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This paper presents a cellular automaton model without step back for pedestrian dynamics considering the
human behaviors which can make judgments in some complex situations. This model can simulate pedestrian
movement with different walk velocities through update at different time-step intervals. Two kinds of boundary
conditions including periodic and open boundary for pedestrian counter flow are considered, and their dynami-
cal characteristics are discussed. Simulation results show that for periodic boundary condition there are three
phases of pedestrian patterns, i.e., freely moving phase, lane formation phase, and perfectly stopped phase at
some certain total density ranges. In the stage of lane formation, the phenomenon that pedestrians exceed those
with lower walk velocity through a narrow walkway can be found. For open boundary condition, at some
certain entrance densities, there are two steady states of pedestrian patterns; but the first is metastable. Spon-
taneous fluctuations can break the first steady state, i.e., freely moving phase, and run into the second steady
state, i.e., perfectly stopped phase.
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I. INTRODUCTION

Recently, cellular automata �CA� have been extensively
used for modeling complex phenomena in various fields such
as fluid dynamics, statistical physics, biology, and other com-
plex systems �1�. As an important class of models, CA have
attracted much attention as a model for dynamics of traffic
flow �2–4�. On the other hand, pedestrian dynamics has not
been studied as extensively as vehicular traffic, especially
using a CA approach, and up to now studies on this topic are
very scarce �5–16�. The reason may be that the pedestrian
movement is more complex than vehicular flow �13,14�.
First, pedestrians are more intelligent than vehicles and they
can choose an optimum route according to the environment
around. Secondly, pedestrians are more flexible in changing
directions and not limited to the “lanes” as in vehicular flow.
Thirdly, the slight bumping is acceptable and need not be
absolutely avoided as in traffic flow models. So the model
developed for pedestrian movement should fully consider
these differences in order to study the special phenomena in
pedestrian dynamics. It is a pity that till now, it is not enough
to understand pedestrian dynamics, especially for the condi-
tion of different walk velocities, though it has many models
considering the special characteristics of pedestrian move-
ment.

Pedestrian movement is an important component in the
analysis and design of transportation facilities, pedestrian
walkways, traffic intersections, markets, and other public
buildings. Continuum models have been successful in mod-
eling pedestrian dynamics, and many interesting collective
effects and self-organization phenomena have been observed,
e.g., jamming and clogging, lane formation, and oscillations
at bottlenecks in counter flow or collective patterns of mo-
tion at intersections �17–20�. An important example is the
social force model �18,19�. Here pedestrians are treated as
particles subject to long-ranged forces induced by the social
behavior of the individuals. This leads to �coupled� equations
of motion similar to Newtonian mechanics.

CA for pedestrian dynamics have been proposed in Refs.
�5–13� and Refs. �14–16�. The models in the former refer-

ences can be considered as generalizations of the Biham-
Middleton-Levine model for city traffic �21�, and named as
biased random walker model. The latter ones introduce floor
field which modifies the transition rates to neighbor cells,
inspired from the process of chemotaxis as used by some
insects.

In this paper, a cellular automaton model without step
back for pedestrian dynamics considering the human behav-
iors which can make judgment in some complex situations is
proposed. This model can simulate pedestrian movement
with different walk velocities through update at different
time-step intervals. Two kinds of boundary conditions in-
cluding periodic and open boundary for pedestrian counter
flow are considered, and their dynamical characteristics are
discussed. In the following section, model and boundary
conditions are presented. Section III gives simulation results
and discussions, followed by conclusions.

II. MODEL AND BOUNDARY CONDITIONS

We describe the cellular automaton model for the pedes-
trian counter flow in a two-dimensional system. The under-
lying structure is a W�W cell grid, where W is the system
size. Each cell can either be empty, or occupied by wall or
exactly one pedestrian. For simulating the pedestrian move-
ment with different walk velocities, Kirchner et al. investi-
gated the influence of the interaction range and the spatial
discretization �22�. For the former one, they simulated pedes-
trian movement through letting pedestrian move more than
one cell. And for the latter one, they combined with a reduc-
tion of the cell size to study the effect of small move distance
at one time step. But in their pedestrian simulation, there is
only one kind of pedestrian, i.e., all pedestrians with the
same walk velocity in spite of high or small walk velocity.
Actually in one pedestrian system, there are many walk ve-
locities for different pedestrians. In this paper, we introduce a
new idea for simulating pedestrian movement with different
walk velocities, i.e., pedestrians update at different time-step
intervals. For example, for the pedestrians with walk veloci-
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ties of 1.0 and 1.5 m/s, the former ones update at every 3
time steps, and the latter ones are at every 2 time steps, if the
size of a cell corresponds to approximately 0.4�0.4 m2 and
one time-step is approximately 2/15 s.

In CA, a rule defines the state of a cell in dependence of
the neighbor of the cell. In this model, the Von Neumann
neighbor setup shown in Fig. 1 is used. Thus, the state of the
core cell at the next update time step depends on the states of
the cells in the neighbor including the cell above, below,
right and left, also the core cell itself, of this update time
step.

In this model, there are four kinds of walkers including
the right walkers with walk velocities of 1.0 and 1.5 m/s
moving from the left to the right boundary, and the left walk-
ers with walk velocities of 1.0 and 1.5 m/s moving from the
right to the left boundary. Each walker moves to the prefer-
ential direction with no back step. Figure 2 shows all the
possible configurations of the right walker with walk veloc-
ity of 1.0 m/s �going to the right�. The nomenclature of “P”
is the transition probabilities to the nearest-neighbor sites,
and the subscripts “a,” “b,” and “w” means the above, bot-
tom, and waiting labels, respectively. In Fig. 2�a�, the right
adjacent cell is unoccupied; the right walker will move right
independent of the state of the above and below adjacent
cells. But if the right adjacent cell is occupied, his route
choice depends on the state of the above and below adjacent
cells. In Figs. 2�b�–2�d�, the right adjacent cell is occupied
by the right walker with walk velocity more than or equal to
his walk velocity; in Figs. 2�e�–2�g�, the occupied right ad-
jacent cell is the left walker. For configurations �e�–�g�, we
consider the traffic rule. The pedestrian is obligated to walk
on the right-hand side of the walkway in China. The walker
has the priority to move on the right-hand side of the walk-
way. Therefore, we introduce the following traffic rule for
the transition probabilities of the walker: the walker moves
preferably to the right-hand direction in the configurations
�e�–�g�, i.e., Pb21� Pa21 and Pb22� Pa23. For configuration
�h�, if the above, below and right adjacent cells are all occu-
pied, the right walker will have to stop and wait.

If the considered right walker has the walk velocity of
1.5 m/s, a question of exceeding another right walker with
lower walk velocity occurs. Figure 3 gives the adding pos-

sible configurations of the right walker with walk velocity of
1.5 m/s next to those in Fig. 2. Chinese are accustomed to
exceeding another pedestrian with lower walk velocity from
the left-hand side. So in Fig. 3, Pa31� Pb31 and Pa33� Pb32.
In other countries where the pedestrians prefer to walk on the
left-hand side of walkway and exceed from the right-hand
side, the contrary rules can be adopted accordingly. In the
same way, we can define the similar treatment for the pos-
sible configurations that the left walkers with walk velocities
of 1.0 and 1.5 m/s may encounter.

In this model, sequential update is chosen �named
shuffled update in Ref. �23�� since pedestrian dynamics in
two dimensions is intrinsically stochastic, and also this case
is nontrivial. In each update time-step, the pedestrians are
numbered randomly from 1 to N, where N is the total number
of pedestrians in the system, and then each pedestrian is

FIG. 1. Von Neumann neighbor setup in a two-dimensional rect-
angular grid.

FIG. 2. �a�–�h� All the possible configurations of the right
walker with walk velocity of 1.0 m/s �going to the right�. The
arrow in the right adjacent cell indicates the moving direction of the
walker in that cell. The arrow from the core cell indicates the pos-
sible direction of the right walker in the core cell may select. The
nomenclature of “P” is the transition probabilities to the nearest-
neighbor sites, and the subscripts of “a,” “b,” and “w” means the
above, bottom, and waiting labels, respectively.
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updated once in the sequential order from 1 to N.
Figure 4 shows the schematic illustration of the pedestrian

counter flow in the system, which is composed of the top and
bottom walls. The right walkers going to the right with walk
velocities of 1.0 and 1.5 m/s are indicated by the white and
black full circles, respectively; and the left ones with walk
velocities of 1.0 and 1.5 m/s are indicated by the red and
green ones. Here we consider two boundary conditions in-
cluding periodic and open boundary. For the periodic bound-
ary condition, the pedestrians of four types are initially dis-
tributed randomly. If the right walker arrives at the right
boundary, he moves to the left boundary; if the left walker
arrives at the left boundary, he moves to the right boundary.
Thus, the total number of walkers of each type is conserved
as pplrW

2, pphrW
2, ppllW

2, and pphlW
2, where pplr, pphr, ppll,

and pphl are the initial densities for white, black, red, and
green ones �representing right walker with lower velocity,
right walker with higher velocity, left walker with lower ve-
locity, and left walker with high velocity, respectively�. The

total density is pp= pplr+ pphr+ ppll+ pphl; and only pplr= pphr
= ppll= pphl is considered in this paper. For the open boundary
condition, the right walkers of walk velocities of 1.0 m/s
with number of polrW, and 1.5 m/s with number of pohrW
are distributed randomly on the left boundary at every 6 time
steps. Similarly, the left walkers with numbers of pollW and
pohlW are distributed randomly on the right boundary at ev-
ery 6 time steps. If the right walkers arrive at the right
boundary, and the left ones arrive at the left boundary, they
are removed from the system. In this paper, only polr= pohr
= poll= pohl= po /2 is considered, where polr, pohr, poll, and pohl
are the entrance densities for white, black, red, and green
ones, and po is the entrance density of walkers of each
boundary.

III. SIMULATION RESULTS AND DISCUSSIONS

Using the model and boundary conditions described
above, we carried out the simulation for pedestrian counter
flow. The system size is set to be W=60. Considering the
traffic rule and custom, the transition probabilities are Pa11
= Pb11=0.25, Pw11=0.50; Pb12= pw12=0.50; Pa13= pw13=0.50;
Pa21=0.10, Pb21=0.40, Pw21=0.50; Pb22= Pw22=0.50; Pa23
=0.10, Pw23=0.90; Pw24=1.00; Pa31=0.40, Pb31=0.10, Pw31
=0.50; Pb32=0.10, Pw32=0.90; Pa33=0.90, Pw33=0.10.

FIG. 3. �a�–�c� Adding possible configurations of the right
walker with walk velocity of 1.5 m/s to those in Fig. 2.

Left boundary 

Right boundary 

V=1.5m/s

V=1.0m/s

V=1.5m/s

V=1.0m/s

FIG. 4. �Color online� Schematic illustration of the pedestrian
counter flow in the system, which is composed of top and bottom
walls. The white and black full circles indicate the right walkers
�going to the right� with walk velocities of 1.0 and 1.5 m/s, respec-
tively. The red and green full circles are the left walkers with walk
velocities of 1.0 and 1.5 m/s, respectively.
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For the periodic boundary condition, we check the mean
velocity �V� and the mean flow �J� of pedestrian counter
flow. The mean velocity �V� of pedestrians moving at one
update time step is defined as the value of the number of
walkers moving forward divided by the total number of
walkers existing in the system N�=ppW2�. The mean flow �J�
of pedestrians is defined as the sum of the number of the
right walkers moving through the right boundary and that of
the left ones moving through the left boundary at one update
time step. For each simulation, 20 000 time steps are carried
out, and the value of �V� and �J� are computed according to
the last 4000 time steps averaged over 10 different random
initial pedestrian distributions, although in all of our simula-
tions it takes no more than 10 000 time steps to reach the
steady states.

Figure 5 gives the plot of the mean velocity �V� and the
mean flow �J� against the total density pp for the system size
W=60 in the pedestrian counter flow with periodic boundary
condition. Figure 6 shows the pedestrian patterns obtained at
time step=20 000, �a� the freely moving phase obtained at
pp=0.04; �b� the lane formation phase obtained at pp=0.15;
�c� the perfectly stopped phase obtained at pp=0.40. From
Figs. 5 and 6, it is indicated that with the increasing total
density, there are three phases of pedestrian patterns, i.e.,
freely moving phase, lane formation phase and perfectly
stopped phase. The critical total densities are ppcr1
=0.078±0.005 and ppcr2=0.183±0.005, which are averaged
over 10 random initial pedestrian distributions. In the situa-
tion of pp� ppcr1, all of the walkers can move freely, i.e.,
�V�=1. But when pp� ppcr2, none of the walkers can move
forward, i.e., �V�=0 and �J�=0. Here it should be noted that
it is not easy to determine when a lane is formed in the
background of freely moving pedestrians. We only estimate
if a lane forms through observing the pedestrian pattern ob-
tained at time step=20 000. Obviously, the critical total den-
sities depend on the system size W �13�, and the initial pe-
destrian distribution. In our simulations, different initial
pedestrian distributions may result in different number of

lanes though it has the same total density, the reason of
which is unclear and should be studied further.

In the stage of lane formation �the total density pp
� �0.078,0.183��, with the increasing total density from 0.15
to 0.18 in Fig. 6, �V� decreases slightly, but �J� increases all
the while. Figure 6�b� shows the empirically confirmed de-
velopment of dynamically varying lanes consisting of pedes-
trians who intend to walk in the same walk direction and
with the same walk velocity. Periodic boundary condition in
the transversal direction would form and stabilize these lanes
since they would no longer be destroyed at the ends of the
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FIG. 5. Plot of the mean velocity �V� and the mean flow �J�
against the total density pp for the system size W=60 in the pedes-
trian counter flow with periodic boundary condition.

(a)

(b)

(c)

FIG. 6. �Color online� Pedestrian patterns obtained at time
step=20 000 for the system size W=60, �a� the freely moving phase
obtained at pp=0.04; �b� the lane formation phase obtained at pp

=0.15; �c� the perfectly stopped phase obtained at pp=0.40.
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walkway by entering pedestrians. The segregation effect of
lane formation is not only a result of the initial pedestrian
distribution but also a consequence of the pedestrians’ inter-
actions. Pedestrians moving in a mixed crowd or moving
against the stream will have frequent and strong interactions.
In each interaction, the encountering pedestrians move a
little aside according to traffic rule and custom in order to
pass each other. This sidewards movement tends to separate
oppositely moving pedestrians and those with different walk
velocities. Moreover, once the pedestrians move in uniform
lanes, they will have very rare and weak interactions. Hence,
the tendency to break up existing lanes is negligible �20�.
Simulations show that group lane composed of four lanes of
pedestrians of different walk directions and velocities is al-
ways formed. Another interesting phenomenon from Fig.
6�b� is that the lane of pedestrians with higher walk velocity
is narrower than that of pedestrians with lower walk velocity
which can also be found in experiments of pedestrian walk-
ing in rush hour in underground station �24�. The reason is
that pedestrians with higher walk velocity have more
chances for update than those with lower walk velocity.
When pedestrians with higher walk velocity encounter those
with lower walk velocity, they may move aside, but those
with lower walk velocity have more probability to wait.
Therefore, the way of higher walk velocity is narrower than
that of lower walk velocity by a large number of time steps.

From the above analysis, it is indicated that with the pe-
riodic boundary condition, we can simulate some typical
phenomena observed empirically such as lane formation and
jamming using this presented model, whose update rules are
obviously simpler than those of floor field model �14–16�
and continuous model �19,20�.

For the open boundary condition, we check the mean ve-
locity �V� and the mean occupancy ��� of pedestrian counter
flow. The definition of �V� here is the same as that for the
periodic boundary condition described above. The mean oc-
cupancy ��� of pedestrians is defined as the fraction of sites
occupied by the walkers. For each simulation, 20 000 time
steps are also carried out, and the value of �V� and ��� are
computed according to the last 4000 time steps averaged
over 10 different random pedestrian distributions in the en-
trances of boundaries, although in all of our simulations it
takes no more than 10 000 time steps to reach the steady
states.

Figure 7 shows the plot of the mean velocity �V� and the
mean occupancy ��� against the entrance density po for the
system size W=60 in the pedestrian counter flow with open
boundary condition. Not like periodic boundary condition,
the lane with open boundary condition in the system size
W=60 does not form because it is destroyed by randomly
entering pedestrians and can not be stabilized; only the freely
moving phase and perfectly stopped phase come into being.
It is indicated from Fig. 7 that with the increase of the en-
trance density po, the mean velocity �V� decreases, and the
mean occupancy ��� increases. When po is larger than the
critical value �here pocr=0.12±0.01 for the system size W
=60 for simulation results�, �V� becomes zero and ��� goes to
1.0. The critical value of occupancy at the critical entrance
density is given by ��cr�=0.19±0.01 obtained from simula-
tions. Here it should be noted that considering the equal in-
teger for four types of pedestrians and the system size W
=60, the data points is few, and the critical entrance density
and the critical occupancy are determined as the average of
10 random pedestrian distributions in the entrances of
boundaries.

Figure 8 gives the time evolution of �a� the velocity V�t�
and �b� the occupancy ��t� for the system size W=60 in the
pedestrian counterflow with open boundary condition at the
entrance density po=0.1, 0.2, and 0.5. Here only give the
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FIG. 7. Plot of the mean velocity �V� and the mean occupancy
��� against the entrance density po for the system size W=60 in the
pedestrian counter flow with open boundary condition.
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FIG. 8. �Color online� Time evolution of �a� the velocity V�t�
and �b� the occupancy p�t� for the system size W=60 in the pedes-
trian counter flow with open boundary condition at the entrance
density po=0.1, 0.2, and 0.5.
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first 4000 time steps. For the entrance density po=0.1 and
0.5, the velocity and occupancy reach quickly the steady
values. It should be noted that for po=0.2, there are two
steady states; but the first is metastable. Spontaneous fluctua-
tions can disrupt the freely moving flow forming small jam
clusters. And then two situations, which depends on the en-
trance density and initial pedestrian distribution, may occur.
The first is that the system can break up of small clusters
when the jammed pedestrians in these clusters succeed in
moving past each other, thereby dissolving the clusters. And
then the system will stabilize in the freely moving phase. The
second is that pedestrians may get jammed with the existing
clusters making these clusters grow further with time, and
the bigger jam clusters come into being. Eventually the sys-
tem can run into a jam by this mechanism, which means the
system transits to the perfectly stopped phase from the freely
moving phase. This phenomenon can be seen in Fig. 9,
which is the time evolution of pedestrian patterns obtained at
�a� times step=900, �b� 1800, and �c� 2700 for the system
size W=60 in the pedestrian counterflow with open boundary
condition at the entrance density po=0.2. In the beginning
�time step=900�, pedestrians can move freely. At some time,
small jam clusters form occasionally. We can see there are
three small jam clusters at time step=1800 from Fig. 9�b�.
These clusters grow with time �time step=2700�. These
emerging clusters show that jamming is mainly caused by
oppositely moving pedestrians �white and black vs red and
green� getting jammed with each other. Since there is no
back step movement, once the oppositely moving pedestrians
get jammed they can only move sideways and occasionally
forwards. While the already jammed pedestrians try to move
out of existing jam clusters, the other moving pedestrians get
jammed with the existing clusters making these clusters
grow further with time.

IV. CONCLUSIONS

In this paper, a cellular automaton model without step
back for pedestrian dynamics considering the human behav-
iors which can make judgment in some complex situations is
presented. This model considers the traffic rule and custom
through the different transition probabilities in directions. Pe-
destrian movement with different walk velocities can be
simulated through update at different time-step intervals. Pe-
riodic and open boundary conditions for pedestrian counter
flow are considered. Simulations show that with the periodic
boundary condition, this simple model can reproduce some
typical phenomena observed empirically such as lane forma-
tion and jamming, etc. For periodic boundary condition there
are three phases of pedestrian patterns, i.e., freely moving
phase, lane formation phase, and perfectly stopped phase at
some certain total density ranges. In the stage of lane forma-
tion, this presented model can simulate the phenomenon that
pedestrians exceed those with lower walk velocity through a
narrow walkway. For open boundary condition, there are two

steady states of pedestrian patterns at some certain entrance
densities; but the first is metastable. Spontaneous fluctuations
can break the first steady state, i.e., freely moving phase, and
run into the second steady state, i.e., perfectly stopped phase.
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FIG. 9. �Color online� Time evolution of pedestrian patterns
obtained at �a� time step=900, �b� 1800, and �c� 2700 for the system
size W=60 in the pedestrian counter flow with open boundary con-
dition at the entrance density po=0.2.
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