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We consider a model system of two coupled Hopfield neurons, which is described by delay differential
equations taking into account the finite signal propagation and processing times. When the delay exceeds a
critical value, a limit cycle emerges via a supercritical Hopf bifurcation. First, we calculate its frequency and
trajectory perturbatively by applying the Poincaré-Lindstedt method. Then, the perturbation series are re-
summed by means of the Shohat expansion in good agreement with numerical values. However, with increas-
ing delay, the accuracy of the results from the Shohat expansion worsens. We thus apply variational perturba-
tion theory �VPT� to the perturbation expansions to obtain more accurate results, which moreover hold even in
the limit of large delays.
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I. INTRODUCTION

Feedback in biological systems has received increased at-
tention in recent years �1�. In particular, the role of delayed
recurrent loops in models of population dynamics, epidemi-
ology, physiology, immunology, neural networks, and cell
kinetics has been studied extensively �2�. Neural network
systems are complex and large-scale nonlinear dynamical
systems, and the dynamics of a delayed network are yet
richer and more complicated �3�. Hopfield �4� proposed a
simplified model of a neural network in which each neuron is
represented by a linear circuit consisting of a resistor and a
capacitor, coupled to other neurons via nonlinear sigmoidal
activation functions. From this model, he derived a system of
first-order ordinary differential equations to describe the net-
work dynamics. Extending Hopfield’s model, Marcus and
Westervelt �5� considered the effect of including a temporal
delay in the model to account for finite propagation and sig-
nal processing times.

In networks of real neurons, delays occur at the synaptic
level due to transmitter release dynamics and the integration
time of post-synaptic potentials at the dendritic tree level
where post-synaptic potentials have a finite conduction speed
to the soma, and in the axons due to the finite axonal con-
duction speed of action potentials �6�. It is well-known that
time delay can cause an otherwise stable system to oscillate
�7–9� and may lead to bifurcation scenarios resulting in cha-
otic dynamics �10,11�. On the other hand, delayed feedback
permits the control of chaos �12�, where it can be used to
stabilize unstable periodic orbits in chaotic attractors �13,14�.
Experimentally, time-delayed chaos control was successfully
applied, for instance, to electronic oscillators �15�, mechani-
cal pendula �16�, lasers �17�, and chemical systems �18�. Fur-
thermore, a recently proposed scheme for the treatment of
neurological disorders employs delayed feedback in order to
efficiently desynchronize the activity of oscillatory neurons

�19�. Therefore, finite delays are an essential property of any
realistic model of a neuron population �20�.

In the vast majority of cases, information about a physical
system can only be obtained by means of numerical or ana-
lytical approximation methods. Numerical methods consti-
tute a powerful and effective tool to describe even extremely
complicated physical scenarios. Nevertheless, their accuracy
is not always superior to that of analytical approximations,
and usually more insight into the physical principles that
govern the system is obtained by pursuing an analytical ap-
proach. Often, perturbation expansions are easily accessible,
but they are usually divergent and need resummation. A re-
cently developed, powerful method to perform such a resum-
mation is variational perturbation theory �VPT�, which has
been successfully applied in various quantum or statistical
field theories �21–25�. A first application of VPT in the field
of deterministic nonlinear dynamics is found in Ref. �26�,
while the present work extends the use of VPT to a system
described by delay differential equations �DDE’s�.

In Sec. II, we introduce the two-neuron model and the
system of DDE’s that we consider. The results of a linear
stability analysis of the model system are reported in Sec. III,
and it is shown that a limit cycle emerges via a supercritical
Hopf bifurcation when the delay exceeds a critical value. In
Sec. IV, the Poincaré-Lindstedt method is applied to derive
the perturbation expansions for the delay-induced limit cycle
and its angular frequency. In Sec. V, we apply the Shohat
expansion to the perturbation series of the limit cycle and its
angular frequency as a first crude resummation approach. In
Sec. VI, we resum the perturbation expansions using VPT,
which allows us to improve the quality of our results
significantly in such a way that they are reasonable even in
the limit of large delays.

II. MODEL

Neural circuits composed of two or three neurons form
the basic feedback mechanisms involved in the regulation of
neural activity �20�. Many researchers have used bifurcation
analysis and numerical simulations in order to analyze a sys-
tem of two Hopfield-like neurons with discrete or distributed
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time delays �27–35�. In this investigation, we apply analyti-
cal approximation methods to a two-neuron system with de-
lay, described by the coupled first-order DDE’s

du1�t�
dt

= − u1�t� + a1tanh�u2�t − ��2��� , �1�

du2�t�
dt

= − u2�t� + a2tanh�u1�t − ��1��� . �2�

Here, u1 and u2 denote the voltages of the Hopfield neurons
and ��1� and ��2� are the signal propagation or processing time
delays, while a1 and a2 describe the couplings between the
two neurons.

III. LINEAR STABILITY ANALYSIS

The system of DDE’s �1� and �2� has a trivial stationary
point at u1=u2=0 and we first analyze its stability. Near the
equilibrium point, linearizing the DDE system yields

u̇1�t� = − u1�t� + a1u2�t − ��2�� , �3�

u̇2�t� = − u2�t� + a2u1�t − ��1�� . �4�

Setting

u�t� = e�t�c1

c2
� �5�

in the last equation, where � is a complex number, and c1
and c2 are constants, we get a nontrivial solution if and only
if

�� + 1�2 − a1a2e−����1�+��2�� = 0. �6�

This equation has been analyzed in detail in Ref. �28�. For
a1a2�−2 the conditions of Theorem 2 in Ref. �28� are met.
Defining �= ���1�+��2�� /2 and

� j �
1

2�0
�sin−1�−

2�0

a1a2
� + 2j�	, j = 0,1,2, . . . , �7�

where �0=
�a1a2 �−1, this theorem states that
�i� If �� �0,�0�, then the zero solution of Eqs. �1� and �2�

is asymptotically stable.
�ii� If ���0, then the zero solution of Eqs. �1� and �2� is

unstable.
�iii� � j, with j=0,1 ,2 , . . . , are Hopf bifurcation values of

Eqs. �1� and �2�.
Furthermore, Theorem 3 in Ref. �28� states that the Hopf

bifurcation at �=�0 is supercritical. Note that i�0 is the so-
lution to Eq. �6� when �=�0, and the period of the limit cycle
at the Hopf bifurcation is thus T0=2� /�0.

IV. POINCARÉ-LINDSTEDT METHOD

Figure 1 shows numerical solutions of the system of
DDE’s �1� and �2� for the two cases in which the delay � is
either smaller or greater than its critical value. Below the
critical value �0 of the delay � no periodic solution exists,

while above �=�0 there is such a solution. We now consider
the case ��1�=��2�=�, a1a2�−2 and seek to calculate the pe-
riod and trajectory of the periodic solution approximatively.
To this end, we apply the Poincaré-Lindstedt method �36�.
Since a supercritical Hopf bifurcation occurs at �=�0, we
assume that the amplitude and frequency of the new periodic
states are analytic in �=
�−�0 and expand them as

u�t� = �U�t� = ��U�0��t� + �U�1��t� + ¯ � , �8�

���� = �0 + ��1 + �2�2 + ¯ . �9�

It is convenient to rescale the argument of these functions so
that they become periodic with period 2�. We thus introduce
the new independent variable 	 according to

	 = ����t , �10�

and we write

U�t� = V�	� . �11�

Applying the perturbation expansion �8� to the system of
DDE’s �1� and �2� and performing the change of variables
�10� and �11�, we obtain

����
dV1�	�

d	
= − V1�	� +

a1

�
tanh��V2�	 − 
����
 , �12�

FIG. 1. Numerical solutions of the system of DDE’s �1� and �2�
with a1=−1, a2=2 and ��1�=��2�=�. For this choice of parameters,
the critical value of the delay is �0=� /4�0.7854. In �a� the delay
is �=0.7, and the origin is a stable fixed point. In �b� the delay
exceeds the critical value: �=0.8. In this case, the origin is unstable
and the trajectory approaches a limit cycle. In both cases the initial
conditions are u1�t�=0.2, u2�t�=0 for t� �−� ,0�.
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����
dV2�	�

d	
= − V2�	� +

a2

�
tanh��V1�	 − 
����
 , �13�

in which


��� = ����� = ������0 + �2�

= �0�0 + ��1�0 + �2��0 + �2�0� + ¯ . �14�

The delayed variable V1/2�	−
���� is written as

V�	 − 
���� = V�0��	,
� + �V�1��	,
� + ¯ , �15�

corresponding to the expansion in Eq. �8�, which is equiva-
lent to

V�	� = V�0��	� + �V�1��	� + ¯ . �16�

In order to take into account Eq. �14�, each term in the ex-
pansion of V�	−
� is expanded as a Taylor series

V�j��	,
� = V�j��	 − �0�0� − ��1�0�dV�j��	��
d	�

�
	�=	−�0�0

+ ¯ .

�17�

Applying the expansions for V�	� and V�	−
� to �12� and
�13�, we obtain to zeroth order in �

dV1
�0��	�
d	

= −
V1

�0��	�
�0

+
a1

�0
V2

�0��	 − �0�0� , �18�

dV2
�0��	�
d	

= −
V2

�0��	�
�0

+
a2

�0
V1

�0��	 − �0�0� . �19�

Imposing the initial conditions V1
�0��0�=A0, V2

�0��0�=B0 on
the periodic solution V�0��	�, we find the general solution to
the system of homogeneous differential equations �18� and
�19� as

V1
�0��	� = A0cos 	 + B0a1sin��0�0�sin 	 , �20�

V2
�0��	� = B0cos 	 −

A0

a1sin��0�0�
sin 	 . �21�

The periodic solution V�	� to Eqs. �12� and �13� can only be
determined up to an arbitrary phase. Without loss of gener-
ality we can thus choose B0=0 in Eqs. �20� and �21�, which
fixes the phase of the zeroth-order solution, at least up to a
shift of �.

In general, to order �n, we have to solve the system of
differential equations

dV1
�n��	�
d	

= −
V1

�n��	�
�0

+
a1

�0
V2

�n��	 − �0�0� + f1
�n��	� , �22�

dV2
�n��	�
d	

= −
V2

�n��	�
�0

+
a2

�0
V1

�n��	 − �0�0� + f2
�n��	� �23�

where the inhomogeneity f�n��	� is determined by the solu-
tions to previous orders. Since we require that the solution
V�n��	� be periodic in 	 with period 2�, we can impose cer-
tain conditions on the inhomogeneity f�n��	�. Namely, we de-

mand that f�n��	� not contain terms that would lead to non-
periodic solutions for V�n��	�, i.e., f�n��	� must not contain
secular terms. In order to identify the conditions that must be
satisfied by f�n��	�, we expand V�n��	� and f�n��	� as Fourier
series

�V1
�n��	�

V2
�n��	�

� = �
k=1

� ��a1,k
�n�

a2,k
�n� �cos k	 + �b1,k

�n�

b2,k
�n� �sin k		 , �24�

� f1
�n��	�

f2
�n��	�

� = �
k=1

� ��
1,k
�n�


2,k
�n� �cos k	 + ��1,k

�n�

�2,k
�n� �sin k		 . �25�

By inserting the expansions �24� and �25� into the system of
equations �22� and �23�, we find that the coefficient of the
terms with k=1 in the inhomogeneity f�n��	� must satisfy the
conditions

a2sin��0�0�
1,1
�n� + �2,1

�n� = 0, �26�


2,1
�n� − a2sin��0�0��1,1

�n� = 0. �27�

The derivation of these two conditions is demonstrated in the
Appendix.

After this general result, we now consider the first-order
expansion of the system �12� and �13�. Taking into account
the result �20� and �21� and the choice B0=0, we obtain the
inhomogeneity f�1� to be given by

f1
�1��	� = A0�1��0cos 	 +

1 + �0

�0
sin 	� �28�

and

f2
�1��	� = − A0�1�a2�1 + �0�

�0
sin��0�0�cos 	

+
�0

a1sin��0�0�
sin 		 . �29�

Thus, according to the conditions �26� and �27�, we must
demand

−
2A0�1�0

a1sin2��0�0�
= 0 and −

4A0�1�1 + �0�
a1sin�2�0�0�

= 0. �30�

We must thus have either A0=0 or �1=0. If we choose
A0=0, we only obtain the trivial solution. Thus, we choose
�1=0, and the coefficient A0 is yet to be determined. The
solution for V�1��	� is then simply given by the solution to
the homogeneous system

V1
�1��	� = A1cos 	 , �31�

V2
�1��	� = −

A1

a1sin��0�0�
sin 	 , �32�

where A1 is to be determined in higher orders.
Expanding Eqs. �12� and �13� up to order �2 while taking

into account the zeroth- and first-order results, we obtain the
inhomogeneity f�2��	� as given by the expansion �25�. For the
first component we have
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1,1
�2� = −

A0
3�1 + �0

2�
4a1

2�0
+ A0��0 + �0�2� , �33�

�1,1
�2� =

A0
3�1 + �0

2�
4a1

2 +
A0�1 + �0��2

�0
+ A0, �34�


1,3
�2� =

A0
3�3�0

2 − 1�
12a1

2 , �35�

�1,3
�2� =

A0
3�3 − �0

2�
12a1

2 . �36�

For the second component we have


2,1
�2� = − a2sin��0�0��A0

3

4
+

A0�1 + �0��2

�0
+ A0	 , �37�

�2,1
�2� = − a2sin��0�0�� A0

3

4�0
+ A0��0 + �0�2�	 , �38�


2,3
�2� = − a2sin��0�0�

A0
3

12
�2 cos�2�0�0� − 1� , �39�

�2,3
�2� = − a2sin��0�0�

A0
3

12�0
�2 cos�2�0�0� + 1� , �40�

while all other coefficients vanish. Imposing the conditions
�26� and �27� on the inhomogeneity f�2��	�, we obtain the
system of equations

A0
2�1 + a1

2 + �0
2� − 8a1

2�0��0 + �2�0� = 0, �41�

A0
2�0�1 + a1

2 + �0
2� + 8a1

2�0 + 8a1
2�1 + �0��2 = 0. �42�

Its solutions read

�2 = −
�0 + �0

3

1 + �0 + �0�0
2 , �43�

A0 = ±
 8a1
2�0

2

�1 + a1
2 + �0

2��1 + �0 + �0
2�0�

. �44�

Choosing the sign of A0 to be positive fixes the phase of our
zeroth-order solution definitively. This procedure can easily
be carried to higher orders, where only even orders lead to
nonzero terms for both the corrections to the angular fre-
quency �n and the expansion of the limit cycle V�n��	�. Ex-
panding Eqs. �12� and �13� to order �2n, we find the coeffi-

TABLE I. Expansion coefficients for the angular frequency of the limit cycle for a1=−1, a2=2 up to order �16.

n �n

2
−

4

2+�

4 4�341+108��

27�2+��3

6
−

8�73843+40773�+5832�2�

729�2+��5

8 1440729464+3��359606308+92814567�+8398080�2�

98415�2+��7

10
−

2�1885638326848+9��193375795408+3��22966214893+4��952738307+62985600���
�

13286025�2+��9

12 �48294520193761504+3��17432699637100336+3��2577825095210584+��596088219927028
+72959354094441�+3809369088000�2��
� / �8370195750�2+��11�

14 −{137083613818976067424+3�[56352224911533618320+3�(9835626348748269040+3��949130678879606440
+3��54285350368574420+��5287281140608997+228562145280000���
)]} / �1129976426250�2+��13�

16 �290578164278923471719089408+9�{44452665928743252091582336+3�[8868376426577693217600640
+3�(1013305929108995195501920+9��24272564564656648301080+��3331148075811324207916
+��270489187825118497343+9983594505830400000���
)]}� / �111054083171850000�2+��15�
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cient A2�n−1� and the correction �2n from the conditions �26�
and �27�.

From here on, we consider the choice of parameters
a1=−1, a2=2. These parameter values lead to �0=1,
�0=� /4 and the solutions �43� and �44� reduce to

�2 = −
4

2 + �
, A0 =

4

3�2 + ��

. �45�

Table I shows the first eight nonvanishing corrections to the
angular frequency. Note that the signs of the expansion co-
efficients �n alternate and that their absolute value grows
rapidly. This indicates that the perturbation series for � is a
divergent Borel series. Table II shows the expansion coeffi-
cients of the first two nonvanishing orders of the Fourier
expansion of the limit cycle as given by Eq. �24�. Figure 2�a�
shows the first eight orders of the perturbatively calculated
angular frequency

��N� = �
n=0

N

�2n�2n �46�

as a function of �. Note that odd and even perturbation orders
yield results which are, respectively, smaller and larger than
the numerical values. For small values of the delay, the per-
turbative solution is in good agreement with the numerical
data. However, as � grows, the perturbative solution becomes
unacceptable. Figure 2�b� shows an example of the perturba-
tively calculated limit cycle given by

u�N��t� = ��
n=0

N−1

V�2n����N�t��2n, �47�

where we count the order N of our perturbation expansion
such that in the Nth order we obtain the Nth nonvanishing
corrections �2N and V�2�N−1���	�. For the value �=1 chosen in
Fig. 2�a�, the limit cycle can still be obtained with good
precision from the perturbation series �47� and, as in the case
of the angular frequency, we observe that the perturbative

approximations approach the numerical result in an alternat-
ing manner. However, as � increases, the perturbative solu-
tion �47� becomes useless as in the case of the angular fre-
quency. Thus, if we want to obtain analytical results for
larger values of the temporal delay �, we must resum our
perturbation series. In the next section, we apply a Shohat
transformation to the perturbative results for both the angular
frequency ��N� and the limit cycle u�N��t�.

V. SHOHAT EXPANSION

Now, we resum our perturbative results by performing a
Shohat expansion. This method was first introduced in Ref.
�37� for calculating the period of a Van der Pol oscillator and
it has been conjectured that the expansion yields results
which are valid for all values of the perturbation parameter
�37,38�. Furthermore, it has been stated that the Shohat ex-
pansion is successful when the periodic solution to the dif-
ferential equation in question is of the softening type, i.e.,
when the angular frequency � decreases with � �39�, which
is the case for our system as is evident from Fig. 2�a�.

The basic idea of the Shohat expansion is to map the
perturbation parameter �� �0, � � to a new parameter 

� �0,1�. In order to perform the resummation of the angular
frequency, we introduce the new expansion parameter 
 ac-
cording to the transformation suggested by Shohat in Ref.
�37� and thus set


 =
�2

1 + �2 , �48�

where we explicitly take into account that the perturbation
series for the angular frequency depends only on even pow-
ers of �. Inverting Eq. �48�, we have

�2 =



1 − 

. �49�

We now obtain the Shohat expansion of our perturbative re-
sult by replacing �2 in Eq. �46� according to the last identity

TABLE II. Fourier expansion coefficients of the limit cycle for a1=−1, a2=2 up to the second order in �.

a1,k
�n� k=1 k=3 b1,k

�n� k=1 k=3

n=0 4


3�2+��
0 n=0 0 0

n=2
−

5
3�116+33��

81�2+��5/2
−

2
3

27�2+��3/2

n=2 0 14
3

27�2+��3/2

a2,k
�n� k=1 k=3 b2,k

�n� k=1 k=3

n=0 0 0 n=0 4
2


3�2+��
0

n=2 0 10
6

27�2+��3/2

n=2
−


6�436+93��

81�2+��5/2
−

2
6

27�2+��3/2
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and reexpanding the series in 
 up to order 
N. The Shohat
expansion of the angular frequency is thus given by

�S
�N� = �

n=0

N


n�
k=0

n �n − 1

k
��2�n−k�. �50�

The resummation of the limit cycle �47� is performed in a
similar manner and we obtain

uS
�N��t� = ��

n=0

N−1


n�
k=0

n �n − 1

k
�V�2�n−k����S

�N�t� . �51�

Finally, in order to evaluate the resummed angular frequency
and limit cycle for a certain value of �, we replace 
 in Eqs.
�50� and �51� according to Eq. �48�.

Figure 3�a� shows the angular frequency after Shohat re-
summation as a function of the delay parameter �. We find
that, if we go to sufficiently high orders, the resummed ex-
pansion yields reasonably good results for all values of �.
Figure 3�b� shows an example of the limit cycle after resum-
mation. Note that for the value of the delay parameter in Fig.
3�b� the perturbative result prior to resummation would be
completely useless.

Figure 4�a� shows the convergence of the angular fre-
quency obtained from the Shohat expansion versus the per-
turbation order N for different values of the temporal delay.
For small values of the delay, the convergence seems to be
exponentially fast, at least up to the eighth order. For larger
delays, the convergence appears to be less regular. In order to
examine the convergence of the limit cycle results, we con-
sider the error measure

��N� =

�
T0

T0+T

dt �u�t� − u�N��t��2

�
T0

T0+T

dt �u�t��2

, �52�

where we rescale the argument of our analytical solution so
that its period is identical to the period of the numerical
solution and shift the phase of the analytic solution according
to the phase of the numerical solution. Figure 4�b� shows the
convergence of the results for the limit cycle. As in the case
of the angular frequency, the results from the Shohat expan-
sion and their convergence with increasing perturbation or-
der are best as long as the delay is not too large. In the next
section, we thus use a more efficient method to resum the

FIG. 2. Perturbative results for the angular frequency � and the
limit cycle �u1�t� ,u2�t�
. In �a� the angular frequency is shown as a
function of �. The dashed lines represent the perturbative results as
given by Eq. �46� and Table I. Numerical results are shown by dots.
In �b� the limit cycle �u1�t� ,u2�t�
 is shown for �=1. Dashed lines
represent perturbative results according to Eq. �47�; the numerical
result is shown by the solid line.

FIG. 3. Angular frequency and limit cycle after Shohat resum-
mation. In �a� the angular frequency is shown as a function of �.
Results from the Shohat expansion as given by Eq. �50� are shown
by dashed lines. Numerical results are shown by dots. The inset
shows a magnification of the interval 4���5. In �b� the limit
cycle is shown for �=2. Dashed lines represent results from the
Shohat expansion as given by Eq. �51�; the numerical result is
shown by the solid line.
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perturbation series. It yields accurate results already in low
orders, allows us to obtain more precise results, and its con-
vergence depends less crucially on the size of the delay pa-
rameter.

VI. VARIATIONAL PERTURBATION THEORY

In this section, we improve the resummation of the per-
turbation series of the angular frequency and the limit cycle
by applying VPT to the perturbation series �46� and �47�.
This method is based on a variational approach due to Feyn-
man and Kleinert �21�, which has been systematically ex-
tended to the nonperturbative approximation scheme now
called VPT �22–25�.

A. Basic principles

VPT is capable of converting divergent weak-coupling
into convergent strong-coupling expansions and has been ap-
plied successfully in various fields, such as quantum me-
chanics, quantum statistics, condensed matter physics, and
the theory of critical phenomena. In fact, the most accurate

critical exponents come from this theory �40�, as verified by
recent satellite experiments �41�. First applications of VPT in
the field of Markov processes and nonlinear dynamics are
found in Refs. �47,48� and Ref. �11�, respectively.

The convergence of VPT has been analyzed up to very
high orders for the ground-state energy of the anharmonic
oscillator

V�x� =
1

2
�2x2 + gx4 �53�

and was found to be exponentially fast �42,43�. This surpris-
ing result was confirmed later by studying other physical
systems and was proven to hold in general �23,24�. Further-
more, the exponential convergence seems to be uniform with
respect to other system parameters. The variational resum-
mation of perturbation series thus yields approximations
which are generically reasonable for all temperatures
�44,45�, space and time coordinates �46–48�, magnetic field
strengths �49�, coupling constants �26,50,51�, spatial dimen-
sions �52�, etc.

VPT permits the evaluation of a divergent series of the
form

f �N��g� = �
n=0

N

angn �54�

and yields a strong-coupling expansion of the generic form

f�g� = gp/q�
m=0

M

bmg−2m/q. �55�

Here, p and q are real growth parameters and characterize
the strong-coupling behavior. Introducing a scaling param-
eter �, which is afterward set to one, Eq. �54� can be rewrit-
ten as

f �N��g� = ��p�
n=0

N

an� g

�q�n�
�=1

. �56�

Applying Kleinert’s square-root trick �23�, i.e., setting

� = K
1 + gr �57�

with

r =
�2 − K2

gK2 �58�

in Eq. �56�, the variational parameter K is introduced into the
perturbation series

f �N��g� = ��
n=0

N

angnKp−nq�1 + gr��p−nq�/2�
�=1

. �59�

The Taylor series of �1+gr�
 with 
��p−nq� /2 reads

��1 + gr�
�
�=1

= �
k=0

N−n �


k
�� 1

K2 − 1�k

+ O�gN−n+1� , �60�

where the generalized binomial coefficient is defined by

FIG. 4. Convergence of the angular frequency and the limit
cycle after Shohat resummation. In �a� the logarithm of the relative
deviation of the angular frequency as given by Eq. �50� from the
numerical value and in �b� the logarithm of the error measure for
the limit cycle as given by Eq. �52� are shown versus the perturba-
tion order. In both �a� and �b� different symbols indicate different
values of � �dots: �=1.6; squares: �=2.0; triangles: �=3.0; dia-
monds: �=4.0, upside-down triangles: �=5.0�.
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�


k
� �

��
 + 1�
��k + 1���
 − k + 1�

. �61�

The series �60� is truncated after k=N−n since the original
function f �N��g� is only known up to order gN. As a result of
this truncation, the function f �N��g� becomes dependent on
the variational parameter K

f �N��g,K� = �
n=0

N

angnKp−nq�
k=0

N−n ��p − nq�/2
k

�� 1

K2 − 1�k

.

�62�

The influence of the variational parameter is then optimized
according to the principle of minimal sensitivity �53�, i.e.,
one evaluates the function �62� at that value of the varia-
tional parameter K for which it has an extremum or turning
point. In the following, we set g=�2 in the expansions �46�
and �47�.

B. Resummation of the angular frequency

We now apply VPT to obtain an improved resummation
of the angular frequency �46�. VPT is applicable when the

physical quantity in question has a strong-coupling expan-
sion of the form �55� �23,24�. Therefore, we first consider
our numerical data for the angular frequency in the case of
large delays and determine the growth parameter p and q in
Eq. �55�. To this end, we analyze our numerical data in two
steps. First, in Fig. 5�a�, we plot our numerical results for
ln � versus ln g=ln��−�0�. Fitting our data to a function of
the form

f�ln g� = p/q ln g + ln b0, �63�

we find p /q=−0.9997 and b0=1.565. We expect the growth
parameters to be integers and thus set p /q=−1. For large
delays, the leading asymptotic behavior of � is thus given by
��g−1. In order to determine not only the ratio of p to q but
the individual values of the growth parameters, we then fit
our data for g� to a function of the form

f�g−2� = b0 + b1g−2/q, �64�

which is shown in Fig. 5�b�. The numerical results from the
fit are b0=1.571, b1=−2.7, and q=1.993. Thus, we assume
q=2 and from our previous result we then have p=−2. In
order to determine b0 and b1 numerically with better accu-

FIG. 5. Angular frequency for large delays �
�−�0

� �50,100��. In �a� the logarithm of the angular frequency is shown
versus the logarithm of the delay parameter g= �−�0. Numerical
data are represented by dots; the solid line represents a fit of the
data to a function of the form �63�. In �b� the product of the delay
parameter and the angular frequency is shown versus the inverse
square of the delay parameter. Numerical data are represented by
dots; the solid line represents a fit of the data to a function of the
form �64�.

FIG. 6. Angular frequency and limit cycle from VPT. In �a� the
angular frequency as given by Eq. �75� is shown as a function of �
for the orders N=1, 2, 8 of VPT �orders three through seven would
lie very close to the curve for N=8�. Dots represent numerical val-
ues. The inset shows a magnification of the interval 4.8���5. In
�b� the limit cycle is shown for �=2. Dashed lines represent the
results from VPT as given by Eq. �91�. The numerical result is
shown by the solid line.
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racy, we can now perform a hierarchy of approximations to
order M by fitting g� to functions of the form

f�g−1� = �
m=0

M

bmg−m. �65�

From this procedure we obtain the more precise numerical
values b0=1.570 81 and b1=−2.66. Now, we can introduce
the variational parameter K to the perturbation series �46�
according to Eq. �62� with p=−2, q=2

�VPT
�N� �g,K� = �

n=0

N

�2ngnKp−nq�
k=0

N−n ��p − nq�/2
k

�� 1

K2 − 1�k

.

�66�

To first order we obtain

�VPT
�1� �g,K� =

�2 + ���2K2 − 1� − 4g

K4�2 + ��
, �67�

which has a minimum at

K�1� =
1 +
4g

2 + �
. �68�

Evaluating Eq. �67� at the optimized value of the variational
parameter then yields

�VPT
�1� �g,K�1�� =

2 + �

4g + 2 + �
. �69�

In the limit of large delays, g→�, we thus have

�VPT
�1� �g,K�1�� = b0

�1�g−1 + b1
�1�g−2 + ¯ , �70�

with

b0
�1� =

2 + �

4
� 1.285 40 �71�

and

b1
�1� = −

�2 + ��2

16
� − 1.6522. �72�

To second order, Eq. �66� yields

�VPT
�2� �g,K� =

1

27K6�27�3K4 − 3K2 + 1� + g
108�2 − 3K2�

2 + �

+ g24�341 + 108��
�2 + ��3 	 . �73�

Since this has no real extremum in the variational parameter
K, we look for roots of the second derivative.

In general, in order to optimize the influence of the varia-
tional parameter, we first look for minima or maxima of
�VPT

�N� �g ,K�, and if those do not exist, for positive roots of
higher derivatives. In each order N, the optimized variational
parameter K�N� is thus determined from the condition

�d�VPT
�N� �g,K�

dK
�

K=K�N�
= 0 or

�74�

�d2�VPT
�N� �g,K�
d2K

�
K=K�N�

= 0, . . . , .

In cases where a certain derivative has several positive roots,
we choose the one which is closest to the optimized value
from the previous order K�N−1�. The Nth order VPT approxi-
mation of the angular frequency is then obtained by evaluat-
ing Eq. �66� for the value of the optimized variational param-
eter

�VPT
�N� �g� = �VPT

�N� �g,K�N�� . �75�

Returning to Eq. �73�, we find that for

g �
3�2 + ���24 + 12� + 5
35�2 + ���

587 − 144�
� 14.756 �76�

�VPT
�2� �g ,K� has two positive turning points

K̃±
�2� =


60 + 15��4 + �� + 60�2 + ��g ± 2�

3�2 + ��
, �77�

with the abbreviation

FIG. 7. Convergence of the angular frequency and the limit
cycle after resummation with VPT. In �a� the logarithm of the rela-
tive deviation of the angular frequency as given by Eq. �75� from
the numerical values and in �b� the logarithm of the error measure
for the limit cycle as given by Eq. �52� are shown versus the per-
turbation order. In both �a� and �b� different symbols indicate dif-
ferent values of � �dots: �=1.6; squares: �=2.0; triangles: �=3.0;
diamonds: �=4.0, upside-down triangles: �=5.0�.
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� = 
�2 + ���9�2 + ��3 + 72�2 + ��2g − �587 − 144��g2� . �78�

Comparing Eq. �77� to Eq. �68�, we find that K̃−
�2� is closer to K�1� and thus evaluate Eq. �73� for K= K̃−

�2� to obtain

�VPT
�2� �g,K̃−

�2�� =
27�2 + ��2

�15�2 + ���2 + � + 4g� − 2��3

��4�2 − 42�2 + ���2 + � + 4g�� + �2 + ���117�2 + ��3 + 936�2 + ��2g + 4�1061 + 468��g2�
 . �79�

However, for delay parameters exceeding the value of g given in Eq. �76�, we cannot use K̃±
�2� since in this case � becomes

imaginary. Thus, if we want to consider the limit of large delays, we must optimize the variational parameter by considering
the third derivative of �VPT

�2� �g ,K�, which turns out to have two positive roots for all positive g

K±
�2� =


180 + 45��4 + �� + 180�2 + ��g ± �

3
2�2 + ��
, �80�

with the abbreviation

� = 
�2 + ���513�2 + ��3 + 4104�2 + ��2g + 16�513� − 724�g2� . �81�

Again, K−
�2� is closer to the first-order solution, and we set K�2�=K−

�2�, to obtain

�VPT
�2� �g,K�2�� =

54�2 + ��2

�45�2 + ���2 + � + 4g� − ��3

���2 − 72�2 + ���2 + � + 4g�� + �2 + ���1323�2 + ��3 + 10 584�2 + ��2g + 16�2771 + 1323��g2�
 . �82�

Expanding the last result in g−1, we obtain

�VPT
�2� �g,K�2�� = b0

�2�g−1 + b1
�2�g−2 + ¯ , �83�

with

b0
�2� =

27�2 + ��3

2�90 + 45� − 
�2 + ���513� − 724��3
�2047 + 1836� − 72
�2 + ���513� − 724�� � 1.231 74 �84�

and

b1
�2� =

243�2 + ��5

8�90 + 45� − 
�2 + ���513� − 724��4

��63 213
 2 + �

513� − 724
+ 162��437
 2 + �

513� − 724
− 82	 + 426
�2 + ���513� − 724� − 16 193� � − 1.1229. �85�
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It thus turns out that the second-order approximation for the
leading and subleading large-delay coefficient is actually
worse than the first-order one. However, the results in higher
orders turn out to be improved approximations. For fixed
values of the coupling constant, the procedure in higher or-
ders is analogous to the first and second order, where the
roots of the first, second, or third derivative of �VPT

�N� �g ,K�
have to be determined numerically. Furthermore, in order to
obtain the coefficients b0

�N� and b1
�N�, we expand the deriva-

tives of �VPT
�N� �g ,K� in g−1 and the variational parameter K as

K�N� = K0
�N�g1/2 + K1

�N�g−1/2 + ¯ �86�

in order to carry out the optimization procedure.
Figure 6�a� shows our VPT results for the angular fre-

quency versus the delay parameter �. The first-order result is
already in good agreement with the numerical results for a
wide range of delays and is far superior to the first-order
result from the Shohat expansion �compare Fig. 3�a��. Figure
7�a� shows the convergence of our VPT results for five dif-
ferent values of the delay. The accuracy of our VPT results
improves with increasing order; however, not as regularly as
in the case of the Shohat expansion for small delays. Figure
8�a� shows a comparison of the eighth-order results obtained
from Shohat resummation and VPT. In particular, for larger
values of the delay, the results from VPT are far superior to
the ones from Shohat resummation. Table III shows our re-
sults for the leading large-delay coefficients b0 and the sub-
leading coefficient b1; again, the convergence is not mono-
tonic, but we do observe a general trend toward improved
results in higher orders.

C. Resummation of the limit cycle

We now proceed to perform a variational resummation of
the limit cycle following the approach of Ref. �54�. To this
end, we consider the perturbation series of each coefficient in
the Fourier expansion of V�	� as given by Eq. �24�

A1/2,k
�N� = �

n=0

N−1

a1/2,k
�2n� gn, �87�

B1/2,k
�N� = �

n=0

N−1

b1/2,k
�2n� gn. �88�

We introduce the variational parameter K into the perturba-
tion series for A1/2,k

�N� and B1/2,k
�N� in the same way as for the

angular frequency, and obtain by applying Eq. �62� to the
Fourier expansions �87� and �88�

A1/2,k,VPT
�N� �g,K� = �

n=0

N−1

a1/2,k
�2n� gnKp−nq�

k=0

N−n ��p − nq�/2
k

�� 1

K2 − 1�k

�89�

and

B1/2,k,VPT
�N� �g,K� = �

n=0

N−1

b1/2,k
�2n� gnKp−nq

��
k=0

N−n ��p − nq�/2
k

�� 1

K2 − 1�k

. �90�

Instead of optimizing Eqs. �89� and �90� according to the
principle of minimal sensitivity, we obtain our VPT result for
the limit cycle more easily by evaluating all Fourier expan-
sion coefficients for that value of the variational parameter K
which was determined through the optimization procedure of
the frequency, i.e., our VPT result for the limit cycle reads:

�V1,VPT
�N� �	�

V2,VPT
�N� �	�

� = �
k=1

� ��A1,k,VPT
�N� �g,K�N−1��

A2,k,VPT
�N� �g,K�N−1��

�cos k	��
+ �B1,k,VPT

�N� �g,K�N−1��
B2,k,VPT

�N� �g,K�N−1��
�sin k		 , �91�

where K�N−1� is determined from the condition �74� and we
use K�N−1� instead of K�N�, since the Nth term in the series for
V�	� is a correction of order gN−1.

As an example, we consider the lowest order in which we
can perform the VPT resummation of the limit cycle. To
order g our solution for V�	� reads

V1�	� =
4 cos 	


3�2 + ��
− g�5
3�116 + 33��cos 	

81�2 + ��5/2 +
2
3

27�2 + ��3/2 �cos 3	 − 7 sin 3	�	 + O�g2� , �92�

V2�	� =
4
2 sin 	


3�2 + ��
− g�
6�436 + 93��sin 	

81�2 + ��5/2 −
2
6

27�2 + ��3/2 �5 cos 3	 − sin 3	�	 + O�g2� . �93�

Introducing the variational parameter K according to Eqs. �89� and �90�, we obtain

TABLE III. Leading and subleading coefficients for the large-delay behavior of the angular frequency.

N 1 2 3 4 5 6 7 8 Numerical

b0
�N� 1.2854 1.23174 1.56495 1.59507 1.61990 1.61806 1.61139 1.54478 1.57081

b1
�N� −1.65 −1.12 −2.72 −2.79 −3.05 −3.03 −2.98 −2.21 −2.66
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V1,VPT
�2� �	,K� =

4�2K2 − 1�cos 	

K4
3�2 + ��
−

g

K4�5
3�116 + 33��
81�2 + ��5/2 cos 	 +

2
3

27�2 + ��3/2 �cos 3	 − 7 sin 3	�	 , �94�

V2,VPT
�2� �	,K� =

4�2K2 − 1�
2 sin 	

K4
3�2 + ��
−

g

K4�
6�436 + 93��
81�2 + ��5/2 sin 	 −

2
6

27�2 + ��3/2 �5 cos 3	 − sin 3	�	 . �95�

The optimal value of the variational parameter for the angular frequency to first order is given by Eq. �68�. Inserting this value
into Eqs. �94� and �95�, we find the following VPT result for the limit cycle:

V1,VPT
�2� �	� =

1

27
3�2 + ���2 + � + 4g�2
�108�2 + ��2cos 	 + g��1148 + 699��cos 	 − 6�2 + ���cos 3	 − 7 sin 3	��
 , �96�

V2,VPT
�2� �	� =

2

27
6�2 + ���2 + � + 4g�2
�108�2 + ��2sin 	 + g��1292 + 771��sin 	 + 6�2 + ���5 cos 3	 − sin 3 	��
 . �97�

The procedure in higher order is analogous. Figure 6�b�
shows our VPT results for the limit cycle for �=2 up to the
eighth order. Figure 7�b� shows the logarithm of the error
measure �52� for the VPT limit cycle versus the order N for
different values of �. In Fig. 8�b� the accuracy of the eighth-
order results from the Shohat expansion and VPT are com-

pared. Again, we find that our VPT results are more reliable
than those from the Shohat expansion, especially for larger
delays.

VII. SUMMARY

We have performed a perturbative calculation of the limit
cycle and its frequency in a two-neuron model with delay. A
Shohat resummation of the respective perturbation expan-
sions yields results which are in good agreement with nu-
merical values but whose accuracy decreases drastically with
larger values of the delay parameter. Resumming the pertur-
bation series with VPT yields more uniformly converging
results, which are reliable even in low orders, and further-
more permits the extraction of the leading large-delay behav-
ior with sufficient accuracy. The present work constitutes the
first application of VPT to a system of DDE’s. Moreover, it
establishes a method for the variational resummation of per-
turbatively calculated limit cycles in nonlinear dynamical
systems.
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APPENDIX: ELIMINATION OF SECULAR TERMS

We now demonstrate how the conditions �26� and �27� are
obtained by considering the Fourier decompositions of the
periodic solution and the inhomogeneity. Inserting Eqs. �24�
and �25� into the system of Eqs. �23� and �23� and comparing
coefficients of sin k	 and cos k	 in both components, we ob-
tain the following system of four equations:

FIG. 8. Comparison of the eighth order results for �a� the angu-
lar frequency and �b� the limit cycle obtained from the Shohat ex-
pansion and VPT. The relative deviations of the analytical results
from the corresponding numerical values are shown versus the de-
lay parameter �Shohat expansion: squares; VPT: circles�.
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a1,k
�n�

�0
+ kb1,k

�n� −
a1a2,k

�n�

�0
cos�k�0�0� +

a1b2,k
�n�

�0
sin�k�0�0� − 
1,k

�n� = 0, �A1�

b1,k
�n�

�0
− ka1,k

�n� −
a1b2,k

�n�

�0
cos�k�0�0� −

a1a2,k
�n�

�0
sin�k�0�0� − �1,k

�n� = 0, �A2�

a2,k
�n�

�0
+ kb2,k

�n� −
a2a1,k

�n�

�0
cos�k�0�0� +

a2b1,k
�n�

�0
sin�k�0�0� − 
2,k

�n� = 0, �A3�

b2,k
�n�

�0
− ka2,k

�n� −
a2b1,k

�n�

�0
cos�k�0�0� −

a2a1,k
�n�

�0
sin�k�0�0� − �2,k

�n� = 0. �A4�

It turns out that for k�1 the coefficients ak
�n� ,bk

�n� can be uniquely determined for any inhomogeneity, i.e., for arbitrary
�k

�n� ,�k
�n�. For k�1 the solution of the system �A1�–�A4� is

a1,k
�n� =

1

D
��
1,k

�n� − k�0�1,k
�n����0 + k2�0

3� − a1�0
2 sin�k�0�0��2k
2,k

�n� − �1 + k2��0�2,k
�n�� + a1�0 cos�k�0�0��2
2,k

�n� − 2k�0�2,k
�n�

+ �1 − k2��0
2
2,k

�n�� + ��0 + �0
3��sin�2k�0�0���1,k

�n� − k�0
1,k
�n�� + cos�2k�0�0��
1,k

�n� + k�0�1,k
�n���
 , �A5�

b1,k
�n� =

1

D
���1,k

�n� + k�0
1,k
�n����0 + k2�0

3� − a1�0
2 sin�k�0�0��2k�2,k

�n� + �1 + k2��0
2,k
�n�� + a1�0 cos�k�0�0��2�2,k

�n� + 2k�0
2,k
�n�

+ �1 − k2��0
2�2,k

�n�� + ��0 + �0
3��cos�2k�0�0���1,k

�n� − k�0
1,k
�n�� − sin�2k�0�0��
1,k

�n� + k�0�1,k
�n���
 , �A6�

a2,k
�n� =

1

D
��
2,k

�n� − k�0�2,k
�n����0 + k2�0

3� + ��0 + �0
3����0/a1� sin�k�0�0��2k
1,k

�n� − �0�1 + k2��1,k
�n��

− cos�k�0�0��2
1,k
�n� − 2k�0�1,k

�n� + �1 − k2��0
2
1,k

�n�� + sin�2k�0�0���2,k
�n� − k�0
2,k

�n�� + cos�2k�0�0��
2,k
�n� + k�0�2,k

�n��
� , �A7�

b2,k
�n� =

1

D
���2,k

�n� + k�0
2,k
�n����0 + k2�0

3� + ��0 + �0
3����0/a1� sin�k�0�0��2k�1,k

�n� + �0�1 + k2�
1,k
�n������

− cos�k�0�0��2�1,k
�n� + 2k�0
1,k

�n� + �1 − k2��0
2�1,k

�n�� − sin�2k�0�0��
2,k
�n� + k�0�2,k

�n�� + cos�2k�0�0���2,k
�n� − k�0
2,k

�n��
� , �A8�

where

D = 2 + 2�0
2�1 + k2� + �0

4�1 + k4� + ��0 + �0
3��2�1 − k2�0

2�cos�2�0�0�/�0 − 4k sin�2k�0�0�� . �A9�

Note that D vanishes for k=1. We must thus reconsider the system �A1�–�A4� for the case k=1 and it turns out that �1
�n� and

�1
�n� must satisfy certain conditions for a solution to exist. For k=1, we add a2sin��0�0�� Eq. �A1� to Eq. �A4� and subtract

�0� Eq. �A3� from a2cos��0�0�� Eq. �A2�. Using the identities a1a2=−��0
2+1� and �0=cot��0�0�, we obtain the two

conditions �26� and �27� that must be satisfied by the inhomogeneity f�n��	�. Imposing the conditions �26� and �27� on f�n�

��	�, we obtain the following solution to the system of equations �A1�–�A4� for k=1:

b1,1
�n� = cos��0�0��a2cos��0�0�
1,1

�n� +

2,1

�n�

a2
	 a2,1

�n�

a2sin��0�0�
, �A10�

b2,1
�n� = a2sin��0�0��a1,1

�n� − 
1,1
�n�sin��0�0�cos��0�0�� + 
2,1

�n� cos2��0�0� . �A11�

Here, the coefficients a1,1
�n� and a2,1

�n� are undetermined and follow from the initial conditions. We set a1,1
�n� =An and a2,1

�n� =0.

�1� J. Bechhoefer, Rev. Mod. Phys. 77, 783 �2005�.
�2� G. A. Bocharov and F. A. Rihan, J. Comput. Appl. Math. 125,

183 �2000�.
�3� J. Wu, Introduction to Neural Dynamics and Signal Transmis-

VARIATIONAL CALCULATION OF THE LIMIT CYCLE¼ PHYSICAL REVIEW E 74, 036201 �2006�

036201-13



sion Delay �Walter de Gruyter, Berlin, 2001�.
�4� J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 81, 3088 �1984�.
�5� C. M. Marcus and R. M. Westervelt, Phys. Rev. A 39, 347

�1989�.
�6� C. W. Eurich, M. C. Mackey, and H. Schwegler, J. Theor. Biol.

216, 31 �2002�.
�7� U. an der Heiden, J. Math. Biol. 8, 345 �1979�.
�8� B. D. Coleman and G. H. Renninger, SIAM J. Appl. Math. 31,

111 �1976�; J. Theor. Biol. 51, 243 �1975�.
�9� K. P. Hadeler and J. Tomiuk, Arch. Ration. Mech. Anal. 65, 87

�1977�.
�10� W. Wischert, A. Wunderlin, A. Pelster, M. Olivier, and J. Gro-

slambert, Phys. Rev. E 49, 203 �1994�.
�11� M. Schanz and A. Pelster, Phys. Rev. E 67, 056205 �2003�.
�12� E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196

�1990�.
�13� K. Pyragas, Phys. Lett. A 170, 421 �1992�.
�14� K. Pyragas, Phys. Rev. Lett. 86, 2265 �2001�.
�15� K. Pyragas and A. Tamašiavičius, Phys. Lett. A 180, 99

�1993�.
�16� D. J. Christini, V. In, M. L. Spano, W. L. Ditto, and J. J.

Collins, Phys. Rev. E 56, R3749 �1997�.
�17� S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev. E 49,

R971 �1994�.
�18� P. Parmananda, R. Madrigal, M. Rivera, L. Nyikos, I. Z. Kiss,

and V. Gaspar, Phys. Rev. E 59, 5266 �1999�.
�19� O. V. Popovych, C. Hauptmann, and P. A. Tass, Phys. Rev.

Lett. 94, 164102 �2005�.
�20� J. Milton, Dynamics of Small Neural Populations �Amer.

Math. Soc., Providence, 1996�.
�21� R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 �1986�.
�22� H. Kleinert, Phys. Lett. A 173, 332 �1993�.
�23� H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,

Polymer Physics, and Financial Markets, 3rd ed. �World Sci-
entific, Singapore, 2004�; Phys. Rev. D 57, 2264 �1998�.

�24� H. Kleinert and V. Schulte-Frohlinde, Critical Properties of
�4-Theories �World Scientific, Singapore, 2001�, Chap. 19.

�25� Fluctuating Paths and Fields—Dedicated to Hagen Kleinert
on the Occasion of his 60th Birthday, edited by W. Janke, A.
Pelster, H.-J. Schmidt, and M. Bachmann �World Scientific,
Singapore, 2001�.

�26� A. Pelster, H. Kleinert, and M. Schanz, Phys. Rev. E 67,
016604 �2003�.

�27� K. L. Babcock and R. M. Westervelt, Physica D 28, 305
�1987�.

�28� J. Wei and S. Ruan, Physica D 130, 255 �1999�.

�29� S. Ruan and R. S. Filfil, Physica D 191, 323 �2004�.
�30� L. P. Shayer and S. A. Campbell, SIAM J. Appl. Math. 61, 673

�2000�.
�31� K. Gopalsamy and I. Leung, Physica D 89, 395 �1996�.
�32� X. Liao, S. Li, and G. Chen, Neural Networks 17, 545 �2004�.
�33� L. Olien and J. Bélair, Physica D 102, 349 �1997�.
�34� N. C. Majee and A. B. Roy, Appl. Math. Model. 21, 673

�1997�.
�35� X. Liao, S. Li, and K.-W. Wong, Nonlinear Dyn. 31, 299

�2003�.
�36� N. MacDonald, Time Lags in Biological Models, Lecture

Notes in Biomathematics Vol. 27 �Springer-Verlag, Berlin,
1978�.

�37� J. Shohat, J. Appl. Phys. 14, 568 �1943�.
�38� R. Bellman, Perturbation Techniques in Mathematics, Physics,

and Engineering �Holt, Rinehart and Winston, Inc., New York,
1964�.

�39� M. S. Sarma and B. Nageswara Rao, J. Sound Vib. 209, 879
�1998�.

�40� H. Kleinert, Phys. Rev. D 60, 085001 �1999�.
�41� J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, and T.

C. P. Chui, Phys. Rev. B 68, 174518 �2003�.
�42� W. Janke and H. Kleinert, Phys. Rev. Lett. 75, 2787 �1995�.
�43� H. Kleinert and W. Janke, Phys. Lett. A 206, 283 �1995�.
�44� H. Kleinert and H. Meyer, Phys. Lett. A 184, 319 �1994�.
�45� F. Weißbach, A. Pelster, and B. Hamprecht, Phys. Rev. E 66,

036129 �2002�.
�46� M. Bachmann, H. Kleinert, and A. Pelster, Phys. Rev. E 60,

3429 �1999�.
�47� H. Kleinert, A. Pelster, and M. V. Putz, Phys. Rev. E 65,

066128 �2002�.
�48� J. Dreger, A. Pelster, and B. Hamprecht, Eur. Phys. J. B 45,

355 �2005�.
�49� M. Bachmann, H. Kleinert, and A. Pelster, Phys. Rev. A 62,

052509 �2000�; Phys. Lett. A 279, 23 �2001�.
�50� C. M. Bender, A. Pelster, and F. Weißbach, J. Math. Phys. 43,

4202 �2002�.
�51� S. F. Brandt, H. Kleinert, and A. Pelster, J. Math. Phys. 46,

032101 �2005�.
�52� S. F. Brandt and A. Pelster, J. Math. Phys. 46, 112105 �2005�.
�53� P. M. Stevenson, Phys. Rev. D 23, 2916 �1981�.
�54� A. Pelster, A. Novikov, M. Schreiber, and U. Kleinekathöfer

�unpublished�.
�55� The AnT 4.669 software package is available online at http://

www.ant4669.de

BRANDT, PELSTER, AND WESSEL PHYSICAL REVIEW E 74, 036201 �2006�

036201-14


