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We derive a model describing spatiotemporal organization of an array of microtubules interacting via
molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction
kernel, we obtain a set of equations for the local rods concentration and orientation. At large enough mean
density of rods and concentration of motors, the model describes an orientational instability. We demonstrate
that the orientational instability leads to the formation of vortices and �for large density and/or kernel aniso-
tropy� asters seen in recent experiments. We derive the specific form of the interaction kernel from the detailed
analysis of microscopic interaction of two filaments mediated by a moving molecular motor and extend our
results to include variable motor density and motor attachment to the substrate.
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I. INTRODUCTION

One of the most important functions of molecular motors
is to organize a network of long filaments �microtubules�
during cell division to form cytoskeleton of daughter cells
�1�. In order to understand the details of this complex self-
organization process, a number of in vitro experiments were
performed �2–7� to study interaction of molecular motors
and microtubules in isolation from other biophysical pro-
cesses simultaneously occurring in vivo. At large enough
concentration of molecular motors and microtubules, the lat-
ter organize in asters and vortices depending on the type and
concentration of molecular motors.

In the above experiments the following qualitative picture
of motor-filament interaction has emerged. After a molecular
motor binds to a microtubule at a random position, it
marches along it in a fixed direction until it unbinds without
appreciable displacement of microtubules �since the mass of
a molecular motor is small in comparison with that of the
microtubule�. However, if a molecular motor binds to two
microtubules �most molecular motors have at least two bind-
ing sites�, it can change their mutual position and orientation
significantly �8�. In small-scale simulations �5�, the interac-
tion of rodlike filaments via motor binding has been studied
and patterns resembling experimental ones were observed. In
�9�, a phenomenological model for the molecular motor den-
sity and the microtubule orientation has been proposed. The
model included transport of molecular motors along micro-
tubules and alignment of microtubules mediated by molecu-
lar motors. Simulations showed that vortices and asters in-
deed form in this model; however, only one large vortex
formed in case of high density of motors. Reference �10�
generalized this model by including separate densities of free
and bound molecular motors, as well as the density of mi-
crotubules. This model exhibited a transition from asters to
vortices as the density of molecular motors is increased, in
apparent disagreement with experimental evidence �7� that
asters give way to vortices with decreasing the molecular
motors concentration. Somewhat similar approach was em-
ployed more recently by Sankararaman et al. �11� who intro-

duced the additional mechanism of tubule alignments due to
the gradient of the bound motor concentration. The introduc-
tion of this mechanism prevents single vortex formation at
large motor densities obtained in Ref. �9�; however, it also
strongly favors asters: lattices of vortices could only be ob-
tained in the absence of the corresponding term in the equa-
tion for the vector field. A phenomenological flux-force rela-
tion for active gels was introduced in �12,13�. Although
vortex and aster solutions were obtained in a certain limit, an
analysis of that model is difficult because of the large
number of unknown parameters and fields.

In Ref. �14�, a set of equations for microtubules density
and orientation was derived from conservation laws for mi-
crotubules probability distribution function. These conserva-
tion laws were based on the phenomenological expressions
for the probability fluxes due to diffusion and motor-
mediated interactions. The latter, however, assumed that tu-
bules are only displaced and rotated infinitesimally in indi-
vidual interactions, which may not be the case in
experiments. The model does not produce the onset of spon-
taneous orientation for any density of microtubules. The au-
thors argue that asters and vortices may be created as a result
of the “bundling instability” �15�. However, this model dem-
onstrated the bundling instability at small densities of tubules
and oscillatory orientational instability at large densities con-
trary to observations in which the orientational ordering is
observed at smaller densities and is not oscillatory. In subse-
quent publication �16�, a derivation of the probability con-
servation equations from microscopic mean-field model of
forces between tubules and motors was presented; however,
the assumptions made in the course of derivation �i.e.,
infinitely stiff molecular motors� lead to a surprising conclu-
sion that filaments do not change their orientation during
interaction.

In this paper we present an alternative calculation of the
microscopic motion of two filaments connected by a moving
motor in a viscous fluid and show that filaments do change
orientation as a result of the interaction. In our short publi-
cation �17�, we derived a continuum model for the collective
spatiotemporal dynamics of microtubules starting with a sto-
chastic microscopic master equation for interacting inelastic
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polar rods, assuming that the density of molecular motors is
homogeneous in space. Our model differs from the transport
equations �14� in that it treated the interaction between two
tubules as an instantaneous inelastic “collision.” Although an
elementary interaction may change the orientation of the two
filaments significantly �in the limiting case of completely
inelastic collision they become parallel�, after a motor de-
taches from the tubules, they drift apart both in physical and
angular space due to thermal fluctuations. The nontrivial pat-
terns may emerge as an interplay between the tubule-tubule
interaction and fluctuations-driven relaxation. The model in-
deed exhibits an onset of orientational order for large enough
density of microtubules and molecular motors �18�, forma-
tion of vortices, and then asters with increase in the molecu-
lar motors concentration, in a qualitative agreement with
experiment.

In this paper we present a more detailed derivation of our
equations, starting from a microscopic model of tubule-
motor interaction. In addition to our previous findings in Ref.
�17�, we considerably extended our analysis in a number of
directions.

�i� We derived the interaction kernel from microscopic
rules and related the kernel characteristics with the properties
of the motors taken from available experimental data.

�ii� We considered the situation when a fraction of mo-
lecular motors are attached to a substrate �usually, a glass
plate�. This modification allowed as to improve an agreement
with experiment. In particular, interaction with the substrate
explains slow rotation of vortices and suppression of the
density in the vortex cores, as observed in experiments �4,5�.

�iii� We lifted the assumption of the homogeneous dis-
tribution of molecular motors and included an additional
equation for the evolution of the molecular motor density.
Our results show that variable motor density does not quali-
tatively change the phase diagram and the structure of the
solutions, indicating that motor transport is not a primary
mechanism of self-organization, contrary to assumptions of
Refs. �9–11�.

The structure of the paper is as follows. In Sec. II, we
present a kinetic description of inelastically interacting polar
rods and derive a model equation for the mean orientation
for a Maxwell model of tubule-tubule interaction. In Sec. III,
we calculate the form of the interaction kernel from micro-
scopic rules of interaction of two filaments. In Sec. IV, we
reduce the kinetic equations for the tubule probability distri-
bution function to the set of partial differential equations for
local orientation and density of microtubules. In Sec. IV A,
the stability analysis of the isolated vortex and aster solutions
is performed and the phase diagram of various regimes is
presented as the function of motor density and anisotropy of
the interaction kernel. In Sec. V, we include effects of motors
attached to the substrate and explain rotation of the vortices
and onset of large variations of the microtubules density. In
Sec. VI, we consider effects of variable motor density and
derive the equation for the evolution of the motors. Details of
derivations are summarized in �19�.

II. KINETIC THEORY OF INELASTIC POLAR RODS

A. Maxwell model for inelastic polar rods

At this stage, molecular motors enter the model implicitly
by specifying the microscopic interaction rules between two

rods. Since the diffusion of small motors is about two orders
of magnitude higher than that of large and heavy microtu-
bules, in this section we neglect spatial variations of the mo-
tor density and treat the collision rules as spatially homoge-
neous. Effects of variable motor density are considered in
Sec. VI. For simplicity we consider the problem in the two-
dimensional x−y plane. Each rod is assumed to be of length
l and diameter d� l, and is characterized by the position of
its center of mass r and the unit vector n= �cos � , sin �� in
the direction of its polar end �we specify that it is oriented at
the angle � to the x axis�.

Let us first consider the orientational dynamics only and
ignore the spatial locations of interacting rods �an analog of
the Maxwell model of binary collisions in kinetic theory of
gases; see e.g., �20��. We model the motor-mediated inelastic
interaction by an instantaneous collision in which two rods
change their orientations according to the following collision
rule:

��1
a

�2
a � = � � 1 − �

1 − � �
���1

b

�2
b � , �1�

where �1,2
b are the two rods’ orientations before and �1,2

a

after the collision, and the constant � characterizes inelastic-
ity of collisions �analog of restitution coefficient in granular
media�. The angle between two rods is reduced after the
collision by an “inelasticity” factor �=2�−1. Totally elastic
collision corresponds to �=0 or �=−1 �the rods exchange
their angles�, and a totally inelastic collision corresponds to
�=1/2 or �=0: rods acquire identical orientation �1,2

a = ��1
b

+�2
b� /2 �see Fig. 1�a��. Here we assume that two rods only

interact if the angle between them before collision is less
than some cutoff angle �0, ��2

b−�1
b ���0��. Because of

2� periodicity, we have to add the rule of collision between
two rods with 2�−�0� ��2

b−�1
b ��2�. In this case, we have

to replace �1
b,a→�1

b,a+� ,�2
b,a→�2

b,a−� in Eq. �1�. In the
following, we will only consider the case of totally inelastic
rods ��=1/2� and �0=�, the generalization for arbitrary �
and �0 is straightforward �see �19��. The probability distri-
bution of orientation angles P��� obeys the following master
equation:

FIG. 1. �a� Sketch of motor-mediated two-rod interaction for
fully inelastic collision ��=1/2� and �b� integration regions C1,2 for
Eq. �2�.
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�tP��� = Dr��
2 P��� + g�

C1

d�1d�2P��1�P��2�

	�
�� − �1/2 − �2/2� − 
�� − �2��

+ g�
C2

d�1d�2 	 P��1�P��2��
�� − �1/2 −
�2

2

− �� − 
�� − �2�� , �2�

where g is the “collision rate,” or a probability of two tubules
to interact via a motor, the diffusion term �Dr describes
thermal fluctuations of the rod orientation, and the integra-
tion domains C1 ,C2 are shown in Fig. 1�b�. The collision rate
is proportional to the concentration of molecular motors m,
and from the dimensional analysis one finds that g is of the
order of mDrl

2, since 1/Dr is the only time scale in Eq. �2�,
and the effective interaction cross section of microtubules is
of the order of l2.

Rescaling time scale ts=Drt, probability Ps=gP /Dr, and
defining angle difference w=�2−�1, one obtains

�tPs��� = ��
2 Ps��� + �

−�

�

dw	Ps�� +
w

2
�P�� −

w

2
�

− Ps���Ps�� − w�
 �3�

�we dropped the subscript s at time t for brevity�. The res-
caled number density �=�0

2�Ps�� , t�d� now is proportional
to the density of rods multiplied by the density of motors. In
Sec. II B, an increase of the density of molecular motors is
reflected in our analysis as an increase of the number density
�.

B. Orientation transition

Equation �3� possesses uniform steady-state solution
P���= P0=� /2�=const corresponding to isotropic distribu-
tion of rods. This solution loses its stability with respect to
anisotropic perturbations with the increase of density �. The
instability signals the onset of spontaneous orientation. Sub-
stituting solution to Eq. �3� in the form P�� , t�= P0+�� , t�,
where  is small perturbation, we obtain linear equation for 

�t��� = ��
2��� +

�

2�
�

−�

� 	�� +
w

2
� + �� −

w

2
�

− �� − w� − ���
dw . �4�

Looking for the solution to Eq. �4� in the form
�exp��kt± ik��, where the azimuthal wave number k�0 is
an integer, for the growth rate �k we find

�k = �	 4

k�
sin��k

2
� − 1
 − k2. �5�

Thus, it follows from Eq. �5� that perturbations with k= ±1
have the largest growth rate �1=��4/�−1�−1. The instabil-
ity ��1�0� occurs for the density ���c=� / �4−��3.662

and leads to breaking the azimuthal symmetry and formation
of anisotropic, i.e., oriented states. The resulting orientation
is determined by initial conditions contained in the perturba-
tion .

C. Fourier expansion

Let us consider the Fourier harmonics of the probability
density P���

Pk = �e−ik�� =
1

2�
�

0

2�

d�e−ik�P��,t� . �6�

The zeroth harmonic P0=� /2�=const, and the real and
imaginary parts of P1 represent the components of the aver-
aged unit orientation vector n: �x= �nx�= �cos �� ,�y = �ny�
= �sin ��. Note that �x+ i�y = P1

*. Substituting �6� into Eq. �3�
yields

Ṗk + �k2 + ��Pk = 2��
m

Pk−mPmS��k

2
− m�� �7�

�here S�x�=sin x /x�. Because of the rotational diffusion term,
the magnitudes of high-order harmonics decay rapidly with
k2; see Eq. �5�. Neglecting all Pk for �k ��2, we obtain from
Eq. �7�

Ṗ1 + P1 = P0P12�4 − �� − 8
3 P2P1

* �8�

Ṗ2 + 4P2 = − P0P22� + 2�P1
2. �9�

Since near the orientation transition threshold the decay
rate of P2 is much larger than the growth rate of P1 �see Eq.

�5��, we can neglect the time derivative Ṗ2 and obtain the
relation P2=2���+4�−1P1

2, which leads to the Landau-type
equation for the average orientation vector �

�̇ = �� − A0���2� �10�

with constants

� = ��4�−1 − 1� − 1  0.273� − 1 = 0.273�� − �c�

A0 =
16�

3�� + 4�
 2.18 + O�� − �c� . �11�

For large enough densities ���c=3.662, an orientation tran-
sition �instability� leads to spontaneous rods alignment. This
instability saturates at the value determined by the density �.
Close to the threshold the constant A02.18.

In order to verify our approximations, we solved Eq. �3�
for the inelasticity parameter �=1/2 �or �=0� and the cutoff
angle �0=� numerically by the finite difference method. We
find that random initial conditions rapidly evolved toward a
single-peaked stationary distribution, the position of the
maximum of the distribution being determined by initial con-
ditions; see, for detail, �17�. We obtained that numerical so-
lutions to Eq. �3� are consistent with the truncated model
�10� up to densities ��5.5 �17�. Recently, Ben-Naim and
Krapivsky �21� developed analytical procedure for obtaining
exact steady-state solutions to Eq. �3�.
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We also studied Eq. �3� for the cutoff angle �0��,
and for �0 close to � no qualitative difference was found.
For the smaller �0 values, e.g., �0�� /2, since only almost
parallel microtubules interact attractively, we often obtained
long-living multiple peak distributions, with the number of
peaks at different angles separated roughly by � /�0. This
situation corresponds to coexistence of multiple microtu-
bules clusters with different orientation angles �n. Although
the distribution possibly relaxes toward a single peak, the
transient time appears to be very large due to exponentially
weak interaction between the clusters.

D. Spatial localization of tubule-tubule interaction

To describe the spatial localization of tubule-tubule inter-
action, we introduce the probability distribution P�r ,� , t� to
find a rod with orientation � at location r at time t. The
equation for P�r ,� , t� in the original variables can be written
as

�tP�r,�� = Dr��
2 P�r,�� + �iDij� jP�r,��

+� � dr1dr2�
−�0

�0

dw	W�r1,r2,� +
w

2
,� −

w

2
�

	 P�r1,� +
w

2
�P�r2,� −

w

2
�
� r1 + r2

2
− r�

− W�r1,r2,�,� − w�P�r2,��P�r1,� − w�

	
�r2 − r�
 �12�

where W�r1 ,r2 ,�1 ,�2� is the interaction kernel �a probabil-
ity of two tubules with center mass positions r1 ,r2 and ori-
entations �1 ,�2 to interact. This interaction kernel replaces
the constant collision rate g entering the Maxwell model �2�.

Unlike the Maxwell model equation �3�, Eq. �12� contains
two diffusion terms �translational and angular�, and the
motor-mediated tubule-tubule collision integral now contains
an interaction kernel W, which depends on the relative tubule
positions and orientations. Even though the system of micro-
tubules interacting with molecular motors is nonequilibrium,
we use the standard Einstein-Stokes relations for the rota-
tional Dr and translational Dij diffusion coefficients �in the
original scaling� known from polymer physics �22�

Dr =
4kBTe

r
, Dij = D�ninj + D��
ij − ninj�

D� =
kBTe

�

, D� =
kBTe

�

�13�

where r ,� ,� are corresponding viscous drag coefficients.
For rigid rodlike molecules in fluid,

� =
2��sl

ln�l/d�
; � = 2�; r 

��sl
3

3 ln�l/d�
, �14�

where �s is the shear viscosity �22�. The drag coefficients are
slightly modified for thin films and membranes; see e.g.,
�23�. Note that we used in �13� the effective temperature

Te, which is mostly due to microtubule collisions and
motor fluctuations. This effective temperature may exceed
considerably the thermodynamic temperature T.

The last term of Eq. �12� describes motors-mediated
interaction of rods. In Sec. III, we present a detailed analysis
of motor-mediated tubule-tubule interaction and derive the
corresponding form of the interaction kernel W.

III. MICROSCOPIC PICTURE OF TUBULE-TUBULE
INTERACTION

In order to develop a kinetic model of many interacting
tubules, we need to introduce a more specific model of inter-
action between two tubules mediated by a molecular motor.
Namely, we should specify the “collision rules,” or a rela-
tionship between positions and orientations of two tubules
before and after the interaction via motor attachment and/or
detachment, and the collision rate, or the probability of the
collision to occur given the positions and orientations of two
tubules. The latter will play a role of interaction kernel in the
corresponding master equation for the tubule probability
distribution.

A. Collision rules

Here we specify these rules by integrating the equations
of motion of the two tubules. This calculation is based on a
number of simplifications. We assume that two infinitely
rigid rods of equal length l interact with one molecular mo-
tor. We assume that the motor moves with constant speed V
along the rods �the results can are trivially generalized for the
case of V�const�. To simplify the system even further, we
consider a symmetric case: the distance of the motor from
the center point of the rod S, −l /2�S� l /2 is the same for
both rods; see Fig. 2. We choose the orientation of x axis
along the bisector of the angle between the tubules, and we
denote the angle between a tubule and a bisector � �note that
�= ��2−�1� /2�. Since the size of a motor �30 nm� is much
smaller than the length of a microtubule �l5–10 �m�, we

FIG. 2. Sketch of the interaction of two microtubules, S is the
distance from the motor to the center point of microtubule.
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consider a limit of zero motor size. Since the motor’s bend-
ing elasticity is rather small, we approximate the motor by a
soft spring and prescribe that the force F exerted on the
tubules due to motor motion is perpendicular to the bisector
of the angle between the tubules �i.e., along the motor�,
which in the symmetric case is along the x axis; see Fig. 2.
Even if the symmetry is initially broken and the force is
exerted at an angle to the x axis, the force will initiate a
relative displacement of the tubules in the y direction, which
will shift the binding points in such a way as to restore the
symmetry.

The equations governing evolution of the angle � be-
tween the microtubule and the bisector and the coordinates
X ,Y of the center of mass of the microtubule are obtained
from balance of torques and forces due to motor motion and
viscous drag forces

�t� = �r
−1S cos ��F , �15�

�tX = ��
−1 cos2 � + �

−1 sin2 ��F , �16�

�tY = ��
−1 − �

−1� sin � cos �F . �17�

Here r ,� ,� are rotational and translational viscous drag
coefficients introduced earlier �14�.

In the following, we neglect the anisotropy of the transla-
tion friction �� =� �24��, then the equations of motion will
simplify considerably

�t� = r
−1S cos �F , �18�

�tX = �
−1F , �19�

�tY = 0. �20�

Additional kinematic equation is obtained from the con-
dition that the motor is attached at the distance S from the
center of tubule, which gives

X = − S sin � . �21�

Differentiating Eq. �21� with respect to time and using
condition dS /dt=V, we exclude the force F and derive an
equation for angle � �note that the analysis in this section is
also valid for arbitrary time-dependent velocity of the motor
V�t��0�

d�

dt
= −

�VS cos � sin �

1 + kS2 cos2 �
, �22�

where constant �=� /r12/ l2; see Eq. �14�. We make the
following substitutions: renormalized time ts→�S2 and vari-
able u→cos2 �. In new variables, Eq. �22� can be written as

dts

du
=

1 + tsu

u�1 − u�
. �23�

Equation �23� is linear with respect to ts and therefore has an
exact solution

ts =
C + ln u

1 − u
, �24�

where C is a constant determined by initial conditions.
Returning to original variables, we obtain

C + ln�cos2 ��
sin2 �

= �S2. �25�

For small angles �, Eq. �25� simplifies and we obtain

� = �i

�1 + �Si
2

�1 + �S2
, �26�

where the �i, Si are the angle and position of the interaction
point at t=0.

For the final angle � f, which is acquired when the motor
reaches the end of the microtubules �S= l /2�, we derive

� f = �i

�1 + �Si
2

�1 + �l2/4
. �27�

As one sees from Eq. �27�, the final angle � f depends on
the initial angle �i and the initial attachment position Si.
Assuming that the probability of attachment of the motor is
independent of the position along the microtubule S, in the
small �i approximation, for average angle

�� f� = l−1�
−l/2

l/2

��Si�dSi, �28�

we derive

�� f� = �i	1

2
+

arcsinh���l2/2�
��l2�1 + �l2/4


 . �29�

Thus, the averaged change in the angle between two tubules,
or the inelasticity factor �= �� f� /�i is

� =
1

2
+

arcsinh���l2/2�
��l2�1 + �l2/4

. �30�

Obviously, for �l2→� the inelasticity factor �→1/2, which
corresponds to �partly� inelastic collision between the rods.
For the case of rigid rods, we obtain from Eq. �14� that �l2

12, which gives �0.67, which is considerably greater
than the fully inelastic case of �=0. With the increase of �,
the inelasticity factor � slowly decreases �e.g., for �l2=30 we
obtain �=0.6�.

For arbitrary initial angles �i, in order to find the average
angle change we solved Eqs. �25� and �28� numerically �see
Fig. 3�. There is a week dependence of � on the initial angle
�i. In a wide range of initial angles 0��i�0.75�, the
inelasticity factor �0.6 and then �→1 for �i→�.

In this section we have found that interaction of two rigid
rods is only partly inelastic: the overall decrease in the initial
angle does not exceed 40%. Certainly, there are additional
physical mechanisms further increasing the inelasticity of in-
teraction, such as �i� finite flexibility of microtubules, which
may significantly reduce the factor �. Investigation of this
interesting problem we leave to future studies. �ii� Multiple
motor attachment—obviously, if two or more motors attach
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simultaneously at different positions to two microtubules, it
should make them perfectly aligned, corresponding to fully
inelastic collision �=0. Consideration of this effect also goes
beyond applicability of our analysis. Taking into account
these considerations, we believe that the assumption of fully
inelastic collisions between microtubules can be a reasonable
approximation for flexible tubules and not too small motor
density.

B. Collision rate

Now we turn to the calculation of the collision rate
W�r1 ,r2 ,�1 ,�2� between two tubules with center-of-mass
positions r1 ,r2 and orientations n1 ,n2 �or angles �1 ,�2�. We
consider a translationally and rotationally invariant system,
so the collision rate depends only on the position and orien-
tation differences, W�r ,��, where r=r1−r2, and, as before,
�= ��1−�2� /2.

Microtubules interact via a motor attachment only if they
intersect, which is expressed by the condition

�r1 − r2��
l

2
sin � . �31�

This gives the collision rate in the form

W = Wl���r1 − r2� −
l

2
sin �� , �32�

where � is the � function, and Wl is the linking rate, or the
probability of two tubules to link via a motor given that they
intersect. The latter is directly proportional to the concentra-
tion of molecular motors bound to a tubule. If the concentra-
tion of the motors along the tubules were uniform, the colli-
sion rate would be uniform inside the parallelogram defined
by Eq. �32�. However, due to the transport of motors along
the tubules, their concentrations increase toward the polar
ends of the filaments.

In order to compute the inhomogeneous motor distribu-
tion along a filament, we assume that the motors can be in
two different states, bound and free. The concentration of
free motors mf is a function of the coordinate along the tu-
bule S, �−l /2�S� l /2�, perpendicular coordinate r� �we
consider a two-dimensional domain�, and time t. Bound mo-
tors are localized on the tubule itself; thus, so their area
concentration is Mb�S , t�
�r��.

The inhomogeneous motor distribution can be evaluated
from the following microscopic equations for motor
attachment and/or detachment and advection processes:

�tmf = �poffMb − ponmf�
�r�� + D�2mf

�tMb = − poffMb + ponmf�S,0,t� − �S�VMb� . �33�

These equations, formulated in terms of the concentration of
bound and/or free motors Mb ,mf, describe random binding
and/or unbinding of the motors with the probabilities pon,off;
diffusion of free motors �diffusion coefficient D�, and the
advection of bound motors with the velocity V along the
tubule. The parameter poff characterizes processivity of mo-
lecular motors: large poff corresponds to small processivity,
motor unbinds soon after it binds to a filament.

According to experiments �see, e.g., �25�� multiple motors
can be attached to a single tubule. However, for the sake of
simplicity we assume that only one motor can be attached
per elementary binding site, which represents a section of
approximately l0=10 nm along the tubule �26�. This leads to
a hard-core repulsion, which in the simplest approximation
can be taken into account by introducing local “pressure” p
of bound motors, and modifying the transport speed V,

V = V0 − ��Sp , �34�

where V0=const is the velocity of individual motor
��1 � / s� and � is an effective mobility. Pressure p diverges
as the bound motor density Mb approaches densely packed
limit of one motor per binding site Mb→M0�1/ l0. We will
adopt a simple generic expression for the pressure as a
function of the bound motor density �see for comparison
expressions for pressure in granular hydrodynamics near
closed-packed density �27–29��

p =
MbTm

1 − Mb/M0
. �35�

The “motor temperature” Tm �analog of a granular tempera-
ture� is determined by fluctuations of bound motors on the
tubule and is typically small �see below�, so the pressure
gradient �Sp can be neglected everywhere except where the
density is very close to the dense limit.

In the stationary state Eqs. �33� assume the form

�poffMb − ponmf�
�r�� + D�2mf = 0 �36�

− poffMb + ponmf�S,0� = �S�V0Mb − �Mb�Sp� . �37�

Since the diffusion constant D of free motors is large,
we can neglect the inhomogeneity in the free motor distribu-
tion and assume the constant density of free motors
mf =const in Eq. �37�. Eq. �37� has to be solved with the

FIG. 3. �Color online� The effective inelasticity factor � vs nor-
malized initial angle �i /� calculated from Eq. �28� for �=12/ l2

�solid line�. For comparison, � at �=30/ l2 is also shown �dashed
line�.
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boundary condition Mb=0 at S=−l /2. At the end of the tu-
bule S= l /2 the “exit” flux of bound motors VMb is deter-
mined by the detachment probability pend of the motor, re-
sulting in the condition VMb= pendl0Mb. For small Tm, the
density of bound motors has two distinct phases: low-density
“gas phase” near the beginning of the tubule �S=−l /2�, and a
high density “solid phase” near the end �S= l /2� �30�. The
location of the boundary between these phases can be found
by equating the fluxes of bound motors in the two phases. In
the low-density phase, the pressure term can be neglected
due to smallness of motor temperature Tm, and the solution
has the form

Mb =
ponmf

poff
�1 − exp	−

poff

V0
�S +

l

2
�
� . �38�

Typically, the distance a motor travels on a microtubule be-
tween binding and unbinding is much less than the length of
a tubule, or poffV0

−1l�1, so the density saturates very quickly
to the equilibrium value Me= ponpoff

−1mf. This solution corre-
sponds to a constant flux J of motors along the tubule in the
gas phase,

Jgas = V0Me =
V0ponmf

poff
. �39�

In the solid phase at a very low motor temperature Tm, the
motor density is very close to M0. Thus, at the end of the
tubule, the flux of motors is equal to the number of motors
leaving the tubule in a unit time pendM0. According to Eq.
�37�, the flux of motors J in the solid phase is a linear
function of the coordinate,

Jsolid = pendl0M0 + �poffM0 − ponmf�� l

2
− S� . �40�

The two phases are separated by a narrow interface �the
width of the interface vanishes when motor temperature Tm
→0� whose position S0 is determined by equating these two
fluxes, Jgas=Jsolid,

V0ponmf

poff
= pendl0M0 + �poffM0 − ponmf�� l

2
− S0� . �41�

This yields the following expression for the interface
position:

S0 =
l

2
+

pendl0M0 − V0ponpoff
−1mf

poffM0 − ponmf
. �42�

Obviously, interface position S0 grows with the
increase of detachment probability pend, and at
pend=V0ponmf�poffl0M0�−1, we obtain S0= l /2, i.e., the solid
phase disappears.

Thus, the bound motor density Mb is approximately
described by the following step function:

Mb�S�  Me + �M0 − Me���S − S0� . �43�

The inhomogeneous distribution of bound motors directly
leads to the anisotropy of the collision rate. The coordinates
along the microtubules S1,2 are related to the positions r1,2 of
the center of microtubules as follows:

S1,2 = n1,2 · �r − r1,2� . �44�

The probability of two intersecting tubules to be linked by a
motor given that they intersect Wl, which enters Eq. �32�, is
proportional to the bound motor concentration

W̄l = g0�Mb�S1
0� + Mb�S2

0�� , �45�

where S1,2
0 are the values of S1,2 at the intersection point, and

g0 is a proportionality constant �“linking rate”�.
Excluding r from Eq. �44�, one obtains

S1
0 =

�r1 − r2��n2 − n1�n1 · n2��
1 − �n1 · n2�2

S2
0 = −

�r1 − r2��n1 − n2�n1 · n2��
1 − �n1 · n2�2 . �46�

Nonuniform bound motors density Mb�S� produce aniso-
tropy: pl�r1 ,n1 ,r2 ,n2��pl�r1 ,n2 ,r2 ,n1�. However, the col-
lision rate, Eq. �45�, with the stepwise expressions for S1,2

0 ,
�43�, is awkward and impractical for further calculations. In
Sec. IV, we will not use the exact form �32� with Eq. �45� as
a kernel in the master equation, but will replace it with a
more simple form that nevertheless, retains the main features
of �32� and �45�, namely, localization and anisotropy,

W  W0�r1 − r2��1 − �l−1�r1 − r2� · �n1 − n2�� , �47�

where the symmetric part of the kernel W0 is of the Gaussian
form

W0�r� =
g0m

�b2 exp	− r2

b2 
 �48�

with the spatial scale b l /2, and m the total motor concen-
tration. The dimensionless parameter � characterizes the col-
lision rate anisotropy. The interaction kernel in this from was
proposed by us on the symmetry grounds in Ref. �17�.

Although the form �47� cannot be rigorously derived from
�32� and �45�, the anisotropy coefficient � as a function of
kinetic parameters can be estimated from the expression
�43�. First of all, we approximate the step function in Eq.
�43� by the linear function

Mb�S�  M̄ + �̄S , �49�

where the mean motor density M̄ and mean slope �̄ are
calculated by the least mean square method using Eq. �43�,

M̄ =
1

l
�

−l/2

l/2

MbdS =
M0 + Me

2
+ �M0 − Me�

S0

l

�̄ =
12

l3 �
−l/2

l/2

MbSdS = 6
M0 − Me

l3 � l2

4
− S0

2� . �50�

To evaluate the effective kernel we substitute Eq. �49� into
Eq. �45� and using relations �46�, obtain
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g  g0�2M̄ + �̄�S1
0 + S2

0�� = g0�2M̄ − �̄
�r1 − r2��n1 − n2�

1 − n1n2
� .

�51�

As one sees from Eq. �51�, it coincides with phenomenologi-
cal kernel Eq. �47� up to the factor �1−n1n2� in the denomi-
nator. The value of the dimensionless kernel anisotropy is
then

� =
�̄l

2M̄
. �52�

Assuming that the density in the solid phase M0 is much
larger than the density in the gas phase Me, �=M0 /Me�1,
we obtain the following estimate for the anisotropy � for
pend→0:

� 3�1

2
−

S0

l
� = 3

V0 − pend�l0

lpoff�
. �53�

The anisotropy is maximum for pend=0 ��V0 / poffl�� de-
creases with the increase of pend and vanishes �at this
approximation� at pend=V0 /�l0.

We can estimate the kernel anisotropy parameter � for
different type of motors using the data from Refs. �4,5�. The
parameters for kinesin and NCD are V=1 � / s, pon
=0.4 �ms−1, poff=0.5 s−1, and pend=70 s−1 for kinesin and
pend=2.5 s−1 for NCD. Here, d02l0=20 nm is the diameter
of the microtubule, Projected �two-dimensional� density of
free motors mf in Refs. �4,5� was taken mf =0.05–2 �m−2.
For the linear density of bound motors we obtain Me
= ponmf / poff and M0=1/ l0. For parameter � obtain �
=M0 /Me= poff / �l0ponmf�10–500�1. Thus, for NCD-like
motors when l0�pend�1 we obtain the anisotropy parameter
� �depending on the density ratios ��

�NCD 
3V0

lpoff�
 10−3, ¯ ,10−1. �54�

It follows from Eq. �54� that the kernel anisotropy � in-
creases with the increase of the concentration of free motors.
Correspondingly, since for kinesin parameters probability of
detachment at the end of microtubule pend
�V0ponmf�poffl0M0�−1 and no solid phase is formed, the
anisotropy coefficient � is essentially zero.

In this section, we considered only one mechanism con-
tributing to the kernel anisotropy: inhomogeneous distribu-
tion of bound motors. Possibly there are other mechanisms
affecting the anisotropy of the interaction, for example, finite
bending rigidity of the microtubules may also contribute to
both the collision rules and the collision rate. However, we
leave this interesting topic to further studies.

IV. CONTINUUM DESCRIPTION OF MOTOR-MEDIATED
TUBULE ORDERING

In this section, we will derive from master equation �12�
continuum equations for coarse-grained local orientation �
and density � using the results for interaction kernel derived
in Sec. III. After integration over the 
 functions, Eq. �12�
assumes the form

�P

�t
= Dr

�2P

��2 + �iDij� jP + Z0 + �Z1, �55�

where nonlinear terms

Z0 =� dr1�
−�0

�0

dw�2W0�2�r1 − r��P�r1,� + w�,t�

	P�2r − r1,� + w�� − 1�,t� − W0�r1 − r�P�r,�,t�

	P�r1,� − w,t�� �56�

and

Z1 =� dr1�
−�0

�0

dw�2W0�2�r1 − r���r1 − r� · �n1 − n�

	P�r1,� + w�,t�P�2r − r1,� + w�� − 1�,t�

− W0�r1 − r��r1 − r� · �n1 − n�P�r,�,t�P�r1,� − w,t��
�57�

are generated by the collision integral in Eq. �12�.
In generic situation, Eq. �12� cannot be formally simpli-

fied because of the absence of obvious small parameter for
expansion. Moreover, derivation of hydrodynamic-type
equations and moments expansion used in Refs. �14,16� is
not justified due to absence of apparent scale separation be-
tween the size of microtubule and the scale of the pattern
�typically in experiment the scale of vortices and asters is
comparable with size of the one microtubules�. However,
significant simplification of Eq. �12� is possible at the thresh-
old of orientation instability, i.e., for small values of param-
eter �. For ����−�c��1, one has formally separation
between the microscopic scale �a size of a microtubule l�
and the macroscopic scale �typical wavelength of the
orientational instability Li� l /��� l�.

To proceed, we again perform the Fourier expansion, Eq.
�6�, of the probability distributions in � and truncate the
series at �k ��2. Now 2�P0 gives the local number density
��r , t�, and P±1 the local orientation ��r , t�. Deriving “ampli-
tude equations” for � and � involves keeping only the
lowest-order terms in gradients of coarse-grained density �
and orientation � with respect to small parameter �, �this
derivation is similar to a derivation of Ginzburg-Landau-type
amplitude equations from generic system of partial differen-
tial equation at the threshold of a supercritical bifurcation;
see, e.g., �31��. For the details of this derivation, see �19�.
The integration of the diffusion term in Eq. �55� generates
linear terms, and the nonlinear “collision integrals” Z0 ,Z1
lead to nonlinear terms in the corresponding equations for
� ,�. In rescaled variables �we normalize time by Dr and
space coordinates by l�, we arrive at the set of equations for
the local density �=g0m�0

2�Pd� and orientation
�=g0m�2��−1�0

2�nPd�,

�t� = �2	D�� −
B2�2

16

 −

�B2H

16
�3 � · ���2� − ��2��

+ 2�i�� j�� j�i − �i�� j� j�� −
7�0B4

256
�4� �58�
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�t� = D�1�
2� + D�2 � �� · �� + 0.273�� − �c�� − A0���2�

− H	��2

16�
− �� −

8

3
���� · �� −

8

3
�� � ��
 +

B2�0

4�
�2� ,

�59�

where D�= �D� +D�� /2Drl
2=1/32, D�1= �D� +3D�� /4Drl

2

=5/192, D�2= �D� −D�� /2Drl
2=1/96. We introduced di-

mensionless parameters B=b / l characterizing the width of
the interaction kernel and H=�b2 / l2 characterizing normal-
ized strength of anisotropy of interaction �see Eqs. �47� and
�48��. Equations �58� and �59� generalize Eq. �10� for the
case of spatially localized coupling. We assume that the den-
sity variations are small. That allows us to linearize the last
two terms in Eqs. �58� and �59� near the mean density
�0= ���; otherwise, more complicated expressions given in
�19� are needed. The last term in Eq. �58� regularizes the
shortwave instability when the diffusion term changes sign at
the density �0��b=1/4B2. This instability leads to strong
density variations associated with formation of dense micro-
tubule bundles �see Figs. 5 and 6 below�, which is also ob-
served experimentally for large density of molecular motors.

A. Stability of asters and vortices

If B2H�1, i.e., weak kernel anisotropy, the density
modulations are rather small, and Eq. �59� for orientation �
decouples from Eq. �58�. It is convenient to rewrite Eq. �59�
for complex variable �=�x+ i�y �note that it coincides with
P1

* introduced earlier in Sec. II C�

�t� = �� − A0���2� + D1�
2� + D2�̄

2�* + H��� − 8
3��Re�̄�*

+ 8
3 �Re�*�̄��� , �60�

where operator �̄=�x+ i�y, and the diffusions D1=1/32
+�0B2 /4�, D2=1/192. Equation �60� is similar to the gen-
eralized Ginzburg-Landau equation known in the context of
superconductivity, superfluidity, nonlinear optics, and pattern
formation; see, e.g., �31�. Let us focus on the structure and
the dynamics of radially symmetric solutions of �60�, which
can be sought in polar coordinates r, � in the following
generic form:

� = �A0/�A�kr̄�exp�i�� , �61�

where the complex amplitude A�r̄�=��r̄�exp�i��r̄��, and the
amplitude ��r̄� and phase ��r̄� are real functions of the res-
caled distance from the center r̄→r /��. The solution with
phase ��r̄�=0, � corresponds to an aster, and the solution
with phase ��r̄��0,� describes a vortex; see Fig. 4. Transi-
tions between asters and vortices can be examined in the
framework of a one-dimensional problem for the complex
variable A�r�,

�t̄A = D1�r̄A + D2�r̄A
* + �1 − �A�2�A + H�a1A Re �r̄A

+ a2�r̄A Re A +
ia2A Im A

r̄
� �62�

with the following differential operators:

�r̄ = �r̄
2 + r̄−1�r̄ − r̄− 2; �r̄ = �r̄ + r̄−1 �63�

and parameters

a1 = �� − 8
3�/�A0  0.321, a2 = 8

3
�A0  1.81

In Eq. �62�, we also rescaled the time variable t̄→ t /�.
The aster and vortex solutions obtained by numerical in-

tegration of Eq. �62� for certain parameter values are found
in �17�. Vortices exist only for small values of kernel aniso-
tropy H and give way to asters for larger kernel anisotropy H
or larger density �. For H=0, Eq. �62� reduces to a form that
was studied in �32�. It was shown in �32� that the term �r̄A

*

favors �ideal� vortex solution with the phase �= ±� /2. In
contrast, terms proportional to H select asters with the phase
�=� �aster for the phase �=0 is unstable for the anisotropy
parameter H�0�. Note that the phase �=� corresponds to
asters with the direction of arrows toward the center, as it is
shown in Fig. 4. Since we associated the direction of the
vector � with the direction of motion of molecular motors
along the microtubules, the aster with the phase �=� corre-
sponds to the experimental situation: motor moves toward
the center of the aster. Increasing H leads to gradual reduc-
tion of �, and at a finite H0��0�, ��r�=�, i.e., the transition
from vortices to asters occurs �33�. For 0�H�H0, the vor-
tex solution has a nontrivial structure. We obtained that the
phase �→� for r̄→�, i.e., vortices and asters become in-
distinguishable far away from the core �17�. This result is
consistent with the experimental observations by Surrey et
al. �5�, where it was found that the tilt angle of microtubules
decreases with the increase of the distance from the vortex
core.

The transitions between asters and vortices can be studied
in the framework of linearized Eq. �62�. For this purpose, the
solution to Eq. �62� can be sought in the form

A�r̄� =��r̄� + iw�r̄�exp��t� , �64�

where small real perturbation w obeys a linear equation

L̂=�w with operator

L̂ � D̄�r̄ + �1 −�2 + a1H�r̄�� + a2H��r̄ �65�

�D̄=D1−D2� with zero boundary conditions at r̄=0, �.
This eigenvalue problem can be solved by the matching-
shooting method. A positive eigenvalue � corresponds to the
emergence of a nonzero phase ��r̄�, i.e., a vortex.

FIG. 4. �Color online� Schematic representation of orientation
fields � for three different values of �: aster ��=��, generic vortex
�� /2�����, and ideal vortex ��= ±� /2�.
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The resulting phase diagram of the continuum model �58�
and �59� is shown in Fig. 5. The solid line H0��0� separating
vortices from asters is obtained from the solution of the lin-
earized Eq. �62� by tracking the most unstable eigenvalue �
of the aster. The dashed line corresponds to the onset of the
orientation instability, �0=�c. The lines meet at the critical
point Hc=H0��c� above which vortices are unstable for arbi-
trary small ��0. The phase diagram is qualitatively consis-
tent with experiments; see Ref. �5�: for low value of kernel
anisotropy H�Hc �which according to our estimates in Sec.
III B corresponds to kinesinlike motors with very small an-
isotropy value ��, increase of the density �0 first leads to
formation of vortices and then asters. For H�Hc �which
apparently corresponds to NCD motors with large aniso-
tropy� only asters are observed. As we mentioned above, for
large density �0��b=1/4B2, in addition to orientation insta-
bility Eq. �58� describes a densityinstability when the non-
linear diffusion term �first term in the right-hand side of Eq.
�58�� changes sign. Numerical studies of the full system
��58� and �59�� indeed demonstrate formation of extended
domains of high density not associated with the asters; see
Fig. 6. Although our model �58� and �59� yields the density
instability and bundle formation in accordance with experi-
ment, we anticipate only qualitative agreement in this regime
because the model itself is derived in the low-density limit
when only binary interactions are included.

B. Interaction of asters and vortices

For H�0 well-separated vortices and asters exhibit expo-
nentially weak interaction. For asters it follows from the fact

that L̂ is not a self-adjoint operator. To investigate the inter-
action between asters, we need to examine the asymptotic

null space of the adjoint operator L̂† for r̄→� �see, for de-
tails, �31��. After simple algebra, we obtain that for r̄→� the
adjoint operator is of the form

L̂† � D̄�r̄
2 − a2H�r̄. �66�

Substituting the solution to the equation L̂†w†=0 in the form
w†�exp�p̄r̄�, we obtain that there are two solutions: p̄=0,
which describes the neutral translation mode, and the non-
trivial solution,

p̄ = a2H/D̄ . �67�

Since because to interaction the well-separated asters pro-
duce only small perturbations to their shape, these perturba-
tions can be treated in linear approximation, and the expo-
nent �67� characterizes asymptotic screening of the
interaction between the asters analogous to the interaction of
spiral waves in the Ginzburg-Landau equation; see Ref. �31�
for details of analysis. Thus, we obtain that perturbations
produced due to interaction of well-separated asters decay as
w�exp�−r̄ /L0� with the screening length L0=1/ p̄, or in

original units L0= D̄ /a2H��= D̄ /a2H�� /�c−1 �see, for de-
tails, �31��. Screening length L0 diverges for H→0 and at the
threshold density �0→�c. Similar analysis can be performed
for vortices. This analysis implies that two well-separated
asters or vortices will experience drift with the velocity V12
of the order V12�exp�−r12/L0�, where r12is the distance be-
tween centers of asters or vortices.

C. Numerical solution of full system

We also studied the full system ��58� and �59�� numeri-
cally. Integration was performed in a two-dimensional square
domain with periodic boundary conditions by the quasispec-
tral method. For small kernel anisotropy H, we observed
vortices and for larger H asters, in agreement with the above
analysis. Since vortices exist for smaller values of H, their
screening length L0 is larger than for the asters because
L0�1/H; see Eq. �67�. Thus, the vortices interact more
strongly and are more keen to annihilate than asters. Asters

FIG. 5. �Color online� Phase boundaries obtained form the lin-
ear stability analysis of the aster solution for B2=0.05. Dashed line
shows bundling instability limit �0=�b=5. Inset: Position of critical
point Hc vs B at �0=4.5.

FIG. 6. �Color online� Composite image of the density and ori-
entation �arrows� fields in the regime of density instability. Density
changes from �max10 �bright �red online�� to �min4 �black �dark
blue online��. Parameters: B2=0.05, �0=6, H=0.125, domain of
integration 80	80 units.

IGOR S. ARANSON AND LEV S. TSIMRING PHYSICAL REVIEW E 74, 031915 �2006�

031915-10



have a unique orientation of the microtubules �here, toward
the center�. Asters with the opposite orientation of � are
unstable �see Figs. 5�a� and 5�b� of Ref. �17��.

In large domains, asters form a disordered network of
cells with the cell size of the order of screening length L0.
Neighboring cells are separated by the “shock lines” termi-
nated by saddle-type defects. The pattern of asters resembles
a “frozen” glass state of spirals observed in the complex
Ginsburg-Landau model �31,34�. Starting from a random ini-
tial condition we observed initial merging and annihilation of
asters. Eventually, annihilation slows down due to exponen-
tial weakening of the interaction of asters. For the same in-
tegration time, the number of vortices is typically smaller
than the number of asters because the screening length of
asters is smaller.

D. Drift instability of the asters

In experiments �4,5�, asters often are not stationary; they
drift and coalesce. Surprisingly, in our numerical investiga-
tions of Eqs. �58� and �59� we also observed that typically
the center of an aster is unstable and develops a spontaneous
acceleration instability, see Fig. 7. This instability is reminis-
cent of the instability of spiral wave cores in the complex
Ginzburg-Landau equation in a large dispersion limit; see
Ref. �35�. This instability was associated in Ref. �35� with
the exponential growth of localized mode in the form
w1�r� exp�i�� that results in the core displacement.

Although this instability may indeed be the cause of ex-
perimentally observed aster drift, other mechanisms �such as
gradients of microtubules or motor distributions, effects of
the boundaries, etc.� cannot be excluded. Furthermore, it
cannot also be excluded that this drift instability is an artifact
of the approximations made in derivation of amplitude equa-
tions �58� and �59�. Truncated higher-order terms can, in
principle, suppress this instability in the experimentally rel-
evant range of parameters. For example, we were able to
suppress the instability artificially increasing the prefactor
before the �4� term in Eq. �58�. More detailed experiments
are needed to determine stability of the asters and vortices.
To study the drift instability numerically, we prepared an
initial condition in the form of an axisymmetric aster solu-
tion perturbed by a small amplitude noise. In the course of
motion the solution breaks the axial symmetry, typical struc-
ture of the moving aster is shown in Fig. 7. There is a small

but noticeable ��10% � increase of the density � and the
amplitude of orientation ��� behind the aster, for the immo-
bile solution the position of the zero of � and maximum of �
coincides. The instability accelerates collisions and coales-
cence of asters. However, the growth rate � of the instability
appears to be very small and aster solutions are well pre-
served for a very long time �several hundreds of dimension-
less units�. Figure 8 shows the velocity of aster core Va vs
time for the parameters of Fig. 7. One clearly sees initial
exponential growth of the aster velocity.

V. EFFECTS OF MOTORS ATTACHED TO THE BOTTOM
PLATE

In previous sections, we considered microtubules interact-
ing with molecular motors freely floating in the solvent.
However, in in vitro experiments it is difficult to prevent
attachment of some fraction of motors to the bottom of the
cell with one of their two heads. The other �free� head of the
attached �absorbed� molecular motor then may bind to a mi-
crotubule and push it in the direction opposite its orientation.
This effect was observed experimentally in Ref. �36� �re-
ferred to as microtubule gliding assays�. Recently, the dy-
namics of microtubules interacting with attached motors
�however, without free motors� was studied in Ref. �37�.

The effect of attached motors can be easily incorporated
in the master equation

�P

�t
= Dr

�2P

��2 + �iDij� jP + � � · �nP� + Z0 + Z1. �68�

Here � is the fraction of the attached motors, and the term
� · �nP� accounts for the transport of microtubules in the di-
rection opposite to their orientation vector n= �cos � , sin ��.
The terms Z0,1 remain unchanged. It is easy to check that the
drift term will generate additional linear terms ���� in Eq.
�58� and ��4��−1�� in Eq. �59�.

It is useful to write Eq. �58� in the form of the mass
conservation law

FIG. 7. Gray-coded images illustrating drift instability of asters
for H=0.125, B=0.06, �0=4, size of the image 40	40 at the mo-
ment of time t=300. Left image shows ���, right image shows �,
arrow indicates the direction of drift. Color code: black corresponds
to zero, white corresponds to maximum.

FIG. 8. �Color online� Components of aster core velocity Va

= �Vx ,Vy� vs time t for parameters of Fig. 7. Solid line shows Vy,
dotted line shows Vx, and dashed lines depict exponential fit Vx,y

�exp��t� for the first 150 units of time.
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�t = − �J �69�

with the corresponding mass flux J. The anisotropic part of
the kernel generates mass flux, which is second order in the
gradients of � ,�. In the lowest order, flux J��� due to the
interaction of tubules with motors attached by one head to
the substrate �37�. This makes the dynamics similar to that of
self-propelled particles; see, e.g., �32�. Without attachment to
substrate �the situation considered previously in Sec. IV� this
term is prohibited by the momentum conservation: molecular
motors produce only internal forces which cannot displace
the center of mass of the system. In Ref. �16�, a similar
contribution to the flux was attributed to the net displacement
of the center of the microtubule pair due to the anisotropy of
the viscous drag coefficient. However, this pure hydrody-
namic effect is probably smaller than the advection produced
by the motors absorbed at the substrate.

Although the fraction of absorbed motors � might be
small, it still can produce a considerable effect because it
generates the lowest-order transport term in Eqs. �58� and
�59�. Numerical studies of Eqs. �58� and �59� with additional
� terms reveal that qualitative features are not very sensitive
to the presence of these terms for small ��1, as long as the
diffusive transport in the equation for the density � domi-
nates advection. However, for moderate � values we ob-
served that asters and vortices become even less localized;
see Fig. 9. This delocalization is because the absorbed mo-
tors advect the microtubules in the direction opposite to their
orientation. Consequently, these motors move the tubules
from the asters and make a small depression of density for
��0 contrary to the density peak for �=0, compare images
in Fig. 9. Similar results were also obtained for vortices.
Remarkably, the suppression of density of microtubules in
the core of vortex is also observed experimentally; see Fig.
2�a� in Ref. �5�.

The presence of motors attached to the substrate may also
explain differential rotation of vortices absent in our previous
analysis. Indeed, since these motors generate net motion of
individual microtubules with the velocity ��, they can sup-
port rotating configurations similar to those observed in the
system of vibrated rods �32�. Obviously, no rotation antici-
pated for asters due to pure radial orientation of microtu-
bules: the forces induced by motors attached to substrate will
be compensated by “pressure” gradient due to redistribution
of density of microtubules. In contrary, the rotation is present
for vortices. Far away from the core, the distinction between
vortex and aster disappears and the rotation is localized only
at the core of the vortex where the phase � is different from
�. Since the amplitude of orientation vector � grows almost
linearly from the vortex core and reaches asymptotic value
�0�� /A0 at the distance of about 1–2 dimensionless units,
the rotation frequency of the vortex core  ��0. Indeed,
rotation of the vortex core was observed experimentally. For
the parameters of our numerical studies, the frequency  is
very small due to the smallness of �=0.004; thus, during the
time of numerical experiment ��1000 dimensionless units of
time� the vortex core turned only the fraction of full circle.

VI. INHOMOGENEOUS DISTRIBUTION
OF MOTORS

In previous sections, we assumed a homogeneous bulk
distribution of molecular motors �however, we took into ac-

count local inhomogeneity of bound motor concentration on
the scale of a single tubule to account for the collision rate
anisotropy in Sec. III B�. This assumption was justified by
the fact that the diffusion of motors is about two orders of
magnitude larger than of microtubules. However, experi-
ments indicate that even despite this strong diffusion, mo-
lecular motors aggregate in the core regions of asters and
vortices due to the directed transport of motors by microtu-
bules �7�. The effects of variable motor density were first
considered in Ref. �9–11�, and transport and accumulation of
motors at the centers of asters and vortices was assumed to
be a primary mechanism of self-organization. Here, we show
that although the effect of variable motor density indeed im-
proves agreement with experiment, it does not qualitatively
change our previous conclusions obtained under the assump-
tion of uniform motor density. In particular, we obtained vor-
tices for low values of H and small motor density and asters
for higher motor density.

To describe the dynamics of the motor concentration we
again invoke the equations for free mf and bound mb motor
concentrations, but unlike Sec. III B, we will coarse grain

FIG. 9. �Color online� Comparison between density distribu-
tions �dark �blue online��, �=�min3.7, and light �yellow online�,
�=�max4.4 without drift ��=0, upper image� and with drift
��=0.004, lower image�. Arrows show corresponding orientation.
Parameters of integrations: B2=0.05, �0=4, H=0.1, domain of in-
tegration 80	80.
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these concentrations on a mesoscopic scale much larger than
the size of individual filament similar to Ref. �7� �see also
�9–11��. Note that instead of Mb we use the notation mb to
describe the concentration of bound motors per unit area
rather than per unit length of a single motor as in Sec. III B.
The concentrations mb ,mf obey the advection-diffusion
equations �7,9� �compare to Sec. III B�

�tmf = D�2mf − ��Ponmf − Poffmb�

�tmb = − ! � mb� + ��Ponmf − Poffmb� , �70�

where Pon, Poff are the rates of binding and unbinding of
motor to the microtubules, D ,! are diffusion and advection
coefficients accordingly �advection velocity V=!��. Note
that bulk attachment and/or detachment rates are:
Poff= poff from Sec. III B, but Pon pond0

−1.
If we assume that the distributions of motor densities

mf ,mb are smooth and the binding and/or unbinding rates are
large, then the right-hand side Eqs. �70� is dominated by the
last term describing binding and/or unbinding of the motors,
leading to the local balance relation between motor densities
mf ,mb

Ponmf  Poffmb. �71�

Then we can reduce system �70� to a single equation for the
total motor density m=mf +mb:

�tm = D0�
2m − !0 � m� �72�

with renormalized diffusion D0=DPoff / �Poff+ Pon� and
advection rate !0=!Pon/ �Poff+ Pon�.

Accordingly, we need to modify the expression for the
interaction kernel Eq. �47� in order to include the effect of
motor inhomogeneity. The simplest way to include inhomo-
geneous motor density into the kernel is to replace the con-
stant motor density m in the symmetric part of the interaction
kernel �48� by m��r1+r2� /2�. Taking the motor concentration
in the middle point �r1+r2� /2 is necessary to preserve the
mass conservation law. Repeating the calculations presented
in the previous sections one can derive equations similar to
Eqs. �58� and �59�, but for the normalized tubule density
�=g0�0

2�Pd� that does not absorb the motor density m. The
resulting equations are very cumbersome, especially for the
transport term in Eq. �58�.

One can simplify the problem considerably using the fact
that the motor diffusion is high and, therefore, the distribu-
tion of total motor density m is smooth. Then, one can ne-
glect the derivatives of m where appropriate, and the result-
ing equations in time rescaled by Dr and space rescaled by l
assume the form

�t� = �2	D�� −
mB2�2

16

 + �� � � −

�B2H

16
�3 � m���2�

− ��2�� + 2�im�� j�� j�i − �i�� j� j�� −
7�0m0B4

256
�4�

�73�

�t� = D�1�
2� + D�2 � �� · �� +

�

4�
� � + 	� 4

�
− 1�m� − 1
�

− A0m2���2� − Hm	��2

16�
− �� −

8

3
���� · ��

−
8

3
�� � ��
 +

B2�0m0

4�
�2� . �74�

Thus, motor density m is included in the lowest order in
gradient expansion. We also included terms �� describing
the transport of microtubules by the absorbed motors. Again
for simplicity we replaced the motor density m by its mean
value m0 in the last terms in Eqs. �73� and �74�. Although the
diffusion-advection equation for the motor density �Eq. �72��
is somewhat similar to that of �9�, the microscopic derivation
of the coupling between all three fields: density of microtu-
bules �, orientation �, and total motor density m was not
considered before.

We carried out numerical studies of Eqs. �72�–�74�. The
values of the motor diffusion D0 and motor advection 0 can
be estimated from the experimental conditions, in our dimen-
sionless units D0�1. .5 and 0�1. Selected results are
shown in Figs. 10 and 11. In agreement with experiment, we
observed that motors tend to accumulate in the center of an
aster or a vortex; see Figs. 10 and 11, as in �7�. Otherwise,
qualitative behavior of formation of asters and vortices re-
mains the same. As seen in Fig. 11, initial multiaster state
coarsens and leads to the formation of a network of large
asters separated by the domain walls.

VII. CONCLUSIONS

In this paper, we derived continuous equations for the
evolution of microtubule concentration and orientation due
to their interaction via molecular motors. We found that an
initially disordered system exhibits an ordering instability
qualitatively similar to the nematic phase transition in ordi-
nary polymers at high density. The important difference is

FIG. 10. �Color online� Motor concentration profiles m for an
isolated aster for H=0.125, B=0.06,D0=5, and m0=1, �0=4 and
different values of motor advection !0.
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that here the ordering instability is mediated by molecular
motors and can occur at arbitrary low densities of microtu-
bules. At the nonlinear stage, the instability leads to the ex-
perimentally observed formation of asters and vortices.
Qualitatively similar vortices were observed in a system of
interacting granular rods �32,38,39�. Although we find that it
suffices to consider only the density and orientation of tu-
bules to explain the basic phenomenology, a better agree-
ment with experiment is obtained when we include motor
density as an additional field and take into account motors
attachment to the substrate �7,9,10�.

Many aspects of self-assembly in microtubule-motor sys-
tems require further investigation. In particular, we anticipate
that flexibility of the microtubules may have a strong effect
on the details of interaction—a question that we plan to ad-
dress in future work. Another interesting question is role of
the hydrodynamic interaction between the microtubules and
effects of fluctuations on the orientation transition. Further-
more, our theory is derived in the limit of small density of
the microtubules and takes into account only binary interac-
tions among tubules. We anticipate that multiparticle interac-
tions may play a significant role in the dynamics in high-
density regions, such as cores of asters and vortices, as well
as bundles. For example, it is likely that when many micro-
tubules are joined at the end by motors and affected by the
noise, they may spontaneously form an asterlike structure.
However, a description of this state goes beyond the frame-
work of the continuum theory developed in this paper.

There are many predictions following from our analysis
that possibly deserve experimental verification. For example,
we find that the anisotropy of the interaction kernel is asso-
ciated with the inhomogeneous density of motors along the
microtubules. We observed that the motors attached to the
substrate reduce the density of microtubules in the cores of
asters and vortices. We predicted an acceleration instability,
which leads to a drift of isolated asters. Hopefully, new gen-
erations of experiments will be able to address these issues.

Although our approach was developed for a very specific
problem, molecular motors-mediated interaction of microtu-
bules in quasi-two-dimensional geometry, we anticipate that
with certain modifications it can be applied to a variety of
different systems, such as rod-shaped swimming bacteria
�40�, vibrated granular rod systems, both polar �38,39� and
apolar �41�. We believe that the concept of inelastic colli-
sions in angle space resulting in alignment of rod directions
is a primary mechanism driving self-organization in these
very different systems. Moreover, it is interesting to make a
connection between our approach and the generic hydrody-
namic models of active “nematic” systems developed in Ref.
�42�.
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