqs. �35� and �42�:

�p  − 15/�s  − 5.4�1/3. �43�

These values of 15 and 5.4 in Eq. �43� have uncertainty of
±20% due to the variations of P and �. The gain per pass
given by Eq. �20� can be used where ��� is shorter than Lb, Ls,
and ��p�. Thus both Lb and Ls are required to be longer than
15/�s in order for Eqs. �33�, �34�, and �42� to hold. The
requirement on Ls=4��Nw corresponds to j0�310�. The
field evolution in the leading slope where �� � � ��p� does not
depend on Lb or Ls, as long as both Lb and Ls are longer than
��p�. The evolution of the leading slope shown in Fig. 1
should thus appear even when Lb� ��p�, Ls� ��p� or satura-
tion in SASE mode occurs within the first single pass: �Nw
�1.

C. Efficiency

The energy carried by the intracavity radiation over unit
length of 	r along the propagation direction is given from
Eq. �2� by

�0	r�E��,
�2 =
�0	r��0

4m2c4�a��,
��2�4���4

4�2e2aw
2 	w

2 F2 . �44�

The time derivative of the intracavity energy,
���0	r�E�� ,
�2� /�
, is equal to the amount of the instanta-
neous energy loss of the microbunch given by
−Nemc2d��i�
�−�0��i�
�=� /d
. The average of the instanta-

FIG. 10. The characteristic parameter �s at saturation as a func-
tion of �−1/3. The solid line shows �s derived from Eq. �41� when
P=2.5�10−6 and �=0.0045, the dashed line when P=1�10−6 and
�=0.01, and the dash-dotted line when P=2�10−5 and �=0.001.
The ratio of �s to �−1/3 depends on the FEL, but the difference is
small among existing FELs. The inset shows �s /�−1/3 as a function
of �−1/3.
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neous energy loss of the microbunch at time 
 is thus given
by

−
d��i�
���i�
�=�

d

=

� �a��,
��2

�

. �45�

Here Eq. �37� is used in the derivation of Eq. �45�.
The energy loss of the microbunch at time 
 is asymptoti-

cally equal to −d��i�
���i�
�=� /d
��3 �an����2 /�n
2, as derived

from Eqs. �45�, �15�, and �19�. Here a�� ,
�a�� ,0�=an���
is used. The microbunch mainly loses its energy around the
position of the primary peak �see Fig. 8�. The instantaneous
energy loss of the microbunch at the primary peak in satura-
tion is given by �3 �an��p��2 /�s

211.5�−2/3 from Eqs. �33�
and �42� and is estimated to be 85 when �=0.05. This value
of the instantaneous energy loss agrees well with the simu-
lation result shown in Fig. 8. The energy loss of the electron
microbunch during interaction with the leading slope is al-
most equal to �3 �an��p��2 /�n

2 multiplied by the optical pulse
length represented by Eq. �34�, where �an��p�� is given by
Eq. �33�. The extraction efficiency of the microbunch at �p,
�=−���i�
p���i�
p�=�, is thus approximated by

�  1.9�n� , �46�

where 
p is the time that the microbunch slips back to �p.
Equation �46� yields �=0.065 at saturation when �=0.0045
and �=0.05. This efficiency is consistent with the value ob-
tained in the simulation shown in Fig. 8.

VII. DISCUSSION

A. Sequential emission of intense radiation

The radiation from the whole electron bunch at time 
,
−d��i�
���i�
�=� /d
=��a�� ,
��2 /�
, has an intensity profile
similar to that of the optical pulse overlapped by the electron
bunch, �an��i�
���2, as shown in Eq. �19�. The optical inten-
sity at � continues to build up until the electron bunch es-
capes from � due to the slippage. The intensity gain per pass
at �, d �an����2 /dn, is almost proportional to the intensity it-
self �an����2 multiplied by the overlapping time ���, as shown
in Eq. �20�. The intensity gain is thus highest at �p. The
buildup in intensity is reproduced in a time-dependent simu-
lation shown in Fig. 8, which displays a contour plot of the
intensity gain ��a�� ,
��2 /�
=−d��i�
���i�
�=� /d
 as functions
of 
 and �. The gain is highest around �p and is almost
constant during the overlapping time. The oscillatory behav-
ior of the radiation intensity seen in the range �� � � ��p� indi-
cates that optimum bunching is established at �p and then
overbunching occurs. In FELs at �L�0, electrons radiate
their energies in a similar way to those that are initially lo-
cated at ��i�0� � � ��p� in FELs at �L=0, since those electrons
interact only with fields much stronger than the spontaneous
emission level at saturation due to the optical cavity feed-
back.

B. Comparison with numerical simulations

Substitution of Eq. �42� into Eqs. �33� and �34� gives the
peak intracavity intensity �as��p��2 and the pulse length at
saturation, respectively, as follows:

�as��p��2  52�−4/3, �47�

ln 9/��3�s�  0.45�1/3. �48�

The peak intracavity intensity in saturation reaches approxi-
mately 37�−4/3 times higher than that a long-pulse SASE
FEL with the same � can reach in the steady-state regime.
The corresponding peak intensity coupled out of the optical
cavity is given by � �as��p��2=52�−1/3 in the ideal case where
the output coupling loss is equal to the total cavity loss �.
The peak amplitude of the intracavity radiation given by
E��p ,
� is proportional to �� /�1/3�2, as derived from Eqs.
�44� and �47�. The pulse length is represented by
0.036�� /�1/3�−1 in units of the wavelength 	r. The peak am-
plitude and the pulse length at saturation are thus found to
scale with the electron beam density and optical cavity loss.
In order to test these scalings, we performed numerical simu-
lations similar to our previous work �14�. Both Lb and Ls
used in those simulations are longer than the distance from
�=0 to �p at saturation. The simulations were made with
many combinations of � between 0.002 and 0.014 and �
between 0.02 and 0.50. The peak intensity and the number of
cycles of the FEL pulse length averaged from the 1000th to
2000th pass are denoted by crosses as a function of 2.8�−1/3

in Fig. 11. The simulation values agree well with the theo-
retical curves given by Eqs. �47� and �48�.

Figure 12�a� shows �s as a function of 2.8�−1/3. The solid
curve representing Eq. �42� is almost equal to simulation
values denoted by crosses, which are obtained from gradients
of amplitudes and phases at the position where �a�� ,0� �
= �a��p ,0� � /3 and averaged from the 1000th to the 2000th
pass. However, �s obtained at other positions gradually ap-

FIG. 11. �Color online� Semilogarithmic plot of the primary
peak intensity �a��p ,0��2 as a function of 2.8�−1/3 �a� and linear plot
of the optical pulse length �b� during which the intensity rises from
10% to 90% of the peak as a function of 2.8�−1/3. The crosses are
simulation values. The open circles are experimental data obtained
at the JAERI FEL. The solid line in �a� is the square of Eq. �33� and
that in �b� is Eq. �34�, where �s derived from Eq. �41�, P=2.5
�10−6, and �=0.0045 is substituted into �n in Eqs. �33� and �34�.
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proaches zero as � goes toward the front edge �=0.
Figure 12�b� shows the position of the principal peak �p as

a function of 2.8�−1/3. The crosses denote simulation values,
and the solid curve represents Eq. �43�. The shape of the
solid curve is similar to that formed by simulation values,
though their absolute values are different from each other.
The disagreement of �p between Eq. �43� and the simulations
comes from the facts that Eq. �15� does not represent the
optical field at saturation in an exact sense and �s depends on
� as mentioned in Sec. VI. The same facts account for the
systematic deviation of �s from Eq. �42� as � goes toward the
front edge, which was mentioned in the previous paragraph.
Equation �15� can, however, represent the field of the leading
slope during the evolution rather exactly.

C. Comparison with experimental results

A comparison with JAERI FEL experiments was per-
formed. The optical pulse lengths measured were 250 fs
FWHM independently of the wavelength, which varies from
22 to 18 �m as aw is varied from 0.7 to 0.4 �13�. The ex-
traction efficiency from electrons to FEL varied from 6.0%
to 3.4% depending on aw, while the energy of the incident
electron bunch was 8.4 mJ �12�. The cavity loss � was ap-
proximately 7%. Our simulation with JAERI FEL parameters
shows that approximately 2/3 of the total energy of the opti-
cal pulse is carried by the primary peak area at saturation
�14�. The intensities of the primary peaks obtained after the
area correction are denoted by solid circles in Fig. 11�a�, and
FWHM pulse lengths are denoted by solid circles in Fig.
11�b�. Both of them agree with the present theoretical curves
well.

The present scaling can be applied to many Compton
FELs. For example, the intracavity intensity is estimated
from Eqs. �47� and �48� to be �a��p��2=1.8�103 with dura-
tion of 0.19 FWHM in units of Lc when �=0.07, which is
typical at the JAERI FEL at 	r=22 �m �12�. The intracavity
peak intensity is 1280 times higher than 1.4, which is what a
long-pulse SASE FEL with the same � can reach in the
steady-state regime �10�, and the peak intensity coupled out
of the optical cavity is 90 times higher than that of the SASE
FEL when the coupling loss is the same as the total cavity
loss. The optical pulse length is given by 0.015/� in units of
the wavelength 	r. One can thus produce intense optical
pulses with a few wavelength cycles by using the FEL oscil-
lations at �L=0 when � is greater than 0.004.

D. Transient evolution at �L=0

In the front portion of the leading slope where the single-
pass gain for a uniform input field is smaller than �, the field
is affected by shot noise every pass even after saturation as
seen in Fig. 1. The range affected by shot noise is estimated
as �� � �1 �24�. The field affected by shot noise in turn affects
the subsequent amplified field every pass, and results in a
random slight shift of the leading slope along the propaga-
tion direction. This behavior is responsible for the peak po-
sition fluctuation or the efficiency variation observed in a
time-dependent simulation �14�.

The dissipation of oscillation at �L=0 after many passes,
which is shown in Refs. �6,7�, can be reproduced by remov-
ing the shot noise of electrons except for the first pass. The
optical field intensity at �� � �1, where the field is sustained
by the shot noise, decreases exponentially with respect to n
due to the cavity loss �, while the field at �� � �1 evolves
with n when the gain is much higher than the cavity loss. The
characteristic parameter of the field �n and the peak intensity
can almost reach the values given by Eqs. �42� and �47�,
respectively, but after that the intensity of the leading slope
continues to decrease and finally dissipates. This is because
the intensity at �� � �1 decreases exponentially while the
characteristic parameter �n remains close to the value given
by Eq. �42�. In real physical situations, however, the intensity
at �� � �1 is kept at around the level given by Eq. �40�, and
the FEL oscillation at �L=0 is sustained. This is the reason
why the small shot-noise of an electron bunch must be in-
cluded in a numerical simulation to reproduce the lasing at
�L=0 �14�.

E. Evolution of the peak amplitude at �L=0

The evolution of the peak optical amplitude is found to
scale with n2/3 from Eqs. �33� and �25�, when both Lb and Ls
are larger than 15 in units of Lc. This evolution is different
from the superradiant evolution �a��p� ��n, which is pre-
sented in the analytical study �7� or the numerical study �17�
for a short-pulse FEL oscillator at �L=0. Our numerical
simulation supports both types of peak amplitude evolution.
The peak amplitude scales with n2/3 when both Lb and Ls are
longer than 15. The index of the scaling function approaches
unity as Lb or Ls becomes shorter than 15. The peak ampli-

FIG. 12. �Color online� The characteristic parameter �s �a� and
the position of the primary peak �p �b� at saturation as a function of
2.8�−1/3. The simulation values are denoted by crosses. Those in �a�
are derived from gradients at positions where the amplitude is one-
third of the peak amplitude. The solid line in �a� shows Eq. �42� and
that in �b� shows Eq. �43�.
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tude evolution thus strongly depends on the lengths of Lb and
Ls.

The present analytical study as well as our time-
dependent numerical simulation show that the evolution of
the exponent of the field function on the leading slope, �n,
characterizes the FEL dynamics at �L=0. The characteristic
parameter �n at the position � scales with n1/3 as seen in Eq.
�25�, when both Lb and Ls are longer than ���. The evolution
of the optical field where �� � �15/�s does not depend on
how the field evolves where �� � �15/�s, although the peak
amplitude is formed where �� � �15/�s before saturation. The
evolution of �n in the leading slope where �� � �15/�s is
therefore not related to the peak amplitude evolution, which
shows the superradiant behavior only when Ls or Lb is much
shorter than 15.

F. Sideband instability at �L=0

Sideband instability has been attributed to the lasing at
�L=0 in Ref. �16�, but such instability is also observed in
FELs where �L�0 �27�. Unfortunately, a clear explanation
has not been given to the difference between the instability at
�L=0 and that where �L�0 in Ref. �16�. The present study
shows that the exponent of the slowly varying envelope of
the field on the leading slope at �L=0 is −�n�ei�/6 where
�n �� � �4, as seen in Eq. �15�, and that of the carrier wave is
i�krz−�rt�= i� / �2��. The wave number of the field on the
leading slope is therefore �1−�n��kr, indicating that the
mean wavelength shifts to a longer wavelength with each
increment of n. The wavelength shift can qualitatively ex-
plain generation of sidebands at �L=0.

VIII. CONCLUSION

In this paper we have presented an analytical description
of the FEL oscillation at �L=0 from startup to saturation. It

has been shown that the evolution of the leading slope of the
FEL pulse plays a crucial role in generating intense few-
cycle optical pulses at �L=0. The phase space evolution of
electrons at �L=0 during interaction with the leading slope
of the FEL pulse is solved analytically in a perturbation
method. The electron microbunches forming on the scale of
	r slip back through the radiation pulse and sequentially ra-
diate the energy proportional to the FEL intensity overlapped
by each microbunch. The field on the leading slope evolves
along with n, and the exponent of the field function is pro-
portional to the characteristic parameter �n= �3n−12�1/3

when the gain is much higher than the optical cavity loss.
The gain decreases down to the level of cavity loss with
increasing exponent, and a self-similar radiation pulse is gen-
erated at saturation. The characteristic parameter near the
peak amplitude at saturation can be given by �s=2.8�−1/3.
The peak amplitude is determined by the optimum bunching
on the scale of the radiation wavelength. The primary peak
intensity of the intracavity optical radiation and the pulse
length at saturation are found to scale with �� /�1/3�4 and
�� /�1/3�−1, respectively, when both the incident rectangular
electron bunch and slippage distance are longer than the dis-
tance from the front edge to the peak. Those scalings can
account for the intense few-cycle FELs generated at the
JAERI FEL in the high-gain and low-loss regime and pro-
vide a universal measure for generation of intense few-cycle
FEL fields driven by synchronized electrons at various wave-
lengths.
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