
Phase transitions in an Ising model on a Euclidean network

Arnab Chatterjee1,* and Parongama Sen2,†

1Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational Science,
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India

2Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
�Received 6 June 2006; published 20 September 2006�

A one-dimensional network on which there are long-range bonds at lattice distances l�1 with the probabil-
ity P�l�� l−� has been taken under consideration. We investigate the critical behavior of the Ising model
on such a network where spins interact with these extra neighbors apart from their nearest neighbors for
0���2. It is observed that there is a finite temperature phase transition in the entire range. For 0���1,
finite-size scaling behavior of various quantities are consistent with mean-field exponents while for 1���2,
the exponents depend on �. The results are discussed in the context of earlier observations on the topology of
the underlying network.
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I. INTRODUCTION

During the last few years there has been a lot of activity in
the study of networks once it was realized that networks of
diverse nature exhibit some common features in their under-
lying structure. The Watts-Strogatz �WS� model �1� was pro-
posed to simulate the small-world feature of real networks
�i.e., the property that the networks have a small diameter as
well as a large clustering coefficient�. In this model, the
nodes are placed on a ring and each node has a connection to
a finite number of nearest neighbors initially. The nearest-
neighbor links are then rewired with a rewiring probability pr
to form random long-range links. This model displays phase
transitions from a regular to a small world to a random net-
work by varying the single parameter pr representing disor-
der. The regular to small-world network transition was
shown to take place at pr→0. In a slight variation of the
WS model, the addition-type network was considered in
which random long-range bonds are added with a probability
p, keeping the nearest-neighbor links undisturbed. Phase
transition to a small-world network was again observed for
p→0 �2,3�.

Phase transitions in networks can also be driven by fac-
tors other than the above kind of disorder. In many real-
world networks, the linking probability is dictated by factors
such as Euclidean distances separating them, aging, etc. It is
possible to achieve phase transitions in the network by tun-
ing the parameters governing such factors. These networks
are indeed not just theoretical concepts. Many real-world
networks such as the Internet at the router level, transport
networks, power grid networks, and even collaboration net-
works are indeed described on a Euclidean space in which
the geographical locations of the nodes play an important
role in the construction of the network �4–7�. Similarly, the
aging factor is important in social networks and citation net-
work �3,8,9� where it is found that linking with older nodes
is generally less probable.

In the theoretical modeling of Euclidean networks �10�, it
is usually assumed that two nodes separated by a Euclidean
distance l are connected with the probability P�l�, which
follows a power-law variation, i.e.,

P�l� � l−�. �1�

In one dimension, where the nodes are placed on a ring, the
typical networks generated for different values of � and the
corresponding adjacency matrix are shown graphically in
Fig. 1. Growing networks on Euclidean spaces where the
linking probability is modified with such a probability factor
have also been considered recently �11�. In a real situation,
however, P�l� may not have such a well-defined behavior
�5,7�.

A variation of P�l� in the above form was first studied
by Kleinberg �12� on a two-dimensional plane with the aim
to find out how navigation in the network depends on
the parameter �. Later, a number of other properties of net-
works �both static and dynamic� with such a probabilistic
attachment have been studied �10,13–17�.

In the present study, we have reconsidered a static one-
dimensional Euclidean network �OEN� with connection
probability at distance l given by Eq. �1�. We are interested
in the phase transitions, which can be achieved by varying
the parameter �. Although this issue has been addressed ear-
lier �13–16�, there remain some questions about the exact
nature of phase transitions in the region 0���2. We have
tried to resolve the problems by taking a different approach
here. In the earlier studies, the topological features such as
the diameter, shortest paths, and the clustering coefficient of
the network had been studied. Here we have considered Ising
spins on the nodes of such a network. The critical behavior
of this system is expected to reflect the nature of the network
at different values of � indirectly. That the Ising model un-
dergoes phase transitions on the addition-type WS network is
an established fact �18–20�. It has also been shown that in
the small world phase the addition-type WS has a mean-field
nature �21,22�.
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In Sec. II, we have reviewed the available results of the
Euclidean networks and also justified the necessity of the
present investigations. In Sec. III, studies of Ising models on
networks have been briefly reviewed. Our results of the
study of the Ising model on a Euclidean network is given in
Sec. IV. Finally, in Sec. V, a summary and conclusions are
given.

II. NETWORK ON EUCLIDEAN SPACE

The OEN, with the connection probability given by Eq.
�1�, is equivalent to the addition-type WS model at �=0
when the addition of long-range links can take place at any
length scale. The choice of the number of long-range neigh-
bors in this OEN should be such that it allows a phase tran-

sition at �=0. In the addition-type WS model, this transition
for a system of N nodes is achieved for p=1/N �implying
p→0 in the thermodynamics limit�. Connection probability
p=1/N implies a total number of N long-range edges in the
system or the existence of one long-range bond per node on
an average. Therefore in order to obtain a phase transition in
the OEN, it is sufficient to keep N long-range bonds. For
large values of �, the nodes in the network have short-range
connections only and therefore it behaves as a regular net-
work �13–15�. Thus there should exist at least one phase
transition in this network.

In all, there could be four kinds of behavior of this net-
work: �a� regular: when the network is like a short-ranged
one-dimensional system, �b� finite dimensional: when the
network behaves as a system with effective dimensionality
greater than one but still short ranged, �c� small world, and

FIG. 1. Structures of the net-
works �left panel� and the corre-
sponding adjacency diagrams
�right panel� for �=0, 1.0, 2.0 �top
to bottom� in the model for a sys-
tem of size N=100.
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�d� random. A few studies in which these phase transitions
have been investigated have not been able to give a concrete
or unique answer. The network behaves as a regular network
above �=2; this is obtained in all the earlier studies.
The interesting region is 0���2 as here the network no
longer behaves like a one-dimensional system. In Ref. �13�,
the behavior of the OEN was studied by releasing a random
walker on the network. The results indicated that the walker
has the same behavior as on a small-world network for all
��2.

To detect whether a network has small-world behavior,
one can calculate the shortest distances separating two
nodes, take the average, and analyze its behavior with
the system size. The largest of these shortest paths is called
the diameter of the network. The average shortest path
and diameter of a network are expected to have the
same scaling behavior. Sen and Chakrabarti �14� studied the
diameters of the OEN while the shortest paths were
calculated by Moukarzel and de Menezes �15� giving contra-
dictory results. In Ref. �14�, it was found that the diameter
behaved as ln N on chains of size N for all ��2 and hence it
was concluded that small-world behavior occurs for 0��
�2 while in Ref. �15�, it was argued that small-world
behavior occurs only for ��1. In the region 1���2, ac-
cording to Ref. �15�, the shortest distances scale as N� with
the value of the shortest path exponent � �0���1/2�
depending on �. The system sizes considered in Ref. �15�
were much larger compared to those in Ref. �14� and the
discrepancy of the results could be accounted for by this
fact. It must also be mentioned here the above results are
for pN=1; results for other values of p have also been
considered in these studies.

Random and small-world phases can be distinguished
by the clustering coefficient, which remains finite in the
latter. The estimate of the clustering coefficients of the
present network �16� showed that below �=1 it vanishes.
This was considered to be a signature of the network being
random for ��1 and based on the findings of Ref. �14�, it
was concluded that the region 0���2 was equally divided
into a random �for ��1� and a small-world �for ��1�
phase. But this is by no means foolproof, as in this particular
network the clustering coefficient is bound to be small close
to �=0 as the number of nearest neighbors is small when � is
small. �In the original WS model, the clustering coefficient
remained high for finite values of pr�1 only when the num-
ber of nearest neighbors was at least four to begin with.�
Thus it may not indicate a random to small-world phase
transition at �=1 as conjectured in Ref. �16�, it could, in
principle, correspond to the small world to a finite dimen-
sional network as found in Ref. �15�. That there could be two
transitions, one at �=1 and the second at �=2, was also
supported by simple scaling arguments for the average bond
lengths�16�.

It has been mentioned in the beginning of this section
that the total number of random long-range bonds per
site has been kept equal to 1 on an average such that
p=1/N. This is also consistent with the fact that such a
choice will keep the probability normalized. However, in an
analytical approach there will be a problem at �=1 where

such a normalization is not possible. This issue has been
discussed in Ref. �13� and does not cause a problem in
numerical calculations.

Navigation or searching on small-world networks are
known to give rise to shortest paths, which do not behave
as ln�N� but rather have sublinear variations with N except
for special points: this was first detected in Ref. �12� for
two-dimensional lattices and later confirmed for the WS
model �23�. In the present one-dimensional Euclidean model
this was again demonstrated in Ref. �17�.

The more recent results �15,16� indicate that there is in-
deed a phase transition at �=1 and that the network behaves
as a small world only for ��1. In the present work we want
to confirm this using a completely different approach. If the
network’s behavior is that of a small world it should be re-
flected in the critical exponents of the Ising model, which
would assume mean-field values. On the other hand, if it
behaves like a finite dimensional system with effective di-
mension greater than one, a phase transition will be observed
with critical exponents assuming values different from the
mean-field ones �note that the lower critical dimension of the
Ising model is 1�.

Another interesting point which can be studied by consid-
ering the Ising model on this network is the relation between
the shortest path exponent � and the effective dimension
of the network for 1���2. If one interprets � as the inverse
of some effective dimension deff then, according to Ref. �15�,
for some values of ��1, deff is actually greater than 4. In
fact, we have used the burning algorithm �24� to find out
independently the shortest paths between all pairs of nodes
in a network of size N and found out that indeed � has values
below 0.25 up to ��1.2 �Fig. 2�. Our estimates of � are
slightly larger than those obtained in Ref. �15�, which may be
due to the smaller system sizes considered, but still we find
��0.25 over a considerable range of values of ��1. The
question that naturally arises is whether the Ising model
shows mean-field behavior here as the effective dimension is
higher than the upper critical dimension, i.e., does it have a
mean-field behavior even though the network is not a small
world?

FIG. 2. Behavior of shortest path S with system size N.
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III. ISING MODELS ON NETWORKS

Ising models with long-range neighbors have been con-
sidered in different contexts in many earlier studies. It is well
known that the short-ranged Ising model on a one-
dimensional lattice does not show any phase transition
while interaction with all the neighbors gives rise to a
mean-field-like phase transition. The occurrence of the ran-
dom long-ranged bonds also enables a phase transition
�18,19,21,22,25–27�.

In an analytical study of the Ising model on a WS-type
network, it was assumed that there are two nearest neighbors
and additional long-range neighbors occur randomly
with probability p=� /N �19� where � is a parameter.
Phase transition occurs here for ��1 implying that the
addition of one long-range bond to each node �on an aver-
age� could enhance a phase transition. In the numerical
studies also, the addition of one random long-range neighbor
per site enables a phase transition �25�. The fact that the
Ising model on these networks show a phase transition even
when the additional long-range connections are finite in
number �i.e., O�N�� compared to that of the infinite range
model �where there are O�N2� number of bonds� is evidence
of the key role played by the randomness in these networks
�26�.

Another kind of long-range Ising model has been consid-
ered in which the interactions decrease with the distance as a
power law, i.e, the Hamiltonian is given by �28�

H = − 	ijJijSiSj , �2�

where Jij �1/rij

; rij is the distance separating the spins at

sites i and j. In the fully connected model, phase transitions
occur at the values 
=3/2 and 
=2; for 
�3/2, the system
is mean-field-like while for 3 /2�
�2 it is like a
finite-dimensional lattice and for 
�2, it behaves like a
one-dimensional system with no phase transition. On a
small-world network, the interactions exist randomly
among neighbors, maintaining the form of Jij as above.
However, there is no phase transition displayed by this
model �29� except at 
=0 where it coincides with the WS
model.

As mentioned earlier, the critical behavior of the Ising
model on a WS addition-type network is mean-field
type. The intriguing feature is the validity of the finite-size
scaling analysis in the mean-field regime. Moreover, it
has been observed �25� that the data collapse in the finite-size
scaling analysis can be achieved when �T−Tc�, the deviation
from the critical temperature, is scaled by the factor N−1/�̄

in the scaling argument with �̄=2. Interpreting �̄ as �d,
where � is the critical exponent for the correlation function
and d is the effective dimensionality of the system,
could imply that one has effectively a system with d=4
with the mean-field value of �=1/2. This effective dimen-
sion is identical to the upper critical dimension of the Ising
model.

Phase transition of the Ising model has also been observed
in scale-free networks �30,31� where the transition tempera-
ture diverges with the system size. Several other aspects
of Ising models on networks have been considered recently,

for example, the self-averaging property of an Ising
model on networks �26�, quenching dynamics �32�, etc.,
which are not directly related to the content of the present
paper.

IV. ISING MODEL ON EUCLIDEAN NETWORK

We have considered an Ising model on a finite chain of
length N with a periodic boundary condition. The nodes are
assigned position coordinates 1 ,2 , . . . ,N along the chain.
Each node is connected to its two nearest neighbors. In order
to generate the long-range bonds, two nodes are selected
randomly. If l�1 is the distance separating them, they are
connected with probability P�l� as given by Eq. �1�. The
process is repeated N /2 times generating N long-range bonds
�each bond is counted twice so that there are N long-range
bonds in the system�. This ensures that there is one long-
range neighbor for each site on an average. As has been
mentioned in the previous section, this is sufficient to
achieve a phase transition. For each realization of the net-
work, the dynamical evolution from a uniform state �all spins
up� was allowed following a Metropolis algorithm for differ-
ent temperatures T.

We have computed the following quantities on this
network after it reaches equilibrium:

�1� Magnetization per spin m=�iSi /N.

�2� Binder cumulant U=1−
	m4


3�	m2
�2 .

�3� Susceptibility per spin is calculated from the
fluctuation of the order parameter:

� =
N

KBT
�	M2
 − 	M
2� ,

where M is the total magnetization, T is the temperature, and
KB is the Boltzmann’s constant.

�4� Specific heat per spin is calculated from the
fluctuation of the energy of the system as

c =
N

�KBT�2 �	E2
 − 	E
2� ,

where E is the energy of the system.

A. Results

From the intersection of U for different N in the plot of U
vs T we estimate Tc and a data collapse is obtained by plot-
ting U vs �T−Tc�N1/�̄. With this value of �̄, one can now
estimate the exponents , �, and �, the critical exponents for
the order parameter m, susceptibility �, and specific heat c,
respectively, using finite-size scaling. Figures 3 and 4 show
the data collapse for these quantities for �=0.6 and �=1.4.
Similar results have been obtained for other values of �.

1. Transition temperature

As expected we find a transition temperature Tc, which
decreases with � �Fig. 5�. Tc varies very slowly in the region
0���0.5 and much faster for higher values of �.
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2. Critical exponents

From the finite-size scaling analysis, we obtain the critical
exponents �̄, , �, and � �Figs. 6 and 7�. We find that �̄
is equal to 2 for the entire range 0���1. However, for
��1 we find that �̄ decreases and then rises again.

The magnetization exponent  is equal to 0.5 for ��1,
while for ��1, it decreases with �. The susceptibility expo-
nent � is close to 1 for ��1 and increases with � beyond
�=1. The specific-heat exponent � remains constant at a
value close to 0.1 for ��1 and appears to deviate from this
value as � is made larger than 1. It becomes small as �
approaches 2.

The behavior of all the quantities is consistent with the
fact that for ��1, there is a mean-field behavior of the Ising

model �consistent with the available solution for the random
long-range bond small-world network �27�� and for ��1, its
behavior is like a finite-dimensional lattice with effective
dimension greater than one.

As has been argued for �=0, here also one can interpret �̄
as �d, where d is the effective dimension, such that it
satisfies �̄=2−�. Since below d=4 � is nonzero, �̄ becomes
less than 2 at ��1. Theoretically, the behavior of � is non-
monotonic as a function of dimensionality d as d varies from
4 to 1; � is zero for both d=4 and d=2 and this behavior
is reflected in the fact that �̄ again rises to 2 at around �
=1.8. However, our result for � does not show this non-
monotonic behavior very accurately, the reason possibly be-
ing that the magnitude of � is small �O�0.1�� even when it is
nonzero and is difficult to estimate accurately in a numerical
study.

The mean-field value for � is 1.0, which comes out to
be slightly lower in our estimate and also, the value of
� is higher than the corresponding 0, but the scaling relation
�+2+�=2 is obeyed with a high degree of accuracy.
Although there are deviations of � and � from the mean-field

FIG. 3. Data collapse for different system sizes N=100, 150,
200, 250 for U, �, M, and c, respectively, for �=0.6 ��̄=�d�.

FIG. 4. Data collapse for different system sizes N=50, 100, 150,
200 for U, �, M, and c, respectively, for �=1.4 ��̄=�d�.

FIG. 5. Variation of critical temperature Tc with �. The Errors in
this and the next two figures are of the order of the size of the data
points.

FIG. 6. Variation of �̄ and specific heat exponent � with �.
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values, the fact remains that they show no variation over the
region 0���1, indicating that the critical behavior for
��1 is identical to that for �=0, which is known to be
mean-field-like.

B. Effective dimension

Our results confirm that the network behaves as a finite
dimensional system in the region 1���2. However, the
finite-size scaling analysis of various quantities in the Ising
model does not allow the estimation of d and � indepen-
dently. It may be expected that the behavior of the average
shortest path should give us some idea about the effective
dimension. However, as we argue below, it is not possible.
The estimate of the exact average shortest path is consistent
with the mean-field picture for ��1 as it shows a logarith-
mic increase with N �small-world effect�. As mentioned be-
fore, for ��1, it has a power law increase N� and we have a
region where ��0.25. So if one interprets � as an inverse
dimension, the dimensionality is greater than 4 here. Even
then, the Ising model does not show mean-field behavior
here. From this we conclude that although there is an effec-
tive dimension coming out from the topological behavior of
the network, it does not exactly act as the spatial dimension
as far as the physics of the Ising model is concerned.

We adopt a different approach to estimate � and d, which
works well for � close to 1. The behavior of the critical
exponents is fully consistent with the fact that the effective
dimensionality d decreases as � is made larger than 1 �e.g.,
the value of � increases while that of  decreases�. In order
to find out d, we use the epsilon expansions of �, , and � to
first order, each of which gives an independent estimate of
�=4−d:

� = 3�1 − 2� ,

� = 6�� − 1� ,

� = 6� .

Ideally, all three estimates should give a similar value of �,
but here we have used the expansions up to linear terms only
and the estimates may not agree very well �especially for the
estimate from � and to some extent, that from ��. It is not
very convenient to use the expansions to higher degrees also.
To take care of this fact, we take 	�
, the average of the
above three estimates of �, and use it to find out the value of
� from the equation

� =
1

2
�1 +

	�

6
� . �3�

Thus an estimate of �d is obtained, which can be compared
to �̄ obtained from the finite-size scaling. We see that when
�−1 is small, the agreement is nice �Table I�. Naturally,
when � is considerably away from 1, the effective dimen-
sionality decreases and the epsilon expansions are not very
useful here, particularly for � and �. This is reflected in the
mismatch of the estimates from epsilon expansion and the
finite-size scaling analysis for �=1.6 and �=1.8.

V. SUMMARY AND CONCLUSIONS

We have investigated the behavior of the Ising model on a
one-dimensional network in which there are links to random
long-range neighbors existing with a probability, which var-
ies inversely with the distance along the original chain fol-
lowing Eq. �1�. The effective dimensionality of the network
deviates from 1 continuously as � is made smaller than 2 and
a finite-temperature phase transition is observed. The transi-
tion temperature increases as � is made smaller and the criti-
cal exponents vary with � as the dimensionality changes. The
results show that there is a mean-field behavior for ��1 and
a finite-dimensional behavior for 1���2. In the mean-field
regime, the finite-size scaling analysis works with an effec-
tive dimensionality of four, the upper critical dimension of
the Ising model. The present study confirms the conclusion
made in Ref. �15� that the small-world behavior of the un-
derlaying network exists for ��1 only.

Our results also show that the effective dimensionality
cannot be simply extracted from the behavior of the shortest
paths on this network although the latter shows a power-law
behavior with the number of nodes. We have used an alter-
native method to estimate the effective dimensionality, which
works quite well for � close to 1.

FIG. 7. Variation of magnetization exponent  and susceptibility
exponent � with �.

TABLE I. The effective dimension and comparative values of
�d from � expansion �ee� and �̄ from finite-size scaling �fss�
analyses.

� �eff deff �d �ee� �̄ �fss�

1.2 0.56 3.34 1.85 1.85

1.4 0.59 2.90 1.72 1.75

1.6 0.61 2.74 1.66 1.9

1.8 0.72 1.36 0.98 2.0
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The present study was conducted to address certain issues
related to the topology of a network, but the study of
phase transition of the Ising model on networks has its own
inherent interest as the Ising model has wide applications in
many interdisciplinary areas. For example, the study and na-
ture of phases in such models gives us important insight into
social opinion dynamics �33� in closely knit populations,
where the networks look very similar to the models dis-

cussed here, and opinions are being modeled as states of spin
vectors at each site.
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