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A continuum theory of dielectric relaxation within liquid crystal materials is described and used to model the
response of dual frequency materials to single pulse voltage waveforms. The equations governing the aniso-
tropic axis �director� angle, electric field, and induced polarizations are solved numerically to investigate
pulsed addressing of a model zenithally bistable liquid crystal device. By suitably tailoring the voltage pulse,
it is found to be possible to switch between both bistable states. For short pulses the high frequency compo-
nents of the leading edge of the voltage pulse excites the perpendicular polarization and forces the director to
lie parallel to the cell substrates. For longer voltage pulses the constant dc component of the voltage pulse
excites the parallel polarization causing the director to lie perpendicular to the substrates. It is also found that
reducing rotational viscosity and increasing the achievable dielectric anisotropies �particularly the high fre-
quency value� can significantly reduce the operating voltages of such a device.
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I. INTRODUCTION

The dielectric relaxation of liquid crystal materials has
been investigated both theoretically �1–4� and experimen-
tally �5,6� over many years. In liquid crystals a bulk polar-
ization can be induced by the application of an electric field
via a number of mechanisms, which include the electronic
polarization of individual atoms, the electronic polarization
of individual molecules, and the reorientation of permanent
molecular dipoles. The response of these different polariza-
tion mechanisms occurs on different time scales.

The electronic polarization mechanisms exhibit resonant
responses to an applied ac electric field. Below this resonant
frequency such mechanisms respond to the applied field and
contribute to the dielectric susceptibility of the material. For
example, at optical frequencies the observed refractive index
of many calamitic nematic liquid crystals is enhanced by the
electronic molecular polarization mechanism. The anisotropy
of the individual nematic molecules, leading to different
electronic polarizabilities being exhibited parallel to and per-
pendicular to the molecular axis, and the tendency for mol-
ecules to align parallel to neighboring molecules �creating an
average molecular orientation, the “director”� then leads to
birefringence.

When these materials consist of molecules containing a
permanent dipole, bulk polarization may also be induced by
partial reorientation of these dipoles to align with an applied
field. However, there is a time lag for the reorientation of the
dipoles due to the viscosity of the fluid. In Debye theory �1�,
where it is assumed that the magnitude of the induced polar-
ization evolves exponentially with time, this results in a well
defined relaxation frequency, below which the orientational
mechanism contributes to the dielectric susceptibility, but
above which it does not.

In calamitic nematic liquid crystals a lower relaxation fre-
quency is generally observed when the ac electric field is
applied parallel to the director �the average orientation of the
molecular long axis� compared to when the field is applied
perpendicular to the director. This is because rotation about

the short molecular axis is hindered when compared to rota-
tion about the long axis. Typical values are above 105 Hz for
relaxations in the dielectric susceptibility measured parallel
to the director �� and above 107 Hz for relaxations in the
dielectric susceptibility measured perpendicular to the direc-
tor �� �3�.

In so called “dual-frequency” or “2f” materials the relax-
ation in �� occurs at frequencies on the order of 103 Hz at
room temperature, well below normal values �7,8� so that
reasonable voltage addressing schemes may be constructed
enabling this relaxation phenomenon to be utilized in a pho-
tonic device �8�. At low frequencies well below fc, the relax-
ation frequency of ��, the dielectric susceptibility anisotropy
��=�� −�� is positive. At frequencies well above fc the
value of �� is negative. This effect has previously been ex-
ploited for designing voltage addressing schemes to give fast
switching in displays �8–10�. However, problems with using
dual frequency liquid crystals for this application include a
strong temperature dependence of the critical frequency fc
and significant dielectric heating close to fc. Recently, inter-
est has been renewed in dual frequency nematic materials
with the possibility of using them in dual mode display de-
vices �11�, as an adaptive element in microwave devices
�12�, and in phase devices for telecommunication applica-
tions �13–15�, where accurate temperature control may be
possible.

In the present paper we will assume that both electronic
polarization effects mentioned above are extremely fast pro-
cesses with a typical relaxation time on the scale of nanosec-
onds. We will also neglect any space-charge effects although
it is relatively straightforward to include governing equations
for positive and negative ion movement within a fluid
�16,17�.

A number of researchers have investigated theoretical de-
scriptions of dual frequency materials �13,18� although all
assume a sinusoidal voltage is applied and therefore a simple
empirical frequency dependent dielectric susceptibility an-
isotropy could be used. In this paper we experimentally de-
termine certain key material parameters needed within a the-
oretical model of the dielectric relaxation of the liquid
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crystal. We then use the Debye approach to describe the time
evolution of the polarization due to the reorientation of mo-
lecular dipoles parallel to the director. This enables the re-
sponse of the liquid crystal to arbitrary waveforms to be
calculated. Using this theory we consider the pulsed voltage
addressing of a zenithally bistable nematic device filled with
dual frequency material and show that switching between the
two bistable states is possible by tailoring the voltage pulse
height and duration.

II. THEORY

The dielectric susceptibility � of a material relates the
bulk polarization per unit volume P induced in a medium to
the applied electric field via P=��0E, where �0 is the per-
mittivity of free space. The total polarization can be written
as the sum of the electronic polarization contributions Pe

produced by a number of mechanisms, and the orientational
polarization Po so that P=Pe+Po. In a liquid crystal the ori-
entational alignment of molecules creates anisotropy and al-
lows for the definition of an average molecular long axis
orientation, the director n. Due to this anisotropy it is neces-
sary to separately consider the induced polarization along the
director P� and perpendicular to the director P� as shown in
Eqs. �1� and �2�.

P� = P�
e + P�

o = ��l
e �0E� + P�

o, �1�

P� = P�
e + P�

o = ���l
e + ��l

o ��0E�, �2�

where E� and E� are the components of the electric field
parallel and perpendicular to the director. Since relaxation of
the electronic polarization mechanisms is thought to occur
well above 109 Hz �6� these contributions to the polarization
will react at much smaller time scales compared to either the
period of any applied oscillating field or the voltage pulse
rise time achievable experimentally. The electronic suscepti-
bility values will therefore be considered as remaining con-
stant at their low frequency limits ��l

e and ��l
e as indicated in

Eqs. �1� and �2�. We will also assume that the relaxation
perpendicular to the director also occurs on a time scale that
is much shorter than the time scales that we will be consid-
ering. This is reasonable assuming this relaxation occurs well
into the Megahertz regions, see Ref. �3� and Sec. 5.41 of Ref.
�19�. We have therefore taken P�

o =��l
o �0E� in Eq. �2�. Re-

laxation of all these effects can be easily included in the
following model using the same method outlined below but
this will lead to only minor modifications to the results and
significantly increase the computation time.

For the orientational dipole parallel to the director we will
assume that any forced response of this polarization obeys a
Langevin-type equation, which may be thought of as a reso-
nance free Lorentz equation for dipole relaxation

�
dP�

o

dt
+ P�

o = �E� , �3�

where � is the relaxation time constant for the parallel orien-
tational polarization P�

o and � is the electric field coupling
which will be specified in terms of the susceptibility below.

For a sinusoidal electric field E=E0e2�fti, the solution to Eq.
�3� is readily obtained,

P�
o =

�

1 + 2�f�i
E� . �4�

Using the relationship P�
o=��

o�0E� then gives the parallel ori-
entational susceptibility

��
o =

�

�0�1 + 2�f�i�
. �5�

When f =0 the low �zero� frequency limit of the susceptibil-
ity can be defined, ��l

o =� /�0, which gives the dependence of
� on the low frequency susceptibility �=�0��l

o . We can then
rewrite the orientational susceptibility �5� as

��
o =

��l
o

1 + 2�f�i
, �6�

which is the commonly used Debye model of dielectric re-
laxation. The high frequency limit of the susceptibility is
found by taking f →� which leads to ��h

o =0, in other words,
at high frequencies the excitation of the parallel orientational
polarization will relax and be P�

o=0.
Using Eqs. �1� and �6� we obtain the expression for the

complete parallel susceptibility

�� = ��l
e +

��l
o

1 + 2�f�i
. �7�

From this expression we see that the low frequency suscep-
tibility will be equal to ��l

e +��l
o and the susceptibility at high

frequencies �but lower than the relaxation frequency of the
electronic polarizations� will be approximately equal to ��l

e .
In the direction perpendicular to the director, the measured
susceptibility will be, from Eq. �1�,

�� = ���l
e + ��l

o � . �8�

By experimentally exciting the parallel and perpendicular
dielectrically induced polarizations, with an electric field of
frequency f , we can use Eqs. �7� and �8�, fitted to the experi-
mental data, to find ��l

ea ,��l
o �and therefore ��, � and ��.

When we have determined these parameters we can consider
a general electric field waveform using Eq. �3� to determine
the parallel polarization and P�=���0E� to determine the
perpendicular polarization.

When calculating the dielectrically induced polarizations
in a nonuniform sample care must be taken to ensure Max-
well’s equations are also satisfied. In the present situation the
displacement field is D=�0E+P� +P� �for simplicity we
have neglected flexoelectric polarization contributions�. In
the example we consider below we assume that the director
lies in the xz plane so that we define the tilt angle � such that
n= �cos � ,0 , sin ��. The displacement field in the z direction
is then Dz=�0Ez+ P� sin �+ P� cos �, where P� = �P��, P�

= �P�� and Ez is the component of the electric field in the z
direction. In a system where variables only vary along one
direction �which will be the z direction, perpendicular to the
cell substrates in the example we consider below� we use the
standard manipulation of the displacement field �see, for ex-
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ample, Ref. �20,21��, together with Maxwell’s equations
� ·D=0 and �	E=0 to give the electric field in the z di-
rection

Ez =
V

d
−

1

�0
�P� sin � + P� cos ��

+
1

�0d
�

0

d

�P� sin � + P� cos ��dz , �9�

where V=V�0�−V�d� is the potential difference applied be-
tween the two electrodes which are a distance d apart. The
electric field components in the x and y directions may also
be found and are equal to zero. The electrostatic free energy
can then be written as

−� DdE = − �1

2
�0E2 + P� · E + P� · E	

= − Ez�1

2
�0Ez + P� sin � + P� cos �	 , �10�

where P� = P�
e+ P�

o and P�= P�
e + P�

o and Ez is given by Eq.
�9�.

To model the director dynamics in response to the applied
electric field we will assume that fluid flow effects are not
important and only consider director rotation. This assump-
tion is certainly not always the case and flow effects have
been shown to be important in both experimental �10� and
theoretical �22� investigations. However, for simplicity and
to demonstrate the use of such a model we will neglect flow.
Since electrostatic terms do not enter the governing equa-
tions for flow, the extension of the present model to incorpo-
rate flow is standard and can be found in �22� or derived
fully in �21�. The governing equations for the director angle
�, the electric field in the z direction Ez, the electronic polar-
izations P�

e , P�
e , and orientational polarizations P�

o , P�
o are

therefore

�1
��

�t
= �K1 cos2 � + K3 sin2 ��

�2�

�z2

+
1

2
�K3 − K1�sin � cos �� ��

�z
	2

+ ��P�
e + P�

o�cos � − �P�
e + P�

o �sin ��Ez, �11�

Ez =
V

d
−

1

�0
��P�

e + P�
o�sin � + �P�

e + P�
o �cos ��

+
1

�0d
�

0

d

�P�
e + P�

o�sin � + �P�
e + P�

o �cos �dz , �12�

P�
e = ��l

e �0Ez sin � , �13�

�
dP�

o

dt
= �0��l

oEz sin � − P�
o, �14�

P�
e = ��l

e �0Ez cos � , �15�

P�
o = ��l

o �0Ez cos � , �16�

where �1 is the rotational viscosity and K1 and K3 are the
splay and bend elastic constants of the liquid crystalline ma-
terial, respectively.

Equations �11�–�16� will be solved numerically using a
simple Euler method to step forward in time. Spatial gradi-
ents are discretized using central differences. At each
timestep the electric field is first calculated using Eq. �12�
with variables taken from the previous timestep. The director
equation �11� and polarization equations �13�–�16� are then
solved explicitly using the updated electric field and other
variables from the previous timestep. This simple numerical
method is certainly not the most efficient or stable but, as
long as care is taken in setting the length of time between
timesteps, it is quick to implement, easy to ensure stability
and gives sufficiently accurate results.

III. EXPERIMENTAL RESULTS

The susceptibilities �� and �� were measured for the
highly dispersive material MLC2048 �Merck� at 25 °C. The
material was confined in a test cell of thickness 22 
m that
consisted of a continuous electrode on one confining plate
opposite to a circular electrode with an earthed guard ring on
the opposite plate. For �� the cell surfaces were coated with
a thin layer of a polymer that was rubbed parallel on both
plates to give low pretilt planar alignment. For �� the sur-
faces were coated with a thin layer of a polymer that gave
homeotropic alignment. The complex susceptibilities were
measured over a frequency range from 1000 Hz to 500 kHz
using an Agilent 4284A LCR meter with an excitation volt-
age of 0.1 V r.m.s. The resulting susceptibility values are
shown in Fig. 1. By fitting to the real part of the Debye
equation �7�, and the frequency independent Eq. �8�, the par-
allel susceptibility characteristics and perpendicular suscep-
tibility were found to be �=20.05	10−6 s, ��l

e =2.77, ��l
o

=6.36, and ��=6.17, see Fig. 1. The corresponding critical
frequency, at which the parallel and perpendicular suscepti-
bilities are equal, is fc=18.53 kHz.

Fredericksz transition measurements were carried out at
the same temperature using the sample test cells and equip-
ment described above. In Fig. 2 the experimental results for
the planar and homeotropic alignment geometries are shown
by the filled circles. The x axis shows the rms value of the ac
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FIG. 1. Experimentally obtained susceptibility data �circles� and
theoretical fit �solid lines� for �� to the Debye equation �7� and the
constant perpendicular susceptibility �� equation �8�.
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excitation voltage. The measurements in the planar geometry
were performed with an excitation voltage of frequency
1000 Hz and a sharp Fredericksz threshold is observed at
2.5 V. Since the electric field is applied perpendicular to the
cell substrates, the perpendicular component of the electric
susceptibility ��=6.17 is measured below this threshold. At
1000 Hz the electric susceptibility anisotropy is positive and
so at high fields the susceptibility asymptotes towards the
value ��l

e +��l
o as the director rotates in the bulk of the cell

from planar alignment towards the homeotropic orientation.
The measurements in the homeotropic geometry were per-

formed with an excitation voltage of frequency 500 kHz and
a sharp Fredericksz threshold is observed at 2.7 V. Below
this threshold the high frequency parallel component of the
electric susceptibility, ��l

e =2.77, is measured. At 500 kHz the
electric susceptibility anisotropy is now negative so at high
fields the susceptibility asymptotes towards the value ��

=6.17 as the director rotates in the bulk of the cell from
homeotropic alignment towards planar orientation.

From the value of the ac voltage at which the Fredericksz
threshold occurred for each cell the elastic constants were
found to be K1=15.8	10−12 N and K3=21.8	10−12 N. In
addition to the measurements of the elastic constant values
from the threshold it is also possible to fit the shape of the
complete curve using nematic continuum theory. This gives
the values K3 /K1=1.34 and K1 /K3=0.69 from the planar and
homeotropic measurements, respectively. There is agreement
to within 5% of the values for K1 and K3 derived from fitting
the complete curve and the values derived from the Freder-
icksz thresholds. For the remainder of this paper the average
of both results, K1=15.4	10−12 N and K3=21.5	10−12 N,
have been used.

We do not have any data concerning the viscosity of this
material so we have used �1=0.05 Pa s, a typical value for
nematic liquid crystal materials �23�, for the simulations re-
ported in this paper. We further consider a cell of thickness
d=5	10−6 m.

IV. THEORETICAL RESULTS

Using the above model and experimental parameters, we
will now consider pulsed addressing of a simple model ze-
nithally bistable nematic device, in which one surface allows
two possible stable director positions, filled with a dual fre-
quency material. This model cell, previously developed by
Davidson and Mottram �24� as a model of a zenithally
bistable nematic device such as the ZBD �25� or PABN �26�
devices, considers a one-dimensional in-plane director con-
figuration n�z�= �cos ��z� ,0 , sin ��z��, where z is the coordi-
nate perpendicular to the substrates and varies from 0 to d
across the cell. To model the complicated two- or three- di-
mensional surface morphology of the ZBD or PABN devices
a simple bistable surface anchoring energy is used to mimic
the behavior of the substrate. We will use a simple surface
energy which allows two possible surface alignments �=�1
and �=�2, see Fig. 3. Using this surface energy �W /2���
−�1�2��−�2�2, the calculus of variations leads to a balance of
torques at the substrate. More details of this type of weak
anchoring constraint are given in Ref. �21�. The second sub-
strate is taken to exhibit infinitely strong homeotropic an-
choring. The boundary conditions used to model these an-
choring constraints are therefore

d�

dz
=

W�� − �1��� − �2��2� − �1 − �2�
�K1sin2� + K3cos2��

at z = 0, �17�

� = �/2 at z = d , �18�

where the bistable anchoring coefficient is taken to be W
=3	10−5 N m−1 and the two director angles at which the
bistable surface energy attains its minimum are �1=4� /9
radians and �2=� /18 radians. There are therefore two pos-
sible stable director configurations, a state in which the di-
rector is largely in the z direction throughout the cell �called
the vertical state here� and a state in which the director angle
varies from homeotropic at the upper surface to close to the
�2 value at the lower surface �called the hybrid aligned nem-
atic �HAN� state here�, see Fig. 3. Switching between the
two states has been shown to be possible using flexoelectric
effects �24� but we will show that this is also possible with-
out the use of flexoelectric coupling but with a dual
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FIG. 2. Experimental measurements of the Fredericksz transi-
tion in the planar and homeotropic geometries. The filled circles
show the experimental data and the continuous lines show the the-
oretical fit to the data using nematic continuum theory.
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FIG. 3. Simple model of a zenithally bistable nematic cell. Due
to bistable surface anchoring at the lower substrate, two states are
possible, �a� the vertical and �b� the hybrid aligned nematic �HAN�
states.
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frequency material. Such switching is easy to envisage if a
sinusoidal voltage waveform is employed. For applied volt-
ages of low frequencies the material behaves as a positive
dielectric material and molecules will tend to align in the
field direction causing the vertical state to be attained. For a
high frequency voltage waveform �f � fc� the material will
behave as a negative dielectric material, the director will tend
to lie parallel to the substrates, except close to the strongly
anchored upper surface, and the HAN state will be attained.
However, since the use of sinusoidal voltage waveforms is
not practical in display devices, we aim to show that pulsed
rather than sinusoidal voltages can achieve the same effect.

Figures 4 and 5 show the simulated director orientation at
the center of the cell, �m �at z=d /2�, when different voltage
pulses are applied to the cell. For Fig. 4 the system was
started in the HAN state and a voltage pulse of height 100 V
was applied for 0.2 ms �after an initial period of 0.5 ms dur-
ing which the system equilibriates�. For Fig. 5 the system
was started in the vertical state and a voltage pulse of height
125 V was applied for 0.025 ms. We see that using the long
pulse �Fig. 4� it is possible to switch from a HAN state to a
vertical state and using a shorter pulse, of a higher voltage, it
is possible to switch from a vertical state to a HAN state. In

Figs. 4 and 5 we have also plotted the calculated polariza-
tions parallel and perpendicular to the nematic director P�

and P�, respectively. In Fig. 4 we see that the parallel polar-
ization is slow to react to the applied voltage so that the
perpendicular polarization becomes larger in magnitude than
the parallel polarization for a short time after the voltage is
applied. This will cause an effective negative dielectric an-
isotropy and the director will tend to align perpendicular to
the electric field, consequently �m reduces. However, even-
tually, while the voltage remains on, the parallel polarization
becomes larger than the perpendicular polarization causing
an effective positive dielectric anisotropy and inducing an
increase of the director angle so that the cell is switched into
the vertical state. In Fig. 5 we see that when the voltage is
removed before the magnitude of the parallel polarization
has time to increase above the perpendicular polarizing the
director remains perpendicular to the field and the cell can be
switched into the HAN state.

We can now study the switching characteristics for a
range of voltage pulse heights and lengths in the following
way: The theoretical system was initially set in one of the
equilibrium states �vertical or HAN� and the voltage pulse
was applied. A sufficient length of time was allowed after the
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pulse to ensure the director configuration had then reached
equilibrium. The pulse lengths and pulse voltages which in-
duced switching were then recorded. Using voltage wave-
forms between 0 and 150 V and of pulse lengths between 0
and 0.8 ms the voltage waveforms which induced switching
were recorded and are presented in Fig. 6�a�. We see that
short pulses, of high enough voltage, cause the system to
switch to the HAN state. As explained above, in this case the
high frequency components of the leading edge of the volt-
age pulse excites the perpendicular polarization and forces
the director to lie parallel to the cell substrates. For longer
pulses, switching to the vertical state is possible since the
constant dc component of the voltage pulse excites the par-
allel polarization causing the director to lie perpendicular to
the substrates.

For these parameter values, we have found that switching
to the HAN state only occurs at relatively high voltages �cer-
tainly compared to those required for standard liquid crystal
devices�; we have also, however, modeled two alternative
�hypothetical� liquid crystal materials, one in which the ro-
tational viscosity has been reduced, to �1=0.01 Pa s, and one
in which the high frequency dielectric anisotropy is larger,
��l

e =5, ��l
o =15, and ��=15 to enable a greater response to the

electric field from the perpendicular polarization. The results
for these two materials are shown in Figs. 6�b� and 6�c�. In
both cases the vertical to HAN state switching region has
extended to lower voltages and larger pulse durations.

V. CONCLUSIONS

We have presented a theoretical model of dielectric relax-
ation in order to model the response of dual frequency ma-
terials to arbitrary waveforms. The equations governing the
director angle, electric field, and induced polarizations are
then solved numerically to investigate voltage pulse address-
ing of a model zenithally bistable liquid crystal device. We
find that, by suitably tailoring the voltage pulse, it is possible
to switch between both bistable states. For short pulses the
high frequency components of the leading edge of the volt-
age pulse excite the perpendicular polarization and force the
director to lie parallel to the substrates, enabling switching to
the HAN state. For long voltage pulses the constant dc com-
ponent of the voltage pulse will excite the parallel polariza-
tion and cause the director to lie perpendicular to the sub-
strates, enabling switching to the vertical state. We have also
shown that reducing rotational viscosity and increasing the
achievable dielectric anisotropies �particularly the high fre-
quency value� can significantly reduce the operating voltages
of such a device. It is hoped that an experimental investiga-
tion on a ZBD or PABN cell filled with a dual frequency
material will be able to verify these predictions.
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