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We present a quantitative picture of the separation of star polymers in a solution where part of the volume
is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder
on the entropy and scaling properties of f-arm star polymers in a good solvent. We assume that the disorder is
correlated on the polymer length scale with a power-law decay of the pair correlation function g�r��r−a.
Applying the field-theoretical renormalization group approach we show in a double expansion in �=4−d and
�=4−a that there is a range of correlation strengths � for which the disorder changes the scaling behavior of
star polymers. In a second approach we calculate for fixed space dimension d=3 and different values of
the correlation parameter a the corresponding scaling exponents � f that govern entropic effects. We find that
� f −1, the deviation of � f from its mean field value is amplified by the disorder once we increase � beyond a
threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside
a porous medium are that star polymers exert a higher osmotic pressure than chain polymers and in general
higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly,
polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density
while the opposite is the case for star polymers.
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I. INTRODUCTION

The influence of structural disorder on the scaling proper-
ties of polymer macromolecules dissolved in a good solvent
is subject to ongoing intensive discussions �1–13�. For poly-
mers, structural disorder may be realized experimentally by a
porous medium. Depending on the way the latter is prepared,
it can mimic various behavior, ranging from uncorrelated
defects �14–17� to complicated fractal objects �18–20�. Con-
sequently, theoretical and Monte Carlo �MC� studies have
considered these different types of disorder. In particular, the
scaling properties of polymer chains were analyzed for the
situations of weak uncorrelated �3,4�, of long-range-
correlated �10,12,13�, as well as of fractal disorder at the
percolation threshold �5–9,11�. However, as far as the au-
thors know, the influence of correlated disordered media on
the behavior of branched polymers, e.g., polymer stars, have
found less attention. Our work is intended to fill this gap.

The study of star polymers is of great interest since it has
a close relationship to the subject of micellar and other poly-
meric surfactant systems �21–23�. Moreover, it can be shown
that the scaling behavior of simple star polymers also deter-
mines the behavior of general polymer networks of more
complicated structure �24,25�. Recently, progress in the syn-
thesis of high quality monodisperse polymer networks
�26–30� has stimulated numerous theoretical studies of star

polymers, both by computer simulation �31–36� and by the
renormalization group technique �24,25,37–49�. Let us note
that star polymers are hybrids between polymerlike entities
and colloidal particles, establishing an important link be-
tween these different systems �21–23,50–52�.

It is well established that long flexible polymer chains in
good solvents display universal and self-similar conforma-
tional properties on a coarse-grained scale and that these are
perfectly described within a model of self-avoiding walks
�SAWs� on a regular lattice �53–55�. For the average square
end-to-end distance R and the number of configurations ZN
of a SAW of N steps one finds in the asymptotic limit N
→�:

�R2� � N2�, ZN � e�NN�−1, �1�

where � and � are the universal exponents depending only on
the space dimensionality d, and e� is a nonuniversal fugacity.
The universal properties of this polymer model can be de-
scribed quantitatively with high precision by analyzing a cor-
responding field theory by renormalization group methods
�54–59�. For d=3 the exponents read �60� ��0�

=0.5882±0.0011 and ��0�=1.1596±0.0020. Here and in the
following we use the notation x�0� for the value of an expo-
nent derived for the pure solution without disorder.

The power laws of Eq. �1� can be generalized to describe
a star polymer that consists of f linear polymer chains or
SAWs, linked together at their end points �see Fig. 1�. For a
single star with f arms of N steps �monomers� each, the
number of possible configurations scales according to
�24,25�

*Electronic address: viktoria@icmp.lviv.ua
†Electronic address: ferber@physik.uni-freiburg.de
‡Electronic address: hol@icmp.lviv.ua

PHYSICAL REVIEW E 74, 031801 �2006�

1539-3755/2006/74�3�/031801�12� ©2006 The American Physical Society031801-1

http://dx.doi.org/10.1103/PhysRevE.74.031801


ZN,f � e�NfN�f−1 � �R/���f−f�2 �2�

in the asymptotic limit N→�. The second part shows the
power law in terms of the size R�N� of the isolated chain of
N monomers on some microscopic step length �, omitting
the fugacity factor. The exponents � f, � f are universal star
exponents, depending on the number of arms f . The relations
between these exponents read �24�

� f = 1 + ��� f − f�2� ,

�1 = �2 = � = 1 − ��2, �1 = 0. �3�

Here, � and � are usual SAW exponents �1�. For f =1,2, the
case of a single polymer chain is restored. Recent numerical
values for � f for different f at d=3 are given in Refs. �31–36�
for Monte Carlo �MC� simulations and in Refs. �25,37–49�
for renormalization group calculations.

In terms of the mutual interaction, polymer stars interpo-
late between single polymer chains �low f� and polymeric
micelles �high f� �50–52�. From the scaling properties of star
polymers, one may also derive their short distance effective
interaction. The mean force F�r� between two star polymers
of f and f� arms is inversely proportional to the distance r
	R between their cores �24,61�

1

kBT
F�r� =


 f f�

r
, �4�

with the amplitude given by the universal contact exponent

 f f�. The contact exponents are related to the family of ex-
ponents � f for single star polymers by the following scaling
relation �2� �24�:


 f f� = � f + � f� − � f+f�. �5�

Similar to the model of SAWs on a regular lattice which
is used to describe the scaling properties of long flexible
polymer chains in a good solvent, one may consider models
of SAWs on disordered lattices to study polymers in a disor-
dered medium. In this model, a given fraction of the lattice
sites is randomly chosen to be forbidden for the SAW �these
forbidden sites will be called defects hereafter�. Harris �3�
conjectured that the presence of weak quenched uncorrelated
pointlike defects should not alter the SAW critical exponents.
This was later confirmed by renormalization group consider-
ations �4�. Another picture appears, however, for strong dis-
order, when the fraction of allowed sites is at the percolation
threshold. Numerous data from exact enumeration, analyti-
cal, and MC simulation �5–9,11� strongly suggest that the
scaling of a SAW on a percolation cluster belongs to a new

universality class and is governed by exponents, that differ
from those of a SAW on a regular lattice.

Our present study concerns the scaling properties of star
polymers in porous media which are found to display corre-
lations on a mesoscopic scale �62�. In small angle x-ray and
neutron scattering experiments these correlations often ex-
press themselves by a power law behavior of the structure
factor S�q��q−df on scales �−1	q	�−1 where � is a micro-
scopic length scale and � is the correlation length of the
material and df is its fractal volume dimension �63�. We de-
scribe this medium by a model of long-range-correlated �ex-
tended� quenched defects. This model was proposed in Ref.
�64� in the context of magnetic phase transitions. It considers
defects, characterized by a pair correlation function g�r�, that
decays with a distance r according to a power law

g�r� � r−a �6�

at large r. For the structure factor this leads to a power law
behavior with fractal dimension df =d−a where d is the Eu-
clidean space dimension. This type of disorder has a direct
interpretation for integer values of a. Namely, the case a=d
corresponds to pointlike defects, while a=d−1 �a=d−2� de-
scribes straight lines �planes� of impurities of random orien-
tation. Noninteger values of a are interpreted in terms of
impurities organized in fractal structures �64�.

The influence of the long-range-correlated defects �6� on
magnetic phase transitions has been pointed out in theoreti-
cal work �64–69� and MC simulations �70–72�. For poly-
mers, its impact on the scaling of single polymer chains was
analyzed in our previous work in two complementary renor-
malization group approaches: first by a double expansion in
the parameters �=4−d and the correlation strength �=4−a
using a linear approximation �10� and secondly by evaluating
two-loop expressions of the theory for fixed values of a and
d �12,13�. In particular, this work showed that long-range-
correlated disorder leads to a new universality class with
values of the polymer scaling exponents that depend on the
strength of the correlation expressed by the parameters a or
�=4−a. From this we may expect that also the architecture
dependent scaling behavior �2� of polymer stars and net-
works is affected by this type of correlated disorder.

The question we are interested in is how does the pres-
ence of long-range-correlated disorder change the values of
the critical exponents �2� and �4�? Besides the star-star inter-
action, the exponents govern various phenomena that involve
star polymers and polymer networks �44–49�. A particular
effect that may be observable experimentally for star poly-
mer solutions in a porous medium is an architecture-
dependent impact of the medium on the star polymer. It may
lead to a separation of star polymers with different numbers
f of arms. Let us consider star polymers in a good solvent,
part of which is in a porous medium �see Fig. 2�. We con-
sider the pores to be large enough so that the star polymers
may pass in and out of the medium �however, possibly on
long time scales only�. Let F f

�0��N� be the free energy of a
star polymer with f arms of N steps each in the pure solvent
and F��� its free energy in a porous medium characterized by

2

1

f

· · ·

FIG. 1. �Color online� Star polymer with f arms.
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a correlation strength �. These can be estimated using Eq.
�2�:

F f
�0��N� = − ln Z f

�0��N� = − ��0�Nf − �� f
�0� − 1�ln N , �7�

F f
����N� = − ln Z f

����N� = − ����Nf − �� f
��� − 1�ln N . �8�

Here, we assume the fugacity factor e−���� to depend on the
concentration of impurities independent of their correlation,
as it would be the case for SAWs on a lattice with corre-
sponding defects �8�. The product Nf represents the total
number of steps or effective monomers of the star polymer
which is a dimensionless measure of its molecular mass. Us-
ing Eqs. �7� and �8� one may now compare the free energies
of a number of situations. Let us name mainly two specific
questions: �i� Given a star polymer with fixed mass Nf and
functionality f in a good solution in a volume that is influ-
enced by disorder with a fixed defect density �. Does the free
energy depend on the correlation, and in particular is the
uncorrelated disorder or rather the correlated disorder of the
same density favored by the star polymer? �ii� Given a mix-
ture of star polymers which are monodisperse in mass Nf but
polydisperse in functionality f in a good solution in which
only a part of the volume is influenced by defects �see Fig.
2�. Due to the fugacity contribution which is the same for all
these star polymers, they are expected to favor the pure part
of the solution. However, the extent to which this is the case
may depend on architecture. Is the star polymer mixture
partly separated in this situation and where is the concentra-
tion of higher branched star polymers enhanced in this case?
While our answer to the first question is mainly to be com-
pared with MC simulations of star polymers on disordered
lattices, the answer to the second one may also be relevant
for experiments with polymers in solutions inside correlated
structures like aerogels.

The setup of the paper is as follows. In the next section
we present the model and construct the Lagrangean of the
corresponding field theory. In Sec. III we describe the field-

theoretical renormalization group �RG� methods that we ap-
ply. Section IV presents our results for the two RG ap-
proaches. We conclude with an interpretation of these results
in Sec. V.

II. MODEL

Let us consider a single star polymer with f arms im-
mersed in a good solvent �Fig. 1�. Working within the Ed-
wards continuous chain model �73,74�, we represent each
arm of the star by a path r
�s�, parametrized by 0�s�S,

=1,2 , . . . , f . In a corresponding discrete model of chains
with N steps of mean square microscopic length � the so-
called Gaussian surface is S=N�2. The central branching
point of the star is fixed at r1�0�. The partition function of the
system is then defined by the functional integral �25�:

Z f�S� =� D�r1, . . . ,r f�exp�− H f�	

=2

f

�d�r
�0� − r1�0�� .

�9�

Here, H f is the Hamiltonian, describing the system of f dis-
connected polymer chains:

H f =
1

2 


=1

f �
0

S

ds�dr
�s�
ds

�2

+
u0

4! 


,
�=1

f �
0

S

ds

��
0

S

ds��d�r
�s� − r
��s��� . �10�

The first term in Eq. �10� represents the chain connectivity
whereas the second term describes the short-range excluded
volume interaction. The product of �-functions in Eq. �9�
ensures the starlike configuration of the set of f chains re-
quiring each of them to start at the point r1�0�. This model
may be mapped to a field theory by a Laplace transformation
from the Gaussian surface S to the conjugated chemical po-
tential variable �mass� �̂0:

Ẑ f��̂0� =� dS exp�− �̂0S�Z f�S� . �11�

One may then show that the Hamiltonian H is related to an
m-component field theory with a Lagrangean L in the limit

m→0 and that the partition function Ẑ f��̂0� results from a
correlation function of this field theory as follows:

Ẑ f��̂0� =� ddx1 ¯ ddxf
 

j1,. . .,j f=1

m

T̂i1,. . .,if
�i1�x0� ¯ �if�x0�

�� j1�x1� ¯ � j f�xf��
m→0

L

, �12�

L =
1

2
� ddx���0

2��� �x��2 + ���� �x��2�

+
u0

4!
Ŝi1,. . .,i4

�i1�x� ¯ �i4�x�� . �13�

Here and below, the summation over repeated indices is im-

FIG. 2. Separation phenomenon of polymer stars in good solu-
tion, part of which is in a porous medium.
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plied, �� is an m-component vector field �� = ��1 , . . . ,�m�, �̂0

and u0 are bare mass and coupling with the tensor Ŝi1,. . .,i4
= 1

3 ��i1i2
�i3i4

+�i1i3
�i2i4

+�i1i4
�i2i3

�. Formally, the local compos-
ite operator appearing in Eq. �12� is the m=0 limit of an
operator known in m-component field theory �75�:

���*
f �x� = T̂i1,. . .,if

�i1�x� ¯ �if�x� , �14�

where T̂i1,. . .,if
is a traceless symmetric SO�m� tensor:



i=1

m

T̂i,i,i3,. . .,if
= 0. �15�

We introduce disorder into the model �13�, by redefining
�̂0

2→ �̂0
2+��̂0�x�, where the local fluctuations ��̂0�x� obey

����̂0�x��� = 0,

����̂0�x���̂0�y��� = g��x − y�� .

Here, ��¯�� denotes the average over spatially homogeneous
and isotropic quenched disorder. The form of the pair corre-
lation function g�r� is chosen to decay with distance accord-
ing to the power law �6�.

In order to average the free energy over different configu-
rations of the quenched disorder we apply the replica method
to construct an effective Lagrangean:

Leff =
1

2 


=1

n � ddx���̂0
2��� 
�x��2 + ���� 
�x��2�

+
u0

4!
Ŝi1,. . .,i4

�

i1�x� ¯ �


i4�x��
+ 



,�=1

n � ddxddyg��x − y���� 

2�x��� �

2�y� . �16�

Here, the coupling of the replicas is parametrized by the
correlation function g�r� of Eq. �6�, Greek indices denote
replicas and the replica limit n→0 is implied.

For small k, the Fourier transform g̃�k� of g�r� �Eq. �6��
reads

g̃�k� � v0 + w0�k�a−d. �17�

Thus, rewriting Eq. �16� in momentum space and taking Eq.
�17� into account, one obtains an effective Lagrangean with
three bare couplings u0 ,v0 ,w0. For a�d, the w0 vertex does
not introduce additional divergences at k=0 and is irrelevant
in the renormalization group sense �56,57,59�. The polymer
limit m=0 leads to further simplifications. As pointed out in
Ref. �4�, once the limit m ,n→0 has been taken, the u0 and
v0 terms are of the same symmetry, and an effective
Lagrangean with one coupling �u0+v0� of O�mn=0� symme-
try �13� results. This leads to the conclusion that weak
quenched uncorrelated disorder, i.e., the case a�d is irrel-
evant for polymers, and consequently also for star polymers.
For a	d, the momentum-dependent coupling w0ka−d has to
be taken into account. Note that g̃�k� must be positively defi-
nite being the Fourier image of the correlation function. This

implies w0�0 for small k. Also, we assume the coupling u0
to be positive, otherwise the pure system would undergo a
first-order transition.

The resulting Lagrangean in momentum space then reads

Leff =
1

2 


=1

n



k

��̂0
2 + k2��� 


2�k� +
u0

4! 

=1

n



�k�

��k1 + ¯ + k4�

��� 
�k1� · �� 
�k2��� 
�k3� · �� 
�k4� +
w0

4! 

�

n



�k�

���k1 + ¯ + k4��k1 + k2�a−d�� 
�k1� · �� 
�k2�

��� ��k3� · �� ��k4� . �18�

Here, we have redefined u0+v0→u0 and denoted the scalar
product by �� ·�� .

The replicated composite operator �14� reads in momen-
tum space

���*
f �k1, . . . ,kf� = ��k1 + ¯ + kf�



=1

n

T̂i1,. . .,if
�


i1�k1� ¯ �

if�kf� .

�19�

III. RENORMALIZATION GROUP APPROACH

In order to extract the scaling behavior of the model �18�,
and of the composite operator �14� we apply the field-
theoretical renormalization group �RG� method �56,57,59�.
We choose the massive field theory scheme with renormal-
ization of the one-particle irreducible vertex functions
�0

�L,N��k1 , . . . ,kL ; p1 , . . . , pN ;�0
2 ; ��0�� at nonzero mass and

zero external momenta �76�. The one-particle irreducible
�1PI� vertex function can be defined as

��
 ki + 
 pj��0
�L,N���k�;�p�;�0

2;��0��

= ��0

ei�kiRi+pjrj� � ��2�r1� ¯ �2�rL���R1� ¯ ��RN��1PI
Leff

�ddR1 ¯ ddRNddr1 ¯ ddrL. �20�

Here, ��0� stands for the set of bare couplings u0, w0 of the
effective Lagrangean, �k�, �p� are the sets of external mo-
menta, �0 is the cutoff, and the averaging is performed with
the corresponding effective Lagrangean Leff. To extract the
anomalous dimensions of the composite operators �14� we
define the additional f-point vertex function �*

�f�, with a
single ���*

f insertion. Up to second loop order the graphs for
�*

�f� can be derived from the usual graphs for ��0,4� by replac-
ing in turn each four-point vertex by ���*

f �see Fig. 3�.
The renormalized vertex functions �R

�L,N� and �*R
�f� are ex-

pressed in terms of the bare vertex functions as follows:

�R
�L,N���k�;�p�;�̂2;���� = Z�2

L Z�
N/2�0

�L,N���k�;�p�;�̂0
2;��0�� ,

�*R
�f���k�;�̂2;���� = Z*f�*0

�f���k�;�̂0
2;��0�� , �21�

where Z�, Z�2, Z*f are the renormalizing factors, �̂, ��� are
the renormalized mass and couplings.
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The change of couplings u0, w0 under renormalization de-
fines a flow in parametric space, governed by corresponding
� functions:

�u�u,w� = � �u

� ln �
�

0
, �w�u,w� = � �w

� ln �
�

0
, �22�

where l is the rescaling factor, and �0 stands for evaluation at
fixed bare parameters. The fixed points �FPs� u*, w* of the
RG transformation are given by the solution of the system of
equations:

�u�u*,w*� = 0, �w�u*,w*� = 0. �23�

The stable FP, corresponding to the critical point of the sys-
tem, is defined as the fixed point where the stability matrix

Bij =
���i

�� j
�24�

possesses eigenvalues ��i� with positive real parts. The flow
of the renormalizing factors Z�, Z�2, Z*f in turn defines the
corresponding RG functions:

���u,w� = � � ln Z�

� ln �
�

0
, �25�

�̄�2�u,w� = − � � ln Z�2

� ln �
�

0
− ��, �26�

� f�u,w� = � � ln Z*f

� ln �
�

0
. �27�

The critical exponents are the values of these functions
�25�–�27� at the stable accessible FP of Eq. �23�:

�−1 = 2 − ���u*,w*� − �̄�2�u*,w*� , �28�

� = ���u*,w*� , �29�

� f = � f�u*,w*� , �30�

� f = 1 + �� f�u*,w*� + ���2 − �� − 1�f . �31�

Here, � f is the anomalous dimension of the composite op-
erator ���*

f . The expressions for the exponents �, � of a
single polymer chain in long-range-correlated disorder we
derived in Refs. �10,12,13�. Only the RG functions � f that
correspond to the anomalous dimensions of the composite
operator ���*

f in the presence of correlated disorder remain to
be calculated in order to extract the spectrum of star polymer
exponents � f �given by Eq. �31��.

IV. RESULTS

The perturbative expansions for the functions �22� and
�25�–�27� may be analyzed by two complementary ap-
proaches: either by exploiting a double expansion in �=4
−d, �=4−a �10,64–66� or by evaluating the theory for fixed
values of the parameters d and a �12,13,67–69�. In the fol-
lowing we make use of both ways of analysis.

A. One-loop approximation: � ,� expansion

For the qualitative analysis of the first order results, we
apply a double expansion in �=4−d and �=4−a. First, we
need to calculate the f-point vertex function �*

�f� with a
single insertion of the composite operator ���*

f . In the one-
loop approximation we get

�*
�f���k� = 0;�̂0;u0,w0� = 1 − u0

f�f − 1�
6

� dq�

�q2 + �̂0
2�2

+ w0
f�f − 1�

6
� dq�qa−d

�q2 + �̂0
2�2 . �32�

We define renormalized mass �̂2 and couplings u ,v by the
renormalization conditions:

�̂2 = ��R
�2��k,�̂2,u,w��k=0,

u = ��R,u
�4� ��k�,�̂2,u,w���k�=0,

w = ��R,w
�4� ��k�,�̂2,u,w���k�=0.

The renormalization condition for the vertex function with
���*

f insertion is given by

Z*f��k� = 0;�̂;u,w� = ��*
�f��u,w��−1 = 1 + u

f�f − 1�
6

I1

− w
f�f − 1�

6
I2. �33�

Here, I1 and I2 are loop integrals given in the Appendix. The
expressions for the RG � and � functions �22�, �25�, and �26�
within the same approximation read �10�

�u = − ��u −
4

3
u2I1� − �2uw�I2 −

1

3
D1� + �2� − ��

2

3
w2I3,

�34�

�w = − ��w +
2

3
w2I2 + w2D1� + �

2

3
�wuI1� , �35�

FIG. 3. The graphs contributing to the vertex function �*
�f� up to

two-loop order. �a� represents the f-point vertex ���*
f ; �b� one-loop

contribution; �c�–�f� two-loop contributions.
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��2 = �
u

3
I1 − �

w

3
I2, �� = �

w

3
D1. �36�

Again, the loop integrals I1− I3, D1 are given in the Appen-
dix. Note that contrary to the usual �4 theory the �� function
in Eq. �36� is nonzero already in the one-loop order. This is
due to the k dependence of the integral D1. Combining Eqs.
�27� and �22� one defines � f via familiar expressions �33�
and �35�:

� f = �u�u,w�
� ln Z*f

�u
+ �w�u,w�

� ln Z*f

�w
. �37�

To proceed with the analysis, we insert the expansions of
the one-loop integrals:

I1 =
1

�
�1 −

�

2
� , �38�

I2 =
1

�
�1 −

�

2
� , �39�

I3 =
1

2� − �
�1 −

2� − �

2
� , �40�

D1 =
1

�
�� − �

2
� . �41�

Substituting Eqs. �38�–�41� into the expressions for � func-
tions �34� and �35� and solving the FP equation �23�, one
finds three fixed points: the Gaussian �u*=0, w*=0�, the pure
�u*= 3

4�, w*=0�, and the nontrivial, long-range-correlated,

LR fixed point: �u*= 3
4

2�2

�−� , w*= 3
2

���−2��

�−� �. The analysis of the
conditions of their stability and accessibility we performed in
Ref. �10�. The results are displayed schematically in Fig. 4:
at � ,��0, the crossover from the pure FP to the LR takes

place at �=� /2, i.e., a=2+d /2. Note, however, that the LR
FP is stable in the region a�d, where the influence of the
disorder is expected to be irrelevant, see the explanation after
Eq. �17�. These first order results give a qualitative descrip-
tion of the crossover to the new universality class in the
presence of long-range-correlated disorder.

The expression for the critical exponent � reads �10�

� = ���0� = 1/2 + �/16, � 	 �/2,

���� = 1/2 + �/8, �/2 	 � 	 � .
� �42�

From Eq. �37� we find

� f = �� f
�0� = −

1

8
�f�f − 1� , � 	 �/2,

� f
��� = −

1

4
�f�f − 1� , �/2 	 � 	 � .� �43�

Substituting �43� and �42� into �31�, finally we get

� f = �� f
�0� = 1 −

1

16
�f�f − 3� , � 	 �/2,

� f
��� = 1 −

1

8
�f�f − 3� , �/2 	 � 	 � .� �44�

The first line in Eq. �44� recovers the exponent for the f-arm
polymer star in the pure solution �37�, whereas the second
line brings about a new scaling law.

To obtain a naive estimate of the numerical values of
these exponents, one can directly substitute into Eq. �44� the
value �=1 �corresponding to d=3� and different fixed values
for correlation parameter a. We note a decrease of the star
exponent � f at fixed f �3, when the correlation of the disor-
der becomes stronger �i.e., parameter a decreases�. However,
the behavior for chain polymers, i.e., for f =1,2 differs: in
this case the exponents �1=�2 increase for decreasing a.

This crossover is also clearly seen in Fig. 5 where we
compare the behavior of � f for the case with and without
correlated disorder. As this figure shows, the correlation of
the disorder effectively enhances the deviation from the

u u

w w

(a) (b)

FIG. 4. Fixed point picture for d	4, a�d. Stable physically
accessible fixed points are shown by squares, the unstable ones by
discs. �a� �	� /2, the pure fixed point �u*�0, w*=0� is stable. At
�=� /2, it interchanges its stability with the LR fixed point �u*�0,
w*�0�. �b� for � /2	�	� the LR fixed point becomes physically
accessible and stable. The Gaussian fixed point �u*=0, w*=0� is
stable for d�4, a�4.

FIG. 5. Comparison of the exponents � f for star polymers in a
pure solution �continuous line� and in a solution inside a correlated
porous medium �broken line�, following Eq. �44� for �=1, �=0.9.
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mean field value � f
MF=1 which is positive for f =1,2 and

negative for f �3 in this approximation.

B. Two-loop approximation: Fixed d ,a approach

To obtain a quantitative description of the scaling behav-
ior of star polymers in long-range-correlated disorder, we
proceed to higher order approximations. We make use of the
fixed d=3 RG approach �76�, considering the massive RG
functions at fixed space dimension d. Also the additional
parameter a in the expansions for the RG functions in renor-
malized couplings u, w �22� and �25�–�27� is fixed in this
approach and we work hereafter with these expansions. As is
well known �56,57,59�, such expansions are in general char-
acterized by a factorial growth of the coefficients which im-
plies a zero radius of convergence �77�. No reliable data can
be extracted from a naive analysis. For the present model,
this particular feature shows up already in the first order of
perturbation theory in u and w. Indeed, for the plain one-loop
� functions �35� a nontrivial FP LR does not appear if one
solves the nonlinear fixed point equation �23� directly at d
=3 and 2	a	3. To take into account higher order contri-
butions, the standard tools of asymptotic series resummation
have to be applied �77�.

The two-variable Padé-Borel resummation technique �78�
that we use consists of several steps. Consider the two-
variable series for a RG function h�u ,w�. First, we construct
the Borel image of the initial function:

h�u,w� = 

i,j

ai,ju
iwj → 


i,j

ai,j�ut�i�wt� j

��i + j + 1�
,

where ��i+ j+1� is Euler’s gamma function. Then, the Borel
image is extrapolated by a rational Padé approximant
�K /L��u ,w�. This ratio of two polynomials of order K and L
is constructed as to match its truncated Taylor expansion to
that of the Borel image of the function h�u ,w�. The re-
summed function is then recovered by an inverse Borel
transform of this approximant:

hres�u,w� = �
0

�

dt exp�− t��K/L��ut,wt� . �45�

In our previous work �12,13� we have analyzed the re-
summed expressions for the two-loop RG functions of the
model of a single polymer chain in the long-range-correlated
disorder in three dimensions, and found that a fixed point LR
appears and is stable at 2.2	a	3. This FP disappears at a
	2.2 and the pure SAW FP remains unstable. This behavior
may be interpreted to indicate, that the presence of stronger
correlated disorder �at a	2.2� might lead to a collapse of the
polymer chain. To obtain a quantitative picture of the scaling
behavior of star polymers, we only need to extend these re-
sults by a calculation of the renormalization factor Z*f �37�.
Taking into account the two-loop contributions shown in Fig.
3 we get

Z*f = 1 + u
f�f − 1�

6
I1 − w

f�f − 1�
6

I2 + u2f�f − 1���−
1

72
�f − 2��f − 3� +

1

36
f�f − 1� +

1

6
�I1

2 − � f − 2

9
+

1

6
�I6�

− uwf�f − 1���−
1

36
�f − 2��f − 3� +

1

18
f�f − 1� +

7

8
�I1I2 + �−

1

9
�f − 2� −

1

3
�I7 −

1

9
�f − 2�I9 −

I4

18
−

2

3f�f − 1�
D1�

+ w2f�f − 1���−
�f − 2��f − 3�

72
−

f�f − 1�
36

+
1

9
�I2

2 − � f − 2

18
+

1

6
�I8 −

f − 2

18
I10 +

1

9
I3I1 −

1

18
I5 −

2

3f�f − 1�
I2D1� . �46�

The expressions for the loop integrals I1 , . . . , I10,D1 and their numerical values at d=3 and different a are presented in the
Appendix.

In this way, the function � f can be found, using Eq. �37� and familiar expressions for the two-loop � functions as given in
Refs. �12,13�. The resulting two-loop expansion for � f reads �79�

� f = − u
f�f − 1�

8
− w

�4 − a�f�f − 1�
8

I2/I1 + u2��−
f3

16
+

3f2

32
−

f

32
�I1

2 + � f3

8
−

3

16
f2 +

f

16
�I6�� I1

2

+ uw��−
f3

16
�1 + �4 − a�� +

f

16
�1 − �4 − a�� + �4 − a�

f2

8
�I1I2 + ��1 + �4 − a��� f3

16
−

3f2

32
+

f

32
���I7 + I9�

+ ��1 + �4 − a��� f2

32
−

f

32
��I4 + �3

8
�1 + �4 − a�� −

f2�4 − a�
16

+
�4 − a�f

16
� I1D1

f�f − 1��� I1
2

+ w2��−
f2

16
−

f

16
�I1I3 +

�4 − a�f�f − 1�
16

I5 +
�4 − a��f − 1��f + 1�

16
I8

+
�4 − a�f�f − 1��f − 2�

16
I10 + ��4 − a� −

f2

16
+

f

6
+

3

4
�I2D1�� I1

2. �47�
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Inserting the series for � and � for the polymer chain in
the long-range-correlated disorder from Refs. �12,13� to-
gether with � f of Eq. �47� into Eq. �31�, we finally obtain the
corresponding series for � f. Substituting the numerical val-
ues of the LR correlated FP, found for different a from Refs.
�12,13� and applying a Padé-Borel resummation as explained
above, we get the numerical values for exponents � f in three
dimensions for different values of the correlation parameter
a and number of arms f . Our final estimates that result from
this procedure are presented in Table I. For f =3, the first
order contribution to � f is zero, whereas it is nonzero for �3.
Therefore to obtain a resummed value for �3 we have re-
summed the series for �3 using the values for � and � of
chain polymers in long-range-correlated disorder.

Let us recall that for a=d=3 the problem is equivalent to
the situation without structural disorder. Therefore in the first
two rows of Table I we give RG estimates for the exponents
� f obtained in a three-loop approximation in Refs. �42,43� as
well as recent data of MC simulations �36�. Comparing these
data with our two-loop results �the third row of the table�
allows to estimate the consistency of the calculational
scheme that we apply. The good mutual agreement found for
the low values of f supports our approach. The fact that the
discrepancy increases with f is expected, taking into account
the strong combinatorial f dependence of the coefficients of
expansions �46� and �47�. This growth is difficult to control
in a consistent way during the resummation.

As we noted above, the choice f =1, f =2 recovers the
case of a single polymer chain. Therefore the first column of
Table I gives an estimate for the dependence of the exponent
�, Eq. �1�: ��a�=�1

�a�=�2
�a�. The remarkable feature of the es-

timates for � f
�a� listed in Table I is that they predict a quali-

tatively different behavior of � f
�a� for f =1, f =2, and f �3.

Indeed, as one sees from Table I, a decrease in a leads to an
increase of �1

�a�, �2
�a� while � f

�a� for f �3 decrease in this case.
This tendency is also found for the one-loop � ,� expansion
�Eq. �44��.

Recall that the scaling exponent of a star polymer in a
pure solvent is given by � f

�a=3� and let us return back to Eqs.

�7� and �8� for the free energy of a star in the pure solvent
and in a porous medium. Then our results indicate two dif-
ferent regimes of the entropy-induced change of the polymer
concentration for a solvent in a porous medium with respect
to the pure one. Namely, the free energy of the chain poly-
mers �f =1, f =2� is reduced by the presence of correlation in
a porous medium. On the other hand, the free energy of a star
polymer �f �3� is increased by correlations of the environ-
ment.

To investigate the influence of a porous medium on the
effective interactions between star polymers we calculate the
contact exponents 
 f f� �Eq. �4��. Our results, obtained by a
Padé-Borel resummation of the series derived from Eq. �5�,
are presented in Figs. 6 and 7 and for a selected set of expo-
nents also in Table II. In Fig. 5 we show the contact exponent

TABLE I. Critical exponents � f for the f-armed star in three dimensions at different values of the correlation parameter a. The first and
the second rows �a=d=3� present results for a polymer star in a good solvent without porous medium obtained within the field-theoretical
RG in three-loop approximation, Refs. �42,43�, and by the Monte Carlo simulations, Ref. �36�, correspondingly.

a \ f 1;2 3 4 5 6 7 8 9

3,�42,43� 1.18 1.06 0.86 0.61 0.32 −0.02 −0.4 −0.8

3,�36� 1.1573�2� 1.0426�7� 0.8355�10� 0.5440�12� 0.1801�20� −0.2520�25� −0.748�3� −1.306�5�
3 1.17 0.99 0.83 0.57 0.26 −0.08 −0.56 −0.87

2.9 1.25 0.87 0.78 0.46 0.09 −0.32 −0.76 −1.23

2.8 1.26 0.81 0.76 0.43 0.06 −0.36 −0.80 −1.26

2.7 1.28 0.74 0.72 0.40 0.01 −0.40 −0.85 −1.31

2.6 1.30 0.73 0.70 0.37 −0.03 −0.46 −0.91 −1.37

2.5 1.34 0.71 0.70 0.35 −0.10 −0.51 −1.00 −1.44

2.4 1.35 0.70 0.70 0.31 −0.10 −0.55 −1.02 −1.50

2.3 1.38 0.70 0.69 0.29 −0.13 −0.59 −1.06 −1.55

θ

FIG. 6. The contact exponent 
 f f as function of f and correla-
tion parameter a at d=3. Each line shows the dependence of 
 f f on
a at fixed f .
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 f f for two stars of the same number of arms f as a function
of a and f . The exponent increases with increasing of f and a
for f �3. Figure 6 presents 
 f f� for a fixed a �we have cho-
sen a=2.7 for an illustration�. For fixed f , f�, this exponent
decreases with the decrease of the correlation parameter a.
Thus we can conclude that polymer stars interact more
weakly in media with strong correlated disorder.

V. CONCLUSIONS

The present study provides numerical estimates for the
spectrum of critical exponents that govern the scaling behav-
ior of the f-arm star polymers in a good solvent in the pres-
ence of a correlated disordered medium, characterized by a
correlation function g�r��r−a at large distances r. This ex-
tends previous results �10,12,13� that have shown that the
scaling behavior of polymer chains in this type of disorder
belongs to a new universality class.

Working within the field-theoretical RG approach, we ap-
plied both a double expansion in �=4−d and �=4−a as well
as a technique that evaluates the perturbation series for fixed
d, a. The first one-loop analysis allowed us to identify a

quantitatively new behavior in comparison with the pure
case. The second approach, refined by a resummation of the
resulting divergent series, resulted in numerical quantitative
estimates for the scaling exponents. We found the numerical
values of the exponents � f in the three-dimensional case for
different fixed values of the correlation parameter 2.3�a
�2.9, and for fixed numbers of arms f =1, . . . ,9. Depending
on the value of f , we find two different regimes of the
entropy-induced effects on the polymer in a correlated po-
rous medium. While an increase of the correlation of the
disorder causes the free energy of chain polymers �f =1, f
=2� to decrease, the same change in correlation rather leads
to an increase in the free energy for star polymers �f �3�.
Therefore for a mixture of chain and star polymers of equal
molecular mass �same total number of effective monomers�
in a solution for which a part of the volume is influenced by
a porous medium the disorder-influenced part of the solvent
is predicted to be enriched by chain polymers. Correspond-
ingly, the relative concentration of star polymers to chain
polymers will be lower in the porous medium.

From our numerical estimates for contact exponents 
 f f�,
we deduce the influence of the correlated disorder for the
effective interaction between star polymers. Again we find
different behavior for chain and star polymers. While for
chain polymers the effective contact interaction increases for
decreasing a, i.e., for enhanced correlation, the mutual inter-
action between star polymers is weakened in correlated me-
dia.
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APPENDIX

Here, we present the expressions for the loop integrals, as
they appear in the RG functions. We make the couplings
dimensionless by redefining u=u�̂d−4 and w=w�̂a−4. There-
fore the loop integrals do not explicitly contain the mass.

θ

FIG. 7. The contact exponent 
 f f� as function of f and f� for
fixed correlation parameter a=2.7 at d=3.

TABLE II. Contact exponents 
 f f�, governing the scaling behavior of interaction force between two f- and f�-armed polymer stars in
three dimensions at different values of the correlation parameter a.

a 
41 
43 
44 
45 
46 
47 
48 
49

2.9 1.306 1.627 1.865 2.042 2.220 2.348 2.402 2.531

2.8 1.286 1.565 1.777 1.932 2.071 2.163 2.246 2.345

2.7 1.262 1.502 1.691 1.817 1.941 2.024 2.082 2.166

2.6 1.239 1.459 1.608 1.739 1.843 1.910 1.987 2.040

2.5 1.229 1.410 1.554 1.668 1.762 1.834 1.876 1.929

2.4 1.217 1.392 1.521 1.617 1.705 1.758 1.799 1.883

2.3 1.193 1.360 1.474 1.574 1.651 1.707 1.725 1.772
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I1 =� dq�

�q2 + 1�2 ;

I2 =� dq�qa−d

�q2 + 1�2 ;

I3 =� dq�q2�a−d�

�q2 + 1�2 ;

I4 =� � dq�1dq�2q1
�a−d�

�q2
2 + 1�2��q1 − q2�2 + 1�2 ;

I5 =� � dq�1dq�2q1
�a−d�q2

a−d

�q2
2 + 1�2��q1 − q2�2 + 1�2 ;

I6 =� � dq�1dq�2

�q1
2 + 1��q2

2 + 1�2��q1 − q2�2 + 1�2 ;

I7 =� � dq�1dq�2q1
a−d

�q1
2 + 1��q2

2 + 1�2��q1 − q2�2 + 1�
;

I8 =� � dq�1dq�2q1
a−dq2

�a−d�

�q1
2 + 1��q2

2 + 1�2��q1 − q2�2 + 1�
;

I9 =� � dq�1dq�2q1
a−d

�q1
2 + 1�2�q2

2 + 1���q1 − q2�2 + 1�
;

I10 =� � dq�1dq�2q1
2�a−d�

�q1
2 + 1�2�q2

2 + 1���q1 − q2�2 + 1�
;

D1 =
�

�k2�� dq�qa−d

��q + k�2 + 1��k2=0
. �A1�

The correspondence of the integrals to the diagrams in Fig. 3
is �b�: integrals I1, I2, I3, �c�: I4, I5; �d�: I1I2, I2

2; �e�: I6, I7, I8,
I9, I10; �f�: I6, I7, I8, I9. In our calculations, we use the fol-
lowing formulas for folding many denominators into one
�see, e.g., Ref. �58��:

1

a1

1
¯ an


n
=

��
1 + ¯ + 
n�
��
1� ¯ ��
n� �0

1

dx1 ¯ �
0

1

dxn−1

x1

n−1

¯ xn−1

n−1−1�1 − x1 − ¯ − xn−1�
n−1

�x1a1 + ¯ + xn−1an−1 + �1 − x1 − ¯ − xn−1�an�
1+¯+
n
. �A2�

To compute the d-dimensional integrals we apply

�
0

� dqqd−1

�q2 + 2k�q� + m2�

=

1

2

��d/2���
 − d/2�
��
�

�m2 − k2�d/2−
. �A3�

As an example we present the calculation of the integral I7. First, we make use of formula �A2� to rewrite

1

�q1
2 + 1���q1 − q2�2 + 1�

=
��2�

��1���1��0

1 dx

�q1
2 + 2xq1q2 + xq2

2 + 1�2 . �A4�

Now one can perform integration over q1, passing to the d-dimensional polar coordinates and making use of the formula �A3�:

� dq�1q1
a−d

�q1
2 + 2xq�1q�2 + xq2

2 + 1�2 = C�
0

� dq1q1
a−1

�q1
2 + 2xq�1q�2 + xq2

2 + 1�2 =
1

2

��a/2���2 − a/2�
��2�

�1 + q2
2x�1 − x��a/2−2, �A5�

where the constant C= �2��d/2 /��d /2� results from integration over the angular variables. It does not appear explicitly in the
following expressions. Finally, we are left with

I7 =
1

2
��a/2���2 − a/2��

0

� dq2q2
d−1

�q2
2 + 1�2�

0

1

dx�1 + q2
2x�1 − x��a/2−2; �A6�
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this integral was calculated numerically, fixing the values of
the parameters d, a using the MAPLE package. Note that some
of the integrals can also be evaluated analytically.

Below, we list the results for all the integrals:

I1 =
1

2
��d/2���2 − d/2� ,

I2 =
1

2
��a/2���2 − a/2� ,

I3 =
1

2
���2a − d�/2���2 − �2a − d�/2� ,

I4 =
1

4
��a/2���d/2���2 − a/2���2 − d/2� ,

I5 =
1

4
��a/2���a/2���2 − a/2���2 − a/2� ,

I6 =
1

2
��d/2���2 − d/2��

0

� dq2q2
d−1

�q2
2 + 1�2

��
0

1

dx�1 + q2
2x�1 − x��d/2−2,

I8 =
1

2
��a/2���2 − a/2��

0

� dq2q2
a−1

�q2
2 + 1�2

��
0

1

dx�1 + q2
2x�1 − x��a/2−2,

I9 =
1

2
��d/2���2 − d/2��

0

� dq2q2
a−1

�q2
2 + 1�2

��
0

1

dx�1 + q2
2x�1 − x��d/2−2,

I10 =
1

2
��d/2���2 − d/2��

0

� dq2q2
2a−d−1

�q2
2 + 1�2

��
0

1

dx�1 + q2
2x�1 − x��d/2−2,

D1 =
�a − 2��a − 3��a − 4�
192 sin���1/2a − 1��

.

Note that the analytical value for D1 is taken from
Refs. �67–69�. Numerical values of the integrals are given in
Table III.
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