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We provide compelling evidence for the presence of quantum chaos in the unitary part of the operator
usually employed in Shor’s factoring algorithm. In particular we analyze the spectrum of this part after proper
desymmetrization and show that the fluctuations of the eigenangles as well as the distribution of the eigen-
vector components follow the circular unitary ensemble of random matrices, of relevance to quantized chaotic
systems that violate time-reversal symmetry. However, as the algorithm tracks the evolution of a single state,
it is possible to employ other operators; in particular, it is possible that the generic quantum chaos found above
becomes of a nongeneric kind such as is found in the quantum cat maps and in toy models of the quantum
baker’s map.
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The signatures of classical chaos in the quantum domain
have been of continuing interest for many years now and
have impacted various areas of physics �1–3�. The recent
developments in quantum information theory and quantum
computation have also prompted studies that delve into the
effects of chaos on quantum computers �4� and on entangle-
ment �5�, a key resource in such processes. There have also
been studies that seek efficient implementation of quantum
chaotic models on quantum computers �6�, as well as, to the
best of our knowledge, one study that seeks to see if there is
intrinsic chaos in some quantum algorithms �7�. Such algo-
rithms are typically unitary evolutions, generated ultimately
by Hamiltonian evolutions, followed by measurements. The
previous study �7� focused on the quantum Fourier transform
and Grover’s search algorithm, and several tests of quantum
chaos were used. The evidence for quantum chaos was not
unequivocal due to extreme degeneracies and other unusual
features. Besides, the quantum Fourier transform viewed as
Weyl quantization quantizes a 90° rotation of phase space
and should therefore not be expected to have properties typi-
cal of quantum chaos. For any value of dimensionality of the
transform, its fourth power is unity.

On the other hand, that Shor’s factoring algorithm �8�
is a candidate for quantum chaos has been indicated by
earlier works of one of the authors �9�. This is due the fact
that the order-finding algorithm, at the heart of Shor’s algo-
rithm, has a key component, the modular exponentiation op-
erator, which is essentially a shift permutation operator S.
This shift permutation operator has been shown to be metri-
cally close to the quantum baker’s map �10�, quantization of
a paradigm of classical chaos—namely, the double-sided
left shift �11�. Operators closely allied with the shift operator
may also be thought of as quantizing a multivalued �12�
or a random map �13�. Viewed as a Weyl quantization, its
action on phase-space-coherent states produces stretching
and folding �9�, its overall periodicity making it akin to the
quantum cat map �14�. The quantum cat map quantizes an-
other classically fully chaotic system: the cat map �15�.
However, its quantum propagator is exactly periodic, with a

periodicity that plays the role of the order in Shor’s algo-
rithm. We have also previously shown how to construct the
quantum baker’s map using the shift operator and suitable
projectors �9�.

In this Rapid Communication we examine Shor’s algo-
rithm as a whole and show that its unitary part has properties
that one would normally ascribe to systems that are classi-
cally chaotic and for which time-reversal symmetry is
broken. The order-finding part of the algorithm �8� is
quantum mechanical and involves two registers containing
n1 and n2 qubits, respectively. We call the corresponding
Hilbert spaces H1 and H2. The standard product basis in the
space H1 � H2 is denoted as �j� �k�, 0� j�2n1 −1 and
0�k�2n2 −1. Shor’s algorithm proceeds by using the
following operator:

U = �F−1
� I�Ux�H � I� . �1�

Here F−1 is the inverse discrete Fourier transform and H is
the Hadamard matrix, which act only on the first register,
while Ux is the entangling part defined by its action on a
basis vector �j� �k� as

Ux�j��k� = �j��xjk mod N� � �j�Sj�k�, 0 � k � N − 1.

�2�

If k�N, then Ux � j� �k�= �j� �k�. This defines the shift operator
S as S �k�= �xk mod N� for 0�k�N−1 and S �k�= �k� other-
wise. Here N is the integer we wish to factor and x is an
integer that is coprime to it.

For our study below we will take x=2 and N to be an odd
integer so that we are guaranteed that an integer r exists such
that 2r=1 mod N, where r is the order we are seeking. Thus
U acts nontrivially in a �2n1N�-dimensional subspace of the
full Hilbert space H1 � H2. Now Shor’s algorithm proceeds
by taking a particular initial state �0� �1�, acting on this with
U and measuring the first register, followed by classical steps
intended to find the order r, from which using standard num-
ber theory it may be possible to find a factor of N if it exists.
We will analyze the entire spectrum of U considered as an
operator of dimension 2n1 N.*Electronic address: arul@physics.iitm.ac.in
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We note that as the order-finding algorithm needs to con-
sider only action on the initial state �0� � �1�, U is not the
only operator that achieves the necessary result. For instance
the first operation of a Hadamard gate on the qubits of the
first register may be replaced by a Fourier transform, since
acting on �0� this also produces an equal superposition of all
standard basis states: H �0�=F �0�. In this case the overall
unitary part of the algorithm would be

Ũ = �F−1
� I�Ux�F � I� . �3�

The eigenvalues of Ũ are thus the same as that of Ux. The
central operation is the modular exponentiation, and the
quantum chaos in this can be made “generic” or not, depend-

ing on the choice of unitary operators such as U or Ũ above.
The experimental realizations of the Shor algorithm and
order-finding algorithms �16� that have been carried out so
far use the Hadamard gates on the first register, and the op-

erator U is of relevance herein. We will return to consider Ũ
later, but for now consider the standard operator U.

We first notice that

�U,I � S� = 0. �4�

We can label the eigenstates of U with eigenvalues of S,
which are like good quantum numbers. The spectrum of S is
thus of interest. As Sr=IN, we have

S�sj� = ei�j�sj�, 0 � j � N − 1, �5�

where � j, the eigenangle, is of the form 2�k /r and
0�k�r−1. The eigenstates of U can be chosen to be
��l� �sj�, unentangled states of the two registers. We show this
as follows. Let H ��l�=�mam �m� and �sj�=�kbk �k�. Then

U2�H � I���l��sj� = U2�
m,k

ambk�m��k� = �
m,k

ambk�m�Sm�k�

= �
m

ameim�j�m��sj�

= �
m

eim�j�m�	m�H��l��sj�

= �� jH � I���l��sj� , �6�

where � j =�meim�j �m�	m� is a diagonal operator on the first
register whose entries are powers of the eigenvalues of S.
Hence U ��l� �sj�= �F−1� jH ��l�� �sj�. Therefore ��l� �sj� will
be an eigenstate of U with eigenvalue � jl if

F−1� jH��l� = � jl��l�, 0 � l � 2n1 − 1. �7�

Thus we have split or block-diagonalized the full
�2n1N�-dimensional matrix diagonalization problem to that
for N matrices of dimensions 2n1 each. There is also a de-
pendence of the eigenstates ��l� on the eigenangle � j, but we
suppress this.

The operators F−1� jH, for 0� j�N−1, are unitary opera-
tors whose eigenvalues are that of the unitary part of Shor’s
algorithm. When � j =0, the relevant operator is simply F−1H.
This “Fourier transform of the Hadamard transform” was
studied recently as a model of eigenstates of quantum chaos
�17�. It was demonstrated that columns of this matrix could

be multifractals in the N→� limit with peaks connected to
the periodic and homoclinic orbits of the doubling map
x�2x mod 1. These are of relevance to the spectrum of the
quantum baker’s map. It is thus of interest that a generalized
construction arises in the spectral problem of Shor’s
algorithm.

On using the matrix elements of F−1 and the Hadamard
matrix it is possible to write the matrix elements

�F−1� jH�kl =
1

2n2


m=0

n1−1

�1 + �− 1�bme−2�ik2m−n1ei�j2
m
� , �8�

where l=�m=0
n1−1bm2m is the binary representation of l. When

� j =0 and l=2n1 −1 corresponding the case bm=1 for all m,
this is the Fourier transform of the Thue-Morse sequence
�18�, well known to be a multifractal in the large-n1 limit
�19�. Thus the matrix elements of F−1� jH while having a
simple form that is efficient to compute are in fact quite
complex objects. We now demonstrate that their spectrum
has characteristics of that of a random matrix.

We illustrate this with a case n1=10 and N=29. We diag-
onalize F−1� jH for five different values of � j—namely,
−20� /28, 0, 4� /28, 6� /28, and 14� /28, choosing these to
be a mixture of generic and special eigenangles of S. The
eigenvectors of S can also be written, for example, as

�sj� =
1
�r

�
n=0

r−1

exp�− 2�ijn

r
�2nmod N� , �9�

where 0� j�r−1 are eigenvectors corresponding to
eigenvalues e2�ij/r. In general this is not the complete set,
but others can be found based on subgroups generated
by other “seeds,” where the seed is the integer i0 and the
group it generates is the set of integers 2ki0 mod N for
various k. For instance, in the case N=29, the above set
generates r=28 eigenstates of S with the seed 1. The remain-
ing state is a stand-alone one with the seed 0 and is the
state �0� itself, with an eigenvalue 1. Thus apart from the
double degeneracy of this eigenvalue the other 27 eigenval-
ues are nondegenerate. However, this depends on the order
r—for example, if N=31 and r=5, the spectrum of S is
highly degenerate. In these cases there are other symmetries
like a bit flip that arise �20�, but we will not elaborate on
these as they are inessential to the central purpose of this
Rapid Communication.

It is, however, pertinent to point out that eigenvectors
such as in Eq. �9� are completely delocalized, in fact have
modulus unity for almost all components, and the phase
would seem random. Thus these are simple examples of
states that are ergodic in accordance with Shnirelman’s theo-
rem �21� about a measure of states that tend to be ergodic in
the classical limit for quantized ergodic systems. The classi-
cal limit in this case would be over integers N that are such
that their order �with respect to 2� is N−1.

Returning to the central issue, we find the nearest-
neighbor spacings �NNS’s� of eigenangles for the five chosen
cases, thus making an ensemble with statistical significance.
The NNS’s are calculated for the normalized spacings
	
 jl2

n1 /2� such that the mean spacing is unity, where
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� jl=ei
jl and 	
 jl refers to spacings between nearest neigh-
bors. In Fig. 1 we show how the NNS’s are distributed along
with the curve expected for the circular unitary ensemble
�CUE�, which consists of the unitary group U�n� of n�n
unitary matrices endowed with its Haar measure �22�. The
good agreement with the CUE distribution �22� �which coin-
cides with the Wigner surmise for the Gaussian ensembles
for large dimensionality�

p�s� =
32s2

�2 e−4s2/� �10�

indicates the applicability of random matrix theory �RMT� to
the spectral fluctuations of the unitary part of Shor’s algo-
rithm. It is generally accepted that while there are excep-
tions, random matrix fluctuations are quantum signatures of
classical chaos �3�. In this case the classical limit may be
considered to be the large-N �or n1� limit, which is in fact the
regime where Shor’s factoring algorithm will ever be
usefully implemented.

The eigenfunctions are also of interest, and in Fig. 2 is
shown a typical eigenstate of F−1� jH in the standard basis
for the first of the five values of � j stated above. Almost all
of the eigenfunctions have this very random appearance and

an analysis of the distribution of its normalized intensities
x=2n1 � 	m ����2 fits with that expected from random matrix
theory. These normalized intensities with unit mean are dis-
tributed in an exponential manner e−x. In Fig. 3 we show the
cumulative distribution ��x� of x and compare it to that
expected from random matrix theory—namely, 1−e−x

�3�—and again find a good fit. Data not shown here confirm
both the NNS and eigenvector component statistics for a
variety of other parameter values and states, the results
shown being typical. Of course the complete eigenstate of
the unitary part of Shor’s algorithm is a tensor product of
such eigenstates of random appearance with eigenstates of
the form in Eq. �9�, which have phase complexity but in
modulus are almost equidistributed.

Thus there is compelling evidence that the operator U
used in standard implementations of Shor’s algorithm has
quantum chaos in it, of the type expected of systems that do
not have time-reversal symmetry. The genesis of this is from
two sources: One is the modular exponentiation operator,
which as we have noted earlier is closely allied to models of
quantum chaos such as the quantum baker’s map �9�. The
other is from a combination of the Fourier and Hadamard
transforms. Thus the spectral properties of F−1H by itself
may be interesting. It may be also noted that this is the op-
erator relevant to the subspace � j =0, which also includes the
subspace left out due to the modular exponentiation part act-
ing as identity on it �of dimension �2n2 −N�2n1�. This last
combination may be made irrelevant to Shor’s algorithm by

making use of Ũ instead of U. The operator Ũ is exactly
periodic, as both F and Ux are. Its spectrum is highly degen-
erate and the same as the shift operator. The eigenvalues are
thus equally spaced on the unit circle, reminiscent of the
quantum cat maps. The use of H instead of F �U instead of

Ũ� seems to lift this nongeneric spectrum into a more generic
one. There could be other operators that also accomplish
order finding with different initial states, but the core of the
algorithm, the modular exponentiation, will introduce quan-
tum chaos into the system.

There could be implications of the RMT fluctuations
found on the practical functioning of the algorithm. In par-
ticular quantum chaotic systems have been found to have
hypersensitivity to perturbations of the Hamiltonian or noise

FIG. 1. The nearest-neighbor spacing distribution of eigenangles
from an ensemble consisting of 5115 level spacings for the case
when the first register has 10 qubits and the number to be factored
is 29. The smooth curve shows the circular unitary ensemble �CUE�
distribution of random matrix theory.

FIG. 2. The intensities of a typical eigenstate of the operator
F−1� jH for the same case as in Fig. 1. The complete eigenstate of
the unitary part of Shor’s algorithm is a tensor product of such
states with eigenstates of the shift permutation operator.

FIG. 3. The cumulative distribution ��x� of the intensities of the
eigenstate shown in Fig. 2, these being normalized so that the mean
is unity. Shown as a smooth curve is the random matrix theory
expectation 1−e−x.
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�24,23�. It is possible that in some way the state used
in Shor’s algorithm as the initial state is “protected” from
this, but it remains to be seen whether this is indeed the
case. For this, an analysis that concentrates on the time
evolution rather than stationary states will be of relevance. In

particular it is of interest to investigate whether U and Ũ are

qualitatively different in their response to perturbations
and more generally whether use of the Fourier transform
to produce equal superpositions out of �0� instead of the
Hadamard gate is more robust. Work is ongoing in these
directions �25�.
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