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Localized nonlinear modes, or solitons, are obtained for the two-dimensional nonlinear Schrödinger equation
with various external potentials that possess large variations from periodicity, i.e., vacancy defects, edge
dislocations, and quasicrystal structure. The solitons are obtained by employing a spectral fixed-point compu-
tational scheme. Investigation of soliton evolution by direct numerical simulations shows that irregular-lattice
solitons can be stable, unstable, or undergo collapse.
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Solitons are localized nonlinear waves that occur in many
branches of physics and their properties have provided a
deep and fundamental understanding of complex nonlinear
systems. In recent years there has been considerable interest
in the study of solitons in systems with periodic potentials or
lattices, in particular those that can be generated in nonlinear
optical materials �1–5�. In periodic lattices, solitons can form
when their propagation constant, or eigenvalue, lies within
certain regions, often called gaps, a concept that is borrowed
from Floquet-Bloch theory for linear propagation. However,
the external potential of complex systems can be much more
general and physically richer than a periodic lattice. For ex-
ample, atomic crystals can possess various irregularities,
such as defects, and edge dislocations, as well as quasicrystal
structures, which have long-range orientational order but no
translational symmetry �6,7�. In general, when the lattice’s
periodicity is slightly perturbed, the band-gap structure and
soliton properties become slightly perturbed as well, but oth-
erwise solitons are expected to exist in much the same way
as in the perfectly periodic case �8,9�. However, the exis-
tence and properties of multidimensional solitons when the
external potential possesses large variations from periodicity
has remained largely unexplored.

In this Rapid Communication, we find two-dimensional
�2D� solitons in lattices possessing vacancy defects, edge-
dislocations, and quasicrystal structures. This is achieved us-
ing a fixed-point spectral method for computing the ground
states of the underlying nonlinear Schrödinger �NLS� equa-
tion. A comparative study of the power-eigenvalue depen-
dence leads to important observations regarding soliton
power, gap edge, and stability properties. Evolution is inves-
tigated by direct numerical simulations, showing that slightly
perturbed solitary waves in irregular lattices can either un-
dergo small or large amplitude oscillations or collapse. We
note that the physical properties of optically generated qua-
sicrystal potentials have generated significant interest and
that vortex waves have recently been employed in the gen-
eration of localized defects within optical lattices �10,11�.
Our results also have application to photonic band-gap sys-
tems, wherein novel experimental techniques have recently
been used to fabricate irregular lattice structures �11–14�.

We study the nonlinear system governed by the focusing
�2+1�D NLS equation �in nondimensional units� with an ex-
ternal potential,

iuz + �u + �u�2u − V�x,y�u = 0. �1�

In optics, u�x ,y ,z� corresponds to a complex-valued slowly
varying amplitude of the electric field in the �x ,y� plane that
is propagating along the z direction; �u�uxx+uyy corre-
sponds to diffraction, the cubic term in u originates from the
nonlinear �Kerr� change in the refractive index, and the po-
tential V�x ,y� corresponds to a modulation of the linear re-
fractive index of the medium. Equation �1� also governs the
dynamics of certain Bose-Einstein condensates �BEC�,
where u�x ,y ,z� represents the wave function of the mean-
field atomic condensate that is trapped in a potential �15�.

We look for localized solutions of Eq. �1� in the form
u�x ,y ,z�= f�x ,y�e−i�z, where � is the propagation constant
�or eigenvalue� and f�x ,y� is a real-valued localized function
that, following Eq. �1�, satisfies the nonlinear eigenequation

�f + �� + �f �2 − V�x,y��f = 0. �2�

In this study we consider potentials that can be written as the
intensity of a sum of N phase-modulated plane waves, i.e.,

V�x,y� =
V0

N2��
n=0

N−1

eik�n·r�+i�n�x,y��2

, �3�

where V0�0 is constant, r� = �x ,y�, k�n is a wave vector,
�n�x ,y� is a phase function through which irregularities are
introduced, and the normalization by N2 gives that V0 is the
potential’s peak depth, i.e., V0=maxx,y V�x ,y�. Such 2D po-
tentials can be physically realized in optics by interference of
plane waves and phase functions �11�. In some situations,
they are invariant in the third dimension �3D� �16�. For ex-
ample, these phase functions can be composed from different
configurations of vortices �17�, which, in turn, can be created
using computer-generated holograms �11�.

In order to solve Eq. �2�, we use a fixed point spectral
computational method �18�, as explained below. Applying
the Fourier transform to Eq. �2� and adding and subtracting a
term rû, where r�0 is constant, leads to
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f̂��� = R̂� f̂� �
�r + �� f̂ + F	��f �2 − V�x,y��f


r + ���2
,

where �= ��x ,�y� are the Fourier variables, F stands for the
Fourier transform, and the role of the constant r is to avoid a
singularity in the denominator �we use r=5�. A new field
variable is introduced as f�x ,y�=�w�x ,y�, where ��0 is a
constant to be determined. The iteration method takes the

form ŵm+1=�m
−1R̂��mŵm� ,m=0,1 ,2 , . . ., where �m satisfies

the associated algebraic condition

� �
−�

+�

�ŵm����2d� = �m
−1� �

−�

+�

R̂��mŵm�ŵm
* ���d� .

It has been found that this method prevents the numerical
scheme from diverging. Thus, the soliton is obtained from a
convergent iterative scheme �see also �19� for an alternative
procedure in case there is a well-defined homogeneity�. The
initial “starting point,” w0�x ,y�, is typically chosen to be a
Gaussian. The iterations are stopped when the relative con-
vergence factor, �= ���m+1 /�m�−1�, reaches 10−10. We note
that convergence is reached quickly, but slows down as the
mode becomes more extended, i.e., as � approaches the
�nonlinear� gap edge. We also note that the convergence of a
similar method has been proven under suitable assumptions
on the potential �20�.

The first case of the potential �3� we study is an irregular
2D square lattice with a vacancy defect �see Fig. 1�a��, i.e.,

V�x,y� =
V0

25
�2 cos�kxx� + 2 cos�kyy� + ei��x,y��2, �4�

where the phase function ��x ,y� is given by

��x,y� = tan−1� y − y0

x

 − tan−1� y + y0

x

 .

Physically, ��x ,y� corresponds to two first-order phase dislo-
cations displaced in the y direction by a distance of 2y0. A
vacancy defect can thus be obtained using y0=	 /K, where
K=kx=ky. Note that the “vacancy” in the origin is created
from a continuous function and that far from the origin the

potential �4� is locally a square lattice with period 2	 /K.
Using the computational method outlined above, localized
modes �solitons� of Eqs. �2� and �4� are found, centered
around the vacancy as shown in Fig. 1�b�. In certain respects,
they resemble solitons centered around a minimum of a pe-
riodic square lattice. In further investigations, it is found that
as the soliton’s center is moved farther from the vacancy, its
profile and band-gap structure converge to those of the cor-
responding periodic lattice �i.e., Eq. �4� with ��x ,y��0�.

In a similar manner, a lattice with an edge dislocation,
analogous to those that can be found in atomic crystals
�7,11�, can be obtained from Eq. �3� using

V�x,y� =
V0

25
	2 cos�kxx + ��x,y�� + 2 cos�kyy� + 1
2, �5�

with the phase-dislocation function ��x ,y�= 3	
2 −tan−1� y

x
�.

Figure 2�a� shows that this dislocation is unlike a point de-
fect, insofar as the density of lattice sites changes vertically
across the lattice. Despite this strong irregularity, solitons are
found to exist in the vicinity of the phase dislocation. Figure
2�b� shows that the soliton has an asymmetric shape. The
soliton’s center is situated above the phase dislocation, in
between neighboring local maxima of the lattice. In this re-
spect, it is like a soliton on a lattice minimum. It should be
noted that the starting point of the computational method is
around the origin and, during the iterations, the solution
moves upward along the y axis, until convergence is reached.

Next we investigate solitons on quasicrystal lattices. Such
lattices appear naturally in certain molecules �6,7�, have been
investigated in optics �21–23� and studied in BEC �24�. Im-
portantly, Freedman et al. recently predicted and observed
solitons in Penrose quasicrystals, which were generated us-
ing the method of optical induction �25�. In this study, the
optical potential is formed by the far-field diffraction pattern
of a mask with point apertures that are located on the N
vertices of a regular polygon. The corresponding potential is
given by

V�x,y� =
V0

N2��
n=0

N−1

ei�kxx+kyy��2

, �6�

where �kx ,ky�= �K cos�2	n /N� ,K sin�2	n /N��. The poten-
tial �6� with N=2,3 ,4 ,6 yields periodic lattices, which cor-
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FIG. 2. �Color online� Same as Fig. 1 for a lattice with an edge
dislocation �Eq. �5��, using the same lattice parameters and �=0.5
as in Fig. 1. The soliton’s peak is located at �0, 0.68�.
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FIG. 1. �Color online� �a� Contour image of a lattice with a
vacancy defect, i.e., Eq. �4� with K=kx=ky =2	 and V0=12.5. Spots
correspond to local maxima. �b� Contour plot of the soliton with
�=0.5 superimposed on the lattice. For visibility, only a small por-
tion of the �−10,10�2 computational domain is presented.
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respond to the standard 2D crystal structures. All other val-
ues of N correspond to quasicrystals, which have a local
symmetry around the origin and long-range order, but, unlike
periodic crystals, are not invariant under spatial translation
�26�. Below we focus on the case N=5 �see Fig. 3�a��, whose
lattice is often referred to as a Penrose quasicrystal.

We find solitons on the Penrose lattice �see Fig. 3�b��,
centered around the origin, which is the global maximum of
the lattice potential. Similar to solitons centered at the maxi-
mum of a periodic square lattice, these Penrose solitons have
a dimple �see Fig. 4�. Further investigations reveal that Pen-
rose solitons centered around local minima do not have a
dimple, similar to their periodic-lattice counterparts.

It is noteworthy that in the limit of waves impinging from
all directions �i.e., N→��, the quasicrystal lattice �6� ap-
proaches the Bessel lattice, i.e., limN→� V�x ,y ;N�
=V0J0

2�Kr�, in which solitons have recently been studied �cf.
�27��. In fact, as N increases, at any given radius the angular
distance between the lattice maxima �and minima� decreases
and the limiting Bessel lattice has continuous rings of
maxima.

We note that some of the previous studies of Penrose
lattices considered a different definition of the lattice,
whereby cylinders of Kerr material were located at vertices

of a �virtual� Penrose tile surrounded by air �21–23,28,29�. In
contrast, the medium considered here is homogeneous, with
a constant Kerr coefficient and continuous modulation of the
linear refractive index �6�.

To compare the different lattice solitons, in Fig. 5 we plot
the soliton power, P=��u�2dxdy, as a function of eigenvalue
�, for all the lattices studied above, as well as for the corre-
sponding periodic square lattice �i.e., Eq. �4� with ��x ,y�
�0� centered around either local minima and maxima. We
remark that all the above lattices share a common peak
depth, V0=12.5, as well as periodicity far from the irregular-
ity, K=2	, where for the Penrose lattice K can be thought of
as a “local” wave number �see Eq. �6��.

We define the first nonlinear gap edge �max as the mini-
mal eigenvalue beyond which the numerical method does not
converge to a localized state. The comparison shows that all
the lattices above have a semi-infinite gap, i.e., the numerical
method converges to a localized state when �
�max, for
some lattice-dependent �max. When the eigenvalue exceeds
�max, the numerical method typically converges to an ex-
tended state �but see below for exceptions�. In addition, the
comparison reveals that �see Fig. 5� �i� the power of
vacancy-defect, edge-dislocation, and Penrose-quasicrystal
lattice solitons is lower than their periodic counterparts for a
considerable range of eigenvalues. In particular, of all the
lattices studied here, the lowest power is obtained for va-
cancy and edge-dislocation solitons. �ii� A vacancy defect
has little effect on the gap size ��max�2�, but it significantly
reduces the power threshold, i.e., the minimal soliton power
throughout the gap. However, it is noteworthy that the power
threshold is positive for all these potentials, i.e., the irregu-
larities do not allow the formation of linear �zero-power�
modes within the gap. �iii� An edge dislocation reduces the
gap size �note: �max�0.95�, whereas �iv� a Penrose soliton
has a slightly larger gap size ��max�2.2� compared to a
soliton on a periodic square lattice. However, solitons on the
maxima of periodic-square and Penrose lattices have a simi-
lar power behavior, which is a somewhat unexpected result,
since these lattices have a very different structure.
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FIG. 3. �Color online� Same as Fig. 1 for a Penrose lattice �Eq.
�6� with N=5� and corresponding soliton centered around the center
�maximum�, using the same lattice parameters and �=0.5 as in
Fig. 1.

FIG. 4. �Color online� Similar to solitons on the maxima of
periodic lattices, Penrose solitons can have a dimple, which be-
comes more pronounced for large values of �, i.e., near the gap
edge. �a� Cross section along the y axis of a Penrose soliton
�6u2�x ,0�, solid� with �=2, superimposed on the underlying lattice
�dashes�. �b� 3D view of a soliton’s intensity showing the dimple.
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FIG. 5. �Color online� Soliton power as a function of eigenvalue
within the semi-infinite band gap, for the same lattices as in the
previous figures, as well as solitons on the maximum and minimum
of a periodic �prd� square lattice. All lattices share a common peak
depth, V0=12.5, and background periodicity, K=2	.
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A striking observation in Fig. 5 is that the gap edge with
an edge dislocation occurs at 0.9
�max
0.95, which is
considerably smaller than for the other lattices. In fact, dur-
ing the computation, an interesting phenomenon occurs as �
is increased. When �=0.9, a reliable convergence ��
=10−10� is reached and, in this case, the solution is between
the local maxima shown in Fig. 2�b�. When �=0.95, the
solution initially converges at the same location �with �
=10−5�. However, this convergence is misleading, since with
further iterations the solution moves upward along the y axis,
“sliding” up in between two local maxima and eventually
converging �with �=10−10� in between the four local maxima
that are one lattice cell above the edge dislocation. The re-
sulting soliton is therefore similar to one on a periodic square
lattice, insofar as the nearest four lattice maxima are approxi-
mately symmetric and equispaced. In fact, further investiga-
tions reveal that for 0.95
�
2 the soliton remains one
lattice cell above the dislocation and its power-eigenvalue
dependence is very similar to that on a periodic lattice. Thus,
the edge dislocation clearly shrinks the size of the nonlinear
gap.

The question of soliton evolution under perturbations is

important for applications. To study this, we perform direct
computations of Eq. �1� using the various potentials, where
the initial conditions are the solitons with 1% random noise
in amplitude and phase. Generically, it is found that �i� soli-
tons centered around lattice minima �e.g., of periodic, va-
cancy, edge-dislocation, and quasicrystal lattices� undergo
small-amplitude oscillations when dP /d�
0 and large-
amplitude oscillations when dP /d��0; �ii� solitons cen-
tered around lattice maxima �e.g., of periodic and quasicrys-
tal lattices� can undergo collapse after a finite propagation
distance.

In conclusion, the existence of stable 2D solitons is dem-
onstrated in self-focusing media with irregular lattice poten-
tials, possessing vacancy defects, dislocations, and quasic-
rystal structures. Figure 5 shows that these Penrose solitons
are similar to solitons on the periodic-lattice maxima,
whereas there are significant differences between vacancy
and edge-dislocations solitons as compared to their periodic-
lattice counterparts.

This work was partially supported by US Air Force under
Grant No. F-49620–03–1–0250.
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