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We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at
microscopic length scales and in the terahertz frequency region based on the mode-coupling theory for ideal
liquid-glass transition. We focus on recently investigated issues from inelastic-x-ray-scattering and computer-
simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous
dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson
peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system.
Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems—ranging
from high temperature liquid down to deep inside the glass state—in terms of the contributions from the
structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A
possibility of observing negative dispersion—the decrease of the sound velocity upon increase of the wave
number—is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational
dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal
and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a conse-
quence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound
velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the

Lennard-Jones system.
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I. INTRODUCTION

The study of high-frequency collective dynamics in lig-
uids and glasses at microscopic length scales and in the tera-
hertz frequency region has been a subject of intense investi-
gations over the past decade. In particular, recent
development of the inelastic x-ray scattering (IXS) technique
has renewed the interest in a long-standing issue of sound
propagation [1-3]. It is now generally accepted that a well-
defined soundlike oscillatory mode—called the high fre-
quency or fast sound—is supported in liquids outside the
strict hydrodynamic region, down to wavelengths of a few
interparticle distances, but with a sound velocity larger than
the hydrodynamic value. Traditionally, such increase of the
sound velocity upon increase of the wave number—called
the anomalous or positive dispersion—has been interpreted
within the so-called viscoelastic model [4,5]. In this model,
relevant memory kernel in the Zwanzig-Mori or memory-
function equation for the dynamics structure factor S (w) is
modeled by an exponential function with a single time con-
stant 7 reflecting structural relaxation in liquids. An increase
of the sound velocity is predicted at the wave number g
where the condition w;™*7=1 is fulfilled with the resonance
frequency w,™* of the dynamic structure factor. This condi-
tion marks the transition from the low-frequency viscous be-
havior to the high-frequency elastic behavior of the liquid,
and thus, the positive dispersion effect is ascribed to the
transition between a liquidlike to a solidlike response of the
system.

According to the viscoelastic model, the absence of the
positive dispersion is naturally expected in glasses where the
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structural relaxation is basically frozen. However, molecular
dynamics (MD) simulations have demonstrated the presence
of the positive dispersion in model glasses [6-10]. A first
experimental confirmation has been reported recently from
an IXS study on vitreous silica [11]. The observed anoma-
lous dispersion implies the presence of some additional “re-
laxation” process which is active even in glasses, and stimu-
lates an extension of the viscoelastic model to fully account
for the anomalies present both in liquids and glasses.

Such extension was also motivated by recent IXS studies
on simple liquid metals near the melting temperature
[12-16]. From a detailed line-shape analysis of S (w), the
viscoelastic model was found to be unable to account for
inelastic peaks in these systems. It was found, instead, that a
two-time-scale model for the memory kernel successfully de-
scribes the observed spectral shapes. Thus, a convincing ex-
perimental demonstration is provided for the simultaneous
presence two relaxation processes with slow and fast charac-
teristic time scales, termed structural (labeled «) and micro-
scopic (labeled w) processes. Furthermore, it was pointed out
that the faster u process is the major controller of the posi-
tive dispersion observed in these systems since it was always
found that w;"axra>1 for the slower time scale 7,, whereas
w, "7, becomes close to unity at some wave number for the
faster time scale 7,,. According to this experimental observa-
tion, the positive dispersion cannot fully be ascribed to the
structural relaxation.

The nature of these two processes have been studied in
more detail in Ref. [9] based on the MD simulation for a
model of lithium. From the analysis of the simulated S (w)
with the two-time-scale model, a strong temperature depen-
dence was observed for the time scale 7, corroborating that
the slower process is associated with the structural relax-
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ation. On the other hand, the faster u process was found to
persist both in liquid and glass phases with almost no tem-
perature dependence of its relaxation time 7,. The persis-
tence of the u relaxation accounts for the presence of the
positive dispersion in glasses. Of course, a natural question
would be what is relaxing at that low 7, i.e., what is the
microscopic nature of the u dynamics. This was studied in
Ref. [7] based on the computer simulation for a harmonic
glass. There, it was suggested that the origin of this process
can be ascribed to the topological disorder, i.e., the decay of
the memory kernel is due to the dephasing of different oscil-
latory components in the force fluctuations.

In addition to the peak associated with the high-frequency
sound, the MD [8,10] and IXS [11,17] works showed the
presence of additional low-frequency excitation in the dy-
namic structure factors Sq(w) or in the related longitudinal
current spectra OszSq(w). This second low-frequency
excitation—also called the boson peak—exhibits some gen-
eral characteristics: it appears in the spectra at ¢ values larger
than some fraction of the structure-factor-peak position, and
its resonance position is weakly ¢ dependent. It was conjec-
tured that the low-frequency excitation reflects the transver-
sal dynamics, and the appearance of the transversal mode in
the longitudinal current spectra was interpreted as being due
to “mixing” phenomena caused by microscopic disorder
[18]. The main evidence supporting this conjecture lies in the
simulation results that the low-frequency excitation appears
at the same resonance frequency in both of the transversal
and longitudinal current spectra, but its intensity is more en-
hanced in the former. Another support was inferred from
studies on the density dependence. The computational work
in Ref. [10] demonstrated that the resonance frequency of the
low-frequency excitation in the transversal current spectra
increases with increasing density. Experimentally, it is ob-
served that upon densification the boson-peak energy shifts
to higher energy and its intensity strongly decreases [19-22].
This parallel of the density dependence was claimed to also
suggest that the boson-peak-like low-frequency excitation
arises from the transversal dynamics.

In this paper, we present microscopic and unified expla-
nation of the mentioned features of the high-frequency dy-
namics in liquids and glasses—the anomalous dispersion of
the high-frequency sound velocity and the nature of the low-
frequency excitation—which have so far been investigated
somewhat independently. This will be done based on the
mode-coupling theory (MCT) for ideal liquid-glass transition
[23]. Originally, the MCT was developed to deal with
structural-relaxation processes which evolve as precursor of
the glass transition. On the other hand, the glass transition
also modifies the short-time or the high-frequency dynamics.
The study of these modifications was the main subject in
Ref. [24]. Tt was shown there that the strong interaction be-
tween density fluctuations at microscopic length scales and
the arrested glass structure causes an anomalous-oscillation
peak (AOP), which exhibits the properties of the boson peak.
As will be demonstrated in the present study, the AOP per-
sists in liquid states as well as in glass states. It will be
discussed how the sound mode interferes with other low-
lying modes present in the system. Thereby, we provide a
systematic explanation of the anomalous sound-velocity dis-
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persion in systems—ranging from high temperature liquid
down to deep inside the glass state—in terms of the contri-
butions from the structural-relaxation processes and from the
vibrational modes building the AOP. A possibility of observ-
ing negative dispersion—the decrease of the sound velocity
upon increase of the wave number—is argued when the
sound-velocity dispersion is dominated by the contribution
from the vibrational dynamics. We also show that the low-
frequency excitation, observable in both of the glass-state
longitudinal and transversal current spectra at the same reso-
nance frequency, is the manifestation of the AOP. This seems
to be an alternative interpretation to the mixing phenomena
mentioned above. As a natural consequence of the presence
of the AOP in the transversal current spectra, it is predicted
that the transversal sound velocity also exhibits the anoma-
lous dispersion.

The paper is organized as follows. In Sec. II, the basic
MCT equations of motion are formulated, and the model for
the demonstration of our theoretical results is specified. Sec-
tion III deals with the anomalous sound-velocity dispersion
of the high-frequency sound, while in Sec. IV we discuss
features of glass-state longitudinal and transversal current
spectra at low frequencies. Section V concludes the paper.

II. BASIC THEORY
A. MCT equations of motion

The basic quantity describing the equilibrium structure of
a simple system is the static structure factor S,=(|p; 2) de-
fined in terms of the density fluctuations for wave vector q,
p;=3Y exp(ig-7;)/\N. Here, N is the total number of par-
ticles in the system distributed with the average density p,
and 7; denotes the position of the ith particle. For homoge-
neous and isotropic system, which we assume throughout the
paper, the static structure factor depends only on the modulus
g=|g|. The most relevant variables characterizing the struc-
tural changes as a function of time ¢ are the density correla-
tors qﬁq(t):(p‘;(t)*pq(O))/ S, which are normalized to unity at
t=0. The short-time asymptote of these functions is given by
o, ()=1-(1/ 2)Q§t2+- -+, where Qé denotes the square of the
characteristic frequency Q§=q2v2/ S, [5]. Here v=\kgT/M
with Boltzmann’s constant kg denotes the thermal velocity of
particle of mass M at temperature 7. In the small wave-
vector limit, one obtains ﬁg_=v0q+0(q3) with the isothermal
sound velocity vy=v/ \J'quo. Within the Zwanzig-Mori for-
malism [5] one can derive the following exact equation of
motion:

T (1) + Qb (1) + ij dt'my(t—1")du,(t') =0,
0
(1a)

in which the relaxation kernel mq(t) is a correlation function
of fluctuating forces. Let us introduce Fourier-Laplace trans-
formations to map d)q, my, and similar functions from the
time domain onto the frequency domain according to the
convention by (w)=ifgdt explior) ¢, (1)= b, (0) +id)(w).
Equation (la) is equivalent to the representation
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d(w)=—1{w- Q;/[w + Qémq(w)]}. (1b)

Within the MCT, the kernel m,(t) is given by a mode-
coupling functional of density correlators describing the cage
effect of dense systems

my () =F LoD, FIf1= 2 Vyinfifps (2a)
k.p

where p=g—k and wave-vector integrals are approximated
by Riemann sums. The coupling coefficients V, ;, are deter-
mined by the equilibrium structure. Within the convolution
approximation for triple correlations, they are given by
V,ip=PSSiS,[q- (key+pc,) P/ (2¢*), where ¢, denotes the
direct correlation function related to S, via the Ornstein-
Zernike equation pc,=1-1/S, [4]. For details, the reader is
referred to Ref. [23]. The ¢— 0 limit of the functional reads

Folfl= > Vk]pk, (2b)
x

with V= (pSy/4m)k*Si ci+2(ke) e/ 3+ (ke))?/5].

Equations (1) and (2) are closed, provided equilibrium
static quantities are known as input. In the following, the
results will be demonstrated for the Lennard-Jones (LJ) sys-
tem: the interaction between two particles is given by the LJ
interaction V(r)=4¢€ {(oy;/r)'?=(0y,/r)%. The first MCT
work for the LJ system has been done in Refs. [25,26] with
the optimized random-phase approximation for S, [4]. In the
present study, S, is evaluated within the Percus-Yevick ap-
proximation [4]. Wave numbers will be considered up to a
cutoff value ¢“ =80/ 07, and they are discretized to 400 grid
points. From here on, all quantities are expressed in reduced
units with the unit of length oy, the unit of energy €5 (set-
ting kp=1), and the unit of time (M a7,/ € ;)">. The dynamics
by varying T shall be considered for a fixed density p
=1.093, except for Sec. IV B where the dynamics at a lower
density p=0.95 is discussed. (We notice that the triple point
of the LJ system is at p°~0.85 and T ~0.68 [27].)

B. Ideal glass states

The specified model exhibits a fold bifurcation [23]. For
small coupling constants V, ,, the correlators ¢,(z) and the
kernels m,() decay to zero for long times, ¢,(t—)=0 and
m,(t—0)=0. In this case, the spectra (b;'(a)) and mZ(w) are
continuous in w. In particular, there hold lim,_, w¢,(w)
=0 and lim,,_,, wm,(w)=0. Density fluctuations created at
time =0 disappear for long times and the same holds for the
force fluctuations as expected for an ergodic liquid. For large
coupling constants, on the other hand, there is arrest of den-
sity fluctuations for long times: ¢,(t—»)=f,, 0<f,<I.
Thus, nonergodic dynamics is obtained in which the per-
turbed system does not return to the equilibrium state. Simi-
larly, there is arrest of the force fluctuations, m,(t—»)=C,

>0. The nonergodicity parameters f, and C, are connected
via [28]
f,=CJ/(1+C,), C,=F][f] (3)

For this strong-coupling solution, the kernel exhibits a zero-
frequency pole, lim,,_o wm,(w)=~C,. The fluctuation spec-

PHYSICAL REVIEW E 74, 031205 (2006)

FIG. 1. (Color online) Debye-Waller factor f, and one-tenth of
the static structure factor S, at p=1.093 for 7=0.5 (solid lines), T
=0.8 (dashed lines), and T=T,.=~1.637 (dotted lines).

trum ¢ (w) xS, (w) exhibits a strictly elastic peak: ¢(w)
=7f,8(w)+ regular terms. This is the signature for a solid
with f, denoting its Debye-Waller factor. Hence, the strong
coupling solution deals with a disordered solid; it is a model
for an ideal glass state. If one increases the coupling con-
stants smoothly from small to large values, one finds a sin-
gular change of the solution from the ergodic liquid to the
nonergodic glass state, i.e., an idealized liquid-glass transi-
tion. For simple-liquid models, the transition occurs upon
cooling at some critical temperature 7, or upon compression
at some critical density p, [28]. For the LI model under study
where the temperature is considered as a control parameter,
one finds 7.~ 1.637 for p=1.093 within the Percus-Yevick
approximation for S,. If T decreases below T, f, increases
above its value at the critical point, called the critical noner-
godicity parameter or the plateau f°, as demonstrated in Fig.
1.

C. MCT liquid-glass-transition dynamics

As precursor of the ideal liquid-glass transition, MCT pre-
dicts the evolution of the glassy dynamics which are
stretched over many decades. Such MCT scenario has been
comprehensively discussed for the hard-sphere system in
Refs. [29,30]. This subsection compiles the MCT universal
predictions for the dynamics near the liquid-glass transition
to an extent which is necessary for understanding the present
article.

We start from introducing some concepts to describe the
MCT-liquid-glass-transition dynamics [23]. In the space of
control parameters, a smooth function o is defined near the
transition point, called the separation parameter. Glass states
are characterized by >0, liquid states by 0<<0, and =0
defines the transition point. When only the temperature 7 is
considered as a control parameter near the transition point,
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one can write for small distance parameters e=(7,—T)/T,:
o=Cyre, Cy>0. In addition, the transition point is character-
ized by a time scale f, and by a number A\, 0<A<<1. The
scale #, specifies properties of the short-time transient dy-
namics, and \ is called the exponent parameter. The latter
determines a certain number B>0, the critical exponent a,
0<a=1/2, and the von-Schweidler exponent b, 0 <b=<1.
For the specified LJ model at p=1.093, we have C;=0.226,
A=0.697, a=0.328, b=0.646, B=0.669, and #,=0.0125.

Let us consider the correlator ¢y(7)=(X(r)"X(0)) of some
variable X coupling to the density fluctuations. Its nonergod-
icity parameter fy=¢y(t— ) exhibits a square-root singu-
larity near the transition

fx=S%+hxVal/(1=N),

The critical nonergodicity parameter f% and the critical am-
plitude hy are equilibrium quantities to be calculated from
the relevant mode-coupling functionals at the critical point
T.. At the transition, the correlator exhibits a power-law de-
cay that is specified by the critical exponent a. In a leading-
order expansion in (1/7)%, one gets

dx(t) = fx + hx(to/1)",

For small values of €, there is a large time interval, where
(1) is close to its critical nonergodicity parameter f%. Solv-
ing the equations of motion asymptotically for this plateau
regime, one gets in leading order in the small quantities
dx(1)—fy the factorization theorem:

bx(1) = fx + hxG(0). (6)

The function G(z), called the B correlator, is the same for all
variables X, and describes the complete dependence on time
and control parameter via the first scaling law G(z)
=\|olg.(t/t,), 0=0. Here, t,=t,/|o|("29) is the first critical
time scale. The master functions g.(7) are determined by \
[31]. For <1, the master functions are the same on both
sides of the transition point, and one gets the power law
g.(f—0)=1/7" so that Eq. (5) is reproduced for fixed large ¢
and o tending to zero. For f>1, one gets for glasses g, (7
>1)=1/\1-\, so that Eq. (4) is reproduced. On the other
hand, for liquids, one finds for the large rescaled time f:
g_(t—°)==Bi’+0(1/#). Substituting this result into Egs.
(6), one obtains von Schweidler’s law for the decay of the
liquid correlator below the plateau f} for 7,<t and 0——0:
¢x(t)=f5—hx(t/t)?. The control-parameter dependence is
given via the second critical time scale ¢/ =t,B-""?/|o|” with
v=(1/2a)+(1/2b). The dynamical process described by the
cited results is called the B process. The B correlator G(z)
describes in leading order the decay of the correlator towards
the plateau f within the interval 7y<t<<t,. For r>1,, the
glass correlator arrests at fy, while the liquid correlator ex-
hibits von Schweidler’s law.

The decay of the liquid correlator below the plateau fY is
called the a process. For this process, there holds in leading
order for 0——0 the second scaling law ¢y(t)=y(?) with
t=t/t], which is also referred to as the superposition prin-
ciple. The control-parameter-independent shape function

>0, o—0. (4)

o=0, (ilty) — o°. (5)
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&x(D) is to be evaluated from the mode-coupling functionals
at the critical point. For short rescaled times 7, one gets
Dx(D=f—hx®+O0(#"), so that von Schweidler’s law is re-
produced. The ranges of applicability of the first and the
second scaling laws overlap; both scaling laws yield von
Schweidler’s law for 7, <t<<t,.

D. Description of the glass-state dynamics

For later convenience, we introduce a reformulation of the
MCT equations of motion which is more appropriate in han-
dling the dynamics in glass states [23]. We map the density

correlators ¢, to new ones &1 by

¢q(t) :fq+ (1 _fq)ésq(t)' (7&)
This amounts to dealing only with the decay relative to the
frozen amorphous structure described by f,. Introducing new
characteristic frequencies Qq by

0 =0Y(1-f,). (7b)

one obtains for short times <§Sq(t)= 1-(1/ 2)ﬁzt2+- -+ in anal-
ogy to the one for ¢,(¢). In the small wave-vector limit, there
holds Q,=6og+0(¢%) with dy=v,/\1~f,. The modification
of the sound velocity reflects the reduced compressibility in
nonergodic glass states. Substitution of these results into Eq.
(1a) reproduces the MCT equations of motion with by Qs
and m, replaced by éﬁq, Qq, and 1, respectively. Here, the
new relaxation kernel is related to the original one by

my(1) = C,+ (1+ C i, (1). (7¢)

The new correlator has a vanishing long-time limit,
lim,_,.. g?)q(t):O, and correspondingly the Fourier-Laplace
transform exhibits a regular zero-frequency behavior
lim,_ w$q(w)=0. Combining Egs. (3) and (7c), one also
concludes that lim, ., 771,(¢)=0 and lim,, ¢ wri,(w)=0.

The reformulated equation of motion for <3>q(t) can be
closed by finding an expression for the new kernel rz,(t) as a

new mode-coupling functional .f:q. One finds combining Egs.

(7a) and (7c¢) with Eq. (2a) that .7A-"q is given by a sum of
linear and quadratic terms

1ig(1) = FL(0]= FULy0)] + FPLd(1)], (8)

where ]A:fil)[f]:Ek\A/q’kfk and ]’:'fiz)[f]:Ek’pf/q,kj,fp with renor-
malized coefficients V,  =2(1-f)2,V, ., (1-f)f, and V,,
=(1=f )V xp(1=f1)(1=f,). Correspondingly, one finds from
Eq. (2b) for the zero wave-number limit of the kernel m(z)
:mq=0(t)

m(t) =mV@) + @), (9a)

in which linear and quadratic terms are given by
i) =2 Ve, 0 =2 VP, (9b)
k k

with new coefficients
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V=201 = f Vi1 = £, (9¢)
V& = (1= f)Vi(1 = f). (9d)

As a result, equations of motion are produced, which are of
the same form as the original MCT equations (1) and (2). But
in addition to the quadratic mode-coupling term, there ap-
pears a linear term, and the original mode-coupling coeffi-
cients are renormalized to hatted ones. The linear term de-
scribes interactions of density fluctuations with the arrested
amorphous structure, while the quadratic one deals with two-
mode decay processes.

E. Longitudinal and transversal current correlators

Current correlators are also relevant variables describing
the dynamics of dense systems, in particular, when one is
interested in vibrational properties. These are defined in
terms of the current fluctuations jfi“:E?ilvf‘ exp(ig-r;)/ N,
where a (=x, y, or z) refers to the spatial component and v*
denotes the velocity of the ith particle. Since (v;v})
=5,;0,p0°, one gets thé static.correlation {]3* jg): 8,pv”. The
current correlators for isotropic system can be represented by
two independent functions which depend only on the modu-
lus g:

G020 = §°9P (1) + [8ap— §°G°13(1). (10)

Here §* denotes the & component of the unit vector along g.
The functions qbg(t) and qbg(t) are called the longitudinal and
transversal current correlators, respectively, and they are nor-
malized to unity at r=0.

1. Longitudinal current correlator

The density fluctuations and the longitudinal current fluc-

tuations are related via the continuity equation &,pq:icf ]}
and there holds &tquq(t):—ﬂsqﬁs(t). Their Fourier-Laplace
transforms therefore satisfy w[1+w¢>q(a))]=ﬂs¢2(a)), and
one obtains from Eq. (1b) for the longitudinal current spec-

trum ¢§"(w)

20321
a)quq(w)

" [0 - Q2A (@) + [0 ()]

A (11)

with Aq(w)=1—wm"1(w).
The continuity equation holds also in glass states,

8f$q(t)=—ﬁl2l¢j(t) in terms hatted variables defined in Egs.
(7a) and (7b), and their spectra are related via

W $(w) = 02 (). (12)

We therefore have the same expression for ¢§”(w) for glass
states as in Eq. (11) but with all quantities in the right-hand
side replaced by hatted ones:
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Ay
wZqu;(w)

[? = QA ()P + [Q0i] ()]

AOE (13)

with Aq= 1- wr?z(’l(w). Thus, the same relaxation kernel m, or
1, as the one for the density correlator describes the dynam-
ics of the longitudinal current.

2. Transversal current correlator

The MCT equations of motion for the transversal current
correlator ¢;(t) have been derived in Ref. [23]. The
Zwanzig-Mori equation is given by

t
() + (1) J d'ml(t-1)$l()=0,  (14a)
0
and its Fourier-Laplace transform reads
T 1
¢, (w) =~ (14b)

o+ (Q;)zqu(w) ’

with (Q§)2=q202. The relaxation kernel mZ(t) is a correlation
function of transversal fluctuating forces. Within the MCT,
the transversal fluctuating forces are approximated by their
projection onto the subspace spanned by the density prod-
ucts, and with the factorization approximation the kernel is
given by a mode-coupling functional ]—'g of the density cor-
relators

mi()=Filp0)). Ffl=2 Vi fifpe  (152)
k.p
Here Vikp=pSkSp[ET(Igck+ﬁcp)]2/(Zqz) with ¢’ denoting a

unit vector orthogonal to ¢g. The ¢ — 0 limit of the functional
is given by

Folfl= 2 Vifi. (15b)
k

with V{=(p/60m)k*[c;S;]>. These MCT equations of mo-

tion for qﬁg(t) can be solved with the knowledge of the static

quantities and of the density correlators.

In glass states, mg(w) acquires a zero-frequency pole
since the transversal force fluctuations do not decay to zero
for long times, qu(t—>00)=C§> 0. We therefore write in
analogy to Eq. (7c)

my(1)=C,+ Chig (1),  Cl=F[f]. (16)

and introduce nﬁg(t) for the description of the glass-state
transversal current dynamics. The new kernel satisfies
lim,_.. i, (1)=0 and lim,, o @it (w)=0. Substituting the
Fourier-Laplace transform of Eq. (16) into Eq. (14b) yields
for the transversal current spectrum

. Q)] (o)
¢ (@)= 2 _(ATV2AT( \T2 ATV ~T" 12 (17)
[w™ = ()" A ()] + [w(Q) i1, ()]

where Qg:ﬂgy"cg and Ag: 1 —wnﬁg (w).
The reformulated equation of motion for the glass-state
transversal current dynamics can be closed by finding an
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expression for r?zT(t) as a new mode-coupling functional j—"T
One finds from Egs. (7a), (15a), and (16) that .7-"T .7-"T(1

+.7-"q( in analogy to Eq. (8). Correspondmgly, there holds
my(t)= l)(z‘)+m 2)(z‘) for m(t)=m _0(t). Explicit expres-
sions for the new mode-coupling functronals shall be omitted
here for brevity: they take the same form as in Egs. (8) and
(9), but with coupling coefficients replaced by the ones for
the transversal current correlators.

The mathematical form of Eq. (17) for glass states is iden-
tical to that for the longitudinal current given in Eq. (13). In

particular, d)?l(w) for glass states vanishes proportional to w’
for small frequencies in contrast to the one in liquid states.
Thus, the transversal current correlators exhibit a drastic dif-
ference between liquid and glass states [23]: the long wave
length correlators in liquids describe diffusive processes,
while the ones in the glass states describe the propagation of
transversal sound waves as expected for an isotropic elastic
continuum.

3. Velocity correlator

Finally, we briefly summarize here for later discussion the
MCT equations of motion for the normalized velocity cor-
relator W(1)=(0,(1)-0,(0))/(3v?) defined with the velocity v,
of a tagged particle (labeled s). An exact equation for this
quantity is given by

t

W (t) + vzf dt'm(t -

0

)P(t') =0, (18)

and the MCT expression for the kernel m(r) reads
my(1) = 2 Vidi() (). (19)
k

with V°‘—(p/6772)k4 iSk [23,32]. Here ¢ (0)=(p(1)"p3(0))
with p» exp(ig-r;) denotes tagged-particle density cor-
relator. The Zwanzig-Mori equatlon for ¢, () has the same
form as Eq (1a) with ¢,, m,, and Q replaced by ¢, m, and
(9 )2=q*v?, respectively, and the MCT kernel is grven by
the functlonal mq(t)—Ek,p q,kp¢k(t)¢p(t) with V,,, deter-
mined by S, [28,30]. For glass states, the MCT equations for
W(r) can be reformulated in terms of the hatted kernel 71,(z)
defined in analogy to Eq. (16) via

my() = Co+ Cainy(1),  C,=1lim my(r). (20)

—©

III. ANOMALOUS DISPERSION OF SOUND
VELOCITY

A. Dispersion relation

Circles in Fig. 2 show the dispersion relation—the peak

positions wL M of the longitudinal current spectra d)é (w) as

a function of wave number g—for three representative tem-
peratures referring to liquid states. (We notice that, in experi-
mental and computer-simulation studies for the dispersion
relation cited in Sec. I, it is the peak positions of the longi-
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FIG. 2. (Color online) Peak positions w; M (circles) of the
longitudinal current spectra ¢§"(w) as a function of ¢ at p=1.093
for temperatures indicated in each panel referring to liquid states.
Dashed lines denote the hydrodynamic dispersion law gv, with the
isothermal sound velocity v,. Dash-dotted lines show the linear
dispersion law gu., with the infinite-frequency sound velocity v..
The insets exhibit apparent sound velocities quwg‘ M/ g (circles)
as a function of ¢ along with horizontal lines denoting v, (dashed
lines) and v,, (dash-dotted lines). Dotted lines in (c) refer to the
linear dispersion law gvg and the velocity vg discussed in the text
(see Sec. III D). Long-dashed lines through circles in (c) are from
the solution to Eq. (22), while solid lines are based on Egs. (23).

tudinal current spectra that are usually reported. The peak
positions of the dynamic structure factors OCQS”(w) and of the

longitudinal current spectra qb (w) nearly coincide as can be
inferred, e.g., from Fig. 12. In the present article, we are
primarily interested in the wave-number regime g <4, where
wé M increases with ¢. In this pseudo-first-Brillouin zone,
the peaks w" ™ are associated with the collective mode.)
The dashed line in each panel denotes the hydrodynamic
dispersion law qu, with the isothermal sound velocity v,
[33], whereas the dash-dotted line exhibits the linear disper-
sion law quv.. defined in terms of the infinite-frequency sound
velocity v, (see below). The inset in each panel shows an
apparent sound velocity vq=ws "%/ q (circles) as a function

of g, along with horizontal lines denoting v, (dashed line)
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FIG. 3. (Color online) The same as in Fig. 2, but here tempera-
tures refer to glass states, and the hydrodynamic dispersion law ¢o
is determined by 0 defined in the text. Long-dashed lines through
circles in (a) are from the solution to Eq. (22), while solid lines are
based on Egs. (23).

and v., (dash-dotted line). The increase of the sound velocity
v, from v, towards v., upon increase of the wave number g,
which is observable for ¢=2 in all the insets of Fig. 2, is
called the anomalous or positive dispersion.

There are subtle variations in the anomalies depending on
the temperature. At high temperature 7=10, the whole in-
crease of the sound velocity is observable in Fig. 2(a) start-
ing from v, at small g up to close to v.. at g=2. This feature
is altered if the temperature is decreased. For T=4.0 [Fig.
2(b)], the sound velocity v, for small wave numbers is still
located above the hydrodynamic value v,. For T=1.8 [Fig.
2(c)], this “gap” becomes larger, and the sound velocity v, in
the small-g limit seems to approach another limit denoted by
the dotted line which will be defined below.

Corresponding results for representative glass states are
shown in Fig. 3. But here, the hydrodynamic dispersion law
qU, is determined by 0 introduced in connection with Eq.
(7b) (see also below). It is clear from Fig. 3 that the anoma-
lous sound-velocity dispersion is present also in glass states.
Again, there are subtle variations in the appearance of the
anomalies. For 7=1.47 [Fig. 3(b)], the sound velocity v,
approaches the hydrodynamic value 9, rather rapidly for ¢
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—0. On the other hand, for T=T, [Fig. 3(a)], the approach
towards 0 is retarded. For the deep-in-glass state 7=0.5
[Fig. 3(c)], a new feature shows up, and “negative” disper-
sion is observable for ¢ <1, where the sound velocity v, is
smaller than the hydrodynamic value 0.

The results shown in Figs. 2(b), 2(c), and 3(a) indicate
that the increase of the sound velocity from the hydrody-
namic value has already started at smaller wave-number re-
gime which cannot be adequately resolved with the linear g
axis. In addition, the presence of the negative dispersion
shown in Fig. 3(c) implies that the anomalous sound-velocity
dispersion cannot be accounted for solely in terms of relax-
ation processes since those processes would lead only to the
positive dispersion as known, e.g., from the viscoelastic
model.

In the following, a microscopic and unified understanding
of the mentioned anomalies shall be attempted. This will be
done based on the generalized hydrodynamic description
[24]. In this description, the memory kernel m,(w) is ap-
proximated by its ¢ — 0 limit, while the full @ dependence of
m(w)=m,_o(w) is retained. In this manner, one gets from Eq.

(11) [34]
wzﬂzm"(w)

[w®— QiA(w)]z + [chim”(w)]2 ’

P (w) = (1)

with A(w)=1-wm’'(w). In lowest order, the resonance fre-

quency ws % can be obtained as a solution to
JE—
ws =0 VA(w= wlq‘ maxy, (22)

The long-dashed lines through circles in Figs. 2(c) and 3(a)
show the dispersion law and the sound velocity based on the
solution to this equation. One understands that the lowest-
order solution describes the results from the full MCT solu-
tions (circles) fairly well for the whole g range shown in the
figure. Since we are interested in the small wave-number
region g <2 where the anomalous sound-velocity dispersion
is present, a further simplification is possible: one can re-
place (), by its leading-order contribution {},~quv,. This
yields

max max
L Alw= ws ), (23a)

(,Uq =qUgp\

which can be rewritten for the the sound velocity v, as

v,=vo\VA(w=qv,). (23b)

The solid lines in Figs. 2(c) and 3(a) exhibit the dispersion
law and the sound velocity based on the solutions to these
equations. One understands that no serious error is intro-
duced with the use of Eqs. (23) as far as the regime g <2 of
interest is concerned.

Before proceeding, let us show that Egs. (23) reproduce
known results [4,5] in the limit of small and large resonance
frequencies. The hydrodynamic sound is obtained by taking
the w— 0 limit of A(w) in Egs. (23). One obtains the disper-
sion law ws "= gug\1+m(t—) since lim,_ o wm’'(w)
=-lim,_,., m(z). For liquids where the memory kernel relaxes
to zero for long times, m(z— ©)=0, the dispersion law

/. max

w, " =qug is obtained with the isothermal sound velocity
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vo [33]. For glasses, on the other hand, the kernel does not
decay to zero for long times, m(t—)=C, leading to the
dispersion law w! ™*=g0, with d,=v,V1+C. [This agrees
with §y=vo/\1—f, given below Eq. (7b) because of Eq. (3).]
These results have been included with dashed lines in Figs.
2 and 3. In the high-frequency limit, one obtains, using
lim,_., A(w)=1+lim,_,m(z), the dispersion law ws max
=qu., _with the infinite-frequency sound velocity v
=voy 1+m(z=0). This holds for both liquid and glass states,
and has been included with dash-dotted lines in Figs. 2 and
3.

Thus, on the basis of Eq. (23b), it is clear that the anoma-
lous sound-velocity dispersion from the low-frequency hy-
drodynamic value (v, for liquids and 9, for glasses) towards
the infinite-frequency one v, upon increase of the wave
number ¢ is controlled by the detailed frequency dependence
of A(w). This in turn is determined by the relaxation of the
memory kernel m(f). Within the MCT, m(¢) is given in terms
of the mode-coupling functional as m(r)=F,[ H(z)] [cf. Eq.
(2b)]. In the following two subsections, the details of the
relaxation of m(z) and of the frequency dependence of A(w)
will be investigated. These results will be employed in Sec.
I D for a systematic study of the anomalies.

B. Structural-relaxation processes

Figure 4 exhibits the evolution of the dynamics of m(r)
upon decrease of the temperature 7. The curve for T=10,
which is quite higher than 7.~ 1.637, decays rapidly and
nearly exponentially to zero. By lowering the temperature,
the dynamics becomes slower and stretched due to the de-
velopment of the cage effect. For temperatures close to but
above T,, the kernel m(r) exhibits a two-step relaxation: the
dynamics towards the plateau C¢, followed by the final re-
laxation from the plateau to zero. The dynamics that occurs
near the plateau is referred to as the 8 process, whereas the
final relaxation is called the « process (see Sec. Il C). The B8
process for small |[T—T,| can be well described by the MCT
asymptotic formula (6) specialized to m(r)

m(t) = C°+ DG(1), (24)

as exemplified with the dashed lines in Fig. 4. (C°=0.982
and D=1.925 for the model under study.) At the critical point
T., the kernel approaches the plateau in a stretched manner,
as shown by the dotted curve with label ¢ in Fig. 4. This
process, called the critical decay, is described by a power law

[cf. Eq. (5)]
m(t) = C+ D(ty/1)". (25)

Decreasing T below the critical temperature 7., the values
for the long-time limits C increase. These limits are ap-
proached exponentially fast for T# T, [35]. If T is far below
T., one observes enhanced oscillatory features for times near
log;yt=—1.2 as can be seen from the curves for 7=0.8, 0.6,
and 0.5 in Fig. 4. Such vibrational dynamics reflects the
anomalous-oscillation peak (AOP) discussed in Ref. [24]. Tt
is caused by strong interaction between density fluctuations
at microscopic length scales and the arrested glass structure.
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FIG. 4. (Color online) The memory kernel at ¢=0, m(r)
=m,(t), as a function of log,o ¢ at p=1.093 for temperatures indi-
cated in the figure. Curves with labels x=2 and 3 are calculated for
distance parameters e=(7,—T)/T,.= + 107 for liquids (¢<0) and
for glasses (€>0). Dotted line with label ¢ denotes the kernel at 7.
Horizontal line marks the plateau height C¢. Dashed lines show the
MCT asymptotic-law results based on Eq. (24) for T=1.8 and x
=3 (€<0). The kernels for 7=0.5, 0.6, and 0.8 refer to the right
vertical axis.

Features of the AOP will be discussed in the next subsection.

Figure 5 shows the susceptibility spectra wm”(w) of the
kernels shown in Fig. 4. The spectrum at 7=10 exhibits only
one peak located at high frequencies, to be called a micro-
scopic peak. By lowering 7, an additional peak emerges at
low frequencies reflecting the evolution of the structural-
relaxation processes. The lower frequency peak, whose posi-
tion decreases strongly by lowering 7, is due to the a pro-
cess, and is called the a peak. It is separated from the
microscopic peak by a minimum, called the 8 minimum. The
appearance of the minimum is caused by the crossover from
a power law ~£¢ to another one ~—* which occurs in the 8
regime (see Sec. I C). For small |T—T7,|, the 8 minimum is
well described by the formula which follows from Eq. (24),

om”(w) = DG (w), (26)

as exhibited by the dashed line in the inset of Fig. 5(a). At
T=T,, the critical decay (25) leads to a sublinear susceptibil-
ity variation

om”(w) =D sin(7a/2)I'(1 - a)(wiy)?, (27)

as shown by the dotted line with label c¢. Here, I'(x) denotes
the Gamma function. Below T, the final exponential decay
towards C [35] implies the hydrodynamic law in the small-@
limit, wm”(w— 0) = w. But, near T,, there is a frequency in-
terval where the spectrum is described by the sublinear criti-
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FIG. 5. (Color online) Susceptibility spectra wm”(w) for the
memory kernels m(t) shown in Fig. 4 for liquid states (a) and for
glass states (b). The insets exhibit the double logarithmic represen-
tation of the spectra for T close to 7. The meaning of the labels
x=2 and x=3 is the same as in Fig. 4. Dotted line with label ¢
denotes the susceptibility spectrum at 7. Dashed line in the upper
inset shows the MCT asymptotic-law result based on Eq. (26) for
x=3 (e<0). Dash-dotted lines in the insets exhibit the hydrody-
namic linear law ~w.

cal spectrum (27). This produces a “knee” at some frequency
where the crossover from the linear low-frequency spectrum
wm"(w) < w to the sublinear critical one wm”(w) = w® occurs,
as can be inferred from the inset of Fig. 5(b). If T is far
below T,., the knee disappears, and the spectrum is domi-
nated by a single peak reflecting the AOP (see the next sub-
section). This holds for 7=0.8, 0.6, and 0.5. It is interesting
to notice that there is only a weak temperature dependence in
the position log;o w=1.5 of the high-frequency peak from
high-T liquids down to deep-in-glass states. This feature will
also be studied in the next subsection.

Figure 6 shows the reactive part of the normalized longi-
tudinal moduli A(w)=1-wm’'(w). Since m'(w) and m"(w)
are related via the Kramers-Kronig relation [4], features for
A(w) can be understood from those for the susceptibility
spectra just mentioned. In particular, a peak in wm”(w) im-
plies a strong increase of A(w) near that peak frequency. This
way, one understands an almost single-step increase of A(w)
at log;p w=1.5 for T>T,. and T<T,, reflecting the presence
of only the high-frequency microscopic peak in wm”(w) for
those temperatures (see Fig. 5). For T=T,, on the other
hand, the presence of two peaks in wm”(w) explains the two-
step increase of A(w) shown in Fig. 6(a). Because of the
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FIG. 6. (Color online) Reactive part of the normalized longitu-
dinal moduli A(w)=1-wm’(w) for the memory kernels m(z) shown
in Fig. 4 for liquid states (a) and for glass states (b). The insets
exhibit the double logarithmic representation of A(w) for T close to
T.. The meaning of the labels x=2 and x=3 is the same as in Fig. 4.
Dotted line with label ¢ denotes A(w) at T,. Horizontal lines mark
the plateau height 1+C° (see text). Dashed lines in the upper inset
show the MCT asymptotic-law results based on Eq. (29) for T
=1.8 and x=3 (€< 0), while dashed line in the lower inset exhibits
the curve based on Eq. (28). The open (w;;) and filled (wg) dia-
monds refer to the frequencies wE defined in the text.

strong T dependence of the a-peak frequency, the position
where the low-w variation of A(w) occurs depends strongly
on the temperature. In addition, the sublinear susceptibility
variation wm”(w) « w?, present both in liquid and glass states
near T,, also leads to the enhancement of A(w). Indeed, it
follows from Eq. (25) that

A(w) =1+ C+ D cos(mal2)I'(1 — a)(wtp)*,  (28)

holds near the 8 minimum for liquids or near the knee posi-
tion for glasses. The curve based on this formula (dashed
line) is compared with the memory kernel at the critical point
(dotted line) in the inset of Fig. 6(b).

For later convenience, let us define the a and 8 regimes
for A(w). We start from liquid states. Since the memory ker-
nel m(z) decays from the plateau C¢ to zero in the a regime,
corresponding « regime for A(w) shall be defined as the
frequency interval 0 <w<w! in which ], satisfies A(w})
=1+C¢. Thus, the a regime for A(w) is below the horizontal
bar marking 1+C¢ in Fig. 6(a). In the B regime, the kernel
m(t) is well described by the MCT asymptotic formula (24)
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(see Fig. 4). The corresponding B regime shall be defined as
the one where A(w) can be well described by the asymptotic
formula

Alw)=1+C*-DwG'(w), (29)

which follows from Eq. (24). The dashed lines in Fig. 6(a)
show curves based on this formula. Let us introduce wp as
the frequencies where A(w) (solid lines) differ from the
MCT asymptotic formula (29) (dashed lines) by 2%. These
frequencies are marked by open (wzg) and filled (w}}) dia-
monds in Fig. 6(a), and the frequency interval wg< w<w};
shall be considered as the B regime for A(w). As mentioned
in Sec. II C, there is an overlap between the « and 3 regimes.
For glass states, the B regime for A(w) shall be defined as the
frequency interval w<wy; where wy marks the point at
which A(w) differs from the MCT asymptotic formula (28)
by 2%. The frequency w} at the critical point is marked by
the filled diamond in the inset of Fig. 6(b).

C. Vibrational excitations

In contrast to the structural-relaxation processes, there is
only a weak temperature dependence in the time scale for the
short-time dynamics in m(f) occurring at log;or=-1 (see
Fig. 4). Correspondingly, the high-frequency peaks in the
susceptibility spectra wm”(w) are located nearly at the same
frequencies log;y w=1.5 from high-T liquid down to deep-
in-glass state (see Fig. 5), leading to a common increase of
A(w) around this frequency regime (see Fig. 6). In this sec-
tion, nature of such high-frequency microscopic process
shall be discussed.

We start from temperatures far below 7., T<T,, called
stiff-glass states, which are characterized by the Debye-
Waller factors close to unity as exemplified by the curve for
T=0.5 shown in Fig. 1. One understands from Egs. (9¢) and
(9d) that the renormalized coupling coefficients become very
small for the stiff-glass states, and they decrease towards
zero in the limit »=1-f,— 0. Furthermore, the two-mode
contributions to the kernels get suppressed relative to the
one-mode contributions, in particular m®(¢)/m "M (1)=0(7).
Figure 7(a) shows the hatted spectrum m"(w) for T=0.5
(solid line) along with its one-mode D" (w) (dashed line)
and two-mode m®"(w) (dotted line) contributions [see Eq.

(9a)]. Tt is seen that the one-mode contribution #)"(w) in-
deed provides the dominant contribution to the total
memory-Kernel spectrum 7"(w). The role played by the two
contributions 7" and m® is utterly different. The former
describes the AOP, while the latter provides a background
spectrum.

Further properties of the AOP have been discussed in Ref.
[24] based on a stiff-glass approximation (SGA), which is
obtained by dropping the two-mode contributions to the
memory kernels. (See also Ref. [36] on the SGA.) In particu-
lar, it has been found that harmonic oscillations of the par-
ticles within their cages are a good description of the relevant
modes, and the density correlator as well as the memory
kernel in the stiff-glass states can be described as a superpo-
sition of independent harmonic oscillator spectra where the
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FIG. 7. (Color online) (a) Solid line denotes the memory-kernel
spectrum " (w) for p=1.093 and T=0.5, and dashed and dotted
lines respectively refer to its one-mode and two-mode contribu-
tions, 1D (w) and m?" (w). Dash-dotted line shows the SGA spec-
trum riigs(w) based on Egs. (30). (b) The same as in (a), but for
T=1.47. (c) Comparison of the memory-kernel spectrum ri(w)
(solid line) with ri(w) (dashed line) for the transversal current
correlator and 1) (w) (dotted line) for the velocity correlator for p
=1.093 and 7=0.5.

distribution of oscillator frequencies is caused by the distri-
bution of sizes and shapes of the cages. According to the
cited MCT result for the AOP, one obtains 7i(w) = rigga(®)
with

wrisga(w) = wi[Y(w) - 1]. (30a)

Here y(w) is given by a superposition of undamped
harmonic-oscillator spectra

f() = f " agpOxdw), (30b)
p(&) = V(0] - (&= D)(2mw)), (30c)
xe(w) == Q[0 - Q¢+ iwv]. (30d)

The weight distribution p(€) for the oscillators with fre-
quency \Eﬁ extends from the low-frequency threshold ()_
=w_ Q) to the high-frequency one () +=w+ﬁ, where w,
=1i\r’VI with an integrated coupling coefficient w1=2k‘7f€1)
[see Eq. (9¢)]. Q) denotes some average value of Qq defined
in Eq. (7b) over the ¢ range g=gq, [24]. Here, qp
=(67p)'® denotes the Debye wave number, and g,=4.02

for the density p=1.093. Since the g range around the first
peak position g, of the static structure factor S, is known
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to constitute the dominant contribution to the kernel [28], Q
in the present study is taken as an average of the first maxi-

mum and first minimum of Qq, which occurs at g= ¢ and
Gmax» TESPectively (see Fig. 13). A friction term v is necessary
when one wants to incorporate the neglected two-mode con-
tributions in a perturbative manner [24], but one may read
the formulas with v=0 unless stated otherwise. Figure 7(a)
demonstrates that Egs. (30) with v=0 (dash-dotted line) de-
scribe qualitative features of the AOP of m"(w) for T=0.50.

By increasing 7, one observes enhanced intensity in
m"(w) at low frequencies as shown for 7=1.47 in Fig. 7(b).
This is a precursor phenomenon of the glass melting at the
transition point. Near 7,, such enhancement for decreasing
frequencies can be described by a critical power law ~ ®!
[see Eq. (27)]. By substituting the critical decay of the den-

sity correlators $q(t) ~ 1% into Eq. (9b), one understands that
it is the linear term /72(V(z) that provides the critical decay of
m(t), whereas the quadratic term m®(r) serves only as a
correction O(t~2). This explains why in Fig. 7(b) the strong

increase of the intensity is dominated by D" (w) (dashed
line). Thus, the modes building the AOP are buried under the
tail of the central peak, and they show up only as a shoulder.
Nevertheless, it is remarkable that the SGA spectrum
riga(w) (dash-dotted line) succeeds to extract the buried
AOP portion as demonstrated in Fig. 7(b). The shift of the
AOP to lower frequencies upon increase of the temperature
reflects the widened size of the cages so that particles
“bounce” in their cages with smaller average frequencies.
Indeed, the particles are localized in such tight cages at T
=0.5 that the square root or=(r*(t—)) of the long-time
limit of the mean-squared displacement [30] is only 5.0% of
the particle’s LJ diameter, whereas it is increased to or
=0.139 at T=1.47. The shift is accompanied by an increase
of the inelastic spectrum including the AOP, reflecting the
decrease of the elastic contribution 7C & w).

The analysis presented in Fig. 7(b) also implies a possi-
bility to extract AOP portion in the spectrum on the basis of
Egs. (30). So, let us examine to what extent the high-
frequency microscopic peaks in the susceptibility spectra
om”(w) at higher temperatures have such “harmonic” char-
acter. This is done in Fig. 8 where representative susceptibil-
ity spectra taken from Fig. 5 are compared with the SGA
susceptibility spectra

omia(@) = (1+ Ow 7' (w), (31)

which follows from Egs. (7c) and (30a). To focus on the
high-frequency regime, the comparison is done in Fig. 8 with
the linear-w axis. In evaluating the SGA susceptibility spec-
tra for liquids, nonergodicity parameters f, and C in the
equations and quantities involved are replaced by the ones at
the critical point.

As discussed in connection with Figs. 7(a) and 7(b), the
SGA spectra describe the AOP portion of the memory-kernel
spectra for 7=0.5 and T=1.47 fairly well, and this is re-
flected in the susceptibility spectra shown in the two bottom
panels of Fig. 8. Somewhat large deviation seen at w =40 for
T=1.47 is due to the neglected two-mode contribution,
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FIG. 8. (Color online) Susceptibility spectra wm”(w) (solid
lines) at indicated temperatures taken from Fig. 5, but plotted here
on the linear-w axis. Dashed lines denote the SGA susceptibility
spectra wmgia(w) based on Eq. (31).

which is more enhanced than the deviation in Fig. 7(b) due
to the presence of the factor  in wm”(w). On the other hand,
because of this factor, the deviation at small frequencies seen
in Fig. 7(b) is suppressed for wm”(w).

One understands from the other panels of Fig. § that the
harmonic approximation based on Eq. (31) reasonably ac-
counts for overall features—peak position and strength—of
the microscopic peaks in wm”(w) not only near T, but even
at high temperatures such as 7=10. The large deviations for
low frequencies at 7=4.0 and 10 simply reflect the fact that
at such high T the structural-relaxation contributions also
enter into the high-frequency regime (see Fig. 5). Thus, con-
siderable portion of the short-time or high-frequency micro-
scopic process, from high-7 liquids down to deep-in-glass
states, can be described as a superposition of harmonic vi-
brational dynamics. This explains the weak T dependence of
the microscopic process shown in Figs. 4-6.

The persistence of the vibrational dynamics inside the
cage in the liquid state is not surprising. To see this, we show
in Fig. 9 the velocity correlator W(z) for representative liquid
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FIG. 9. (Color online) Normalized velocity correlator W(z) at
p=1.093 for temperatures referring to liquid states (a) and glass
states (b).

and glass states. It is well known that the cage effect in dense
liquids manifests itself by oscillatory variations with a decay
of W(¢) to negative values [4], and Fig. 9(a) demonstrates
this phenomenon. That such oscillatory dynamics exhibited
by W(z) reflects the AOP can be understood from the obser-
vations (i) in the stiff-glass state 7=0.5 the spectrum 7} (w)
of the relaxation kernel for W(z) exhibits an AOP whose
spectral features—threshold frequencies and maximum posi-
tion and height—nearly coincide with those for the AOP of
m"(w) as demonstrated in Fig. 7(c), and (ii) at higher 7 in-
cluding liquid states there is a correlation between the peak
position in the SGA susceptibility spectra wmgg,(w) shown
in Fig. 8 and the time at which the velocity correlator W(z)
reaches the first minimum.

There is another interesting feature caused by the domi-
nant harmonic nature of the dynamics in stiff-glass states.
From A(w) for T=0.5 shown in Fig. 6(b), one observes the
decrease of A(w) from A(w=0)=1+C at log;p w=1. One
can show that such behavior is also well described by the
harmonic approximation: it follows from Egs. (7c) and (30a)
that the reactive part of the modulus within the SGA is given
by

Asgalw) = (1+ O{1 = w[¥'(w) - 11} (32)

Figure 10 compares A(w) for T=0.5 with the curve based on
Eq. (32) on the linear-w axis. One understands that decrease
of A(w) from A(w=0)=1+C observable at w= 10 is due to
the harmonic modes near the threshold frequency ()_. Simi-
larly, the bump at w=60 reflects the harmonic modes near

4
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FIG. 10. (Color online) Reactive part of the longitudinal modu-
lus A(w) (solid line) for p=1.093 and 7=0.5 taken from Fig. 6, but
plotted here on the linear-w axis. Dashed line exhibits the SGA
modulus Agga(w) based on Eq. (32). Horizontal dotted line denotes
A(w=0)=1+C. Vertical arrows mark the threshold frequencies Q_
and (), defined in the text.

D. Structural-relaxation and vibrational-dynamics
contributions to sound-velocity dispersion

Here we provide an explanation of the anomalous sound-
velocity dispersion shown in Figs. 2 and 3 based on Eq.
(23b) and on the features of A(w) explored in the previous
two subsections.

At T=10, the whole relaxation of the memory kernel m(r)
occurs on the short time scale log;yr<-1 (Fig. 4). This
yields a susceptibility spectrum wm”(w) consisting only of
the microscopic peak located at log,, w=~1.5 (Fig. 5), and
the entire increase of A(w) occurs in the frequency regime
log,o @>0 (Fig. 6). It is therefore sufficient to use the linear-
w axis to describe the whole w variation in A(w), and this
explains via Eq. (23b) the observation in Fig. 2(a) that the
entire positive dispersion of the sound velocity v, starting
from v up to close to v,, occurs within the linear-g axis.

By decreasing the temperature to 7=4.0, the relaxation of
m(t) becomes slower and stretched due to the development
of the cage effect (Fig. 4), leading to the evolution of low-
frequency contributions in wm”(w) and A(w) (Figs. 5 and 6).
Translated to v, via Eq. (23b), this means that the approach
of v, towards the hydrodynamic value v, becomes delayed
compared to the one at T=10. This explains why v, for small
wave numbers shown in Fig. 2(b) is still located above v,,.

For temperatures close to but above 7., the memory ker-
nel m(t) exhibits the glassy structural relaxations (Fig. 4),
leading to low-w variations in wm”(w) and A(w) which can
be adequately described only with the log,, w axis (Figs. 5
and 6). Let us analyze the sound-velocity increase for T
=1.8 in detail. For this purpose, we replot the inset of Fig.
2(c) in Fig. 11(a), but with the log;, ¢ axis. This is necessary
to fully appreciate the small-g variation of the sound velocity
v,» which on the basis of Eq. (23b) originates from the glassy
low-w variations in A(w). Notice that the circles from the

full MCT solutions for ¢$"(w) can be obtained only up to the
minimum value of the discretized wave-number grids. On
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FIG. 11. (Color online) (a) Apparent sound velocity v,
=w3 &%/ g (circles) for p=1.093 and T=1.8, taken from the inset of
Fig. 2(c), but plotted here with the log;q ¢ axis. Long-dashed line is
from the solution to Eq. (22), while solid line is based on Eq. (23b).
Horizontal lines denote v, (dashed line), v,, (dash-dotted line), and
v, (dotted line). The contributions Av,,, Avg, and Av,, to the sound-
velocity increase defined in the text are indicated by vertical arrows.
The open and filled diamonds, respectively, mark Ug and vE defined
in the text. (b) The same as in (a), but here the sound velocity refers
to T=T,, taken from the inset of Fig. 3(a), and horizontal dashed
line denotes dy=vyy1+C.

the other hand, there is no such restriction in the solution
(solid line) to the lowest-order equation (23b) of the gener-
alized hydrodynamic description. The difference between the
circles and the solid line—in the g range where the circles
are available—is due to the approximations involved, but
there should be no problem to use the approximate solution
for understanding the essence of the anomalies.

Let us quantify the contributions to the sound velocity
increase due to the « process (to be denoted as Av,), due to
the B process (Avg), and due to the microscopic process
(Av,,) in the following way based on the « and 8 regimes for
A(w) defined at the end of Sec. III B. As mentioned there,
A(w) varies from A(w=0)=1 to A(w})=1+C* in the « re-
gime. One therefore obtains from Eq. (23b): Av,=vi-v,
with v&=v(V1+C*. The notation comes from the fact that v
is the high-frequency limit of the sound velocity in the «
regime. The horizontal dotted line in Fig. 11(a) marks v,
and corresponding linear dispersion law gv$ and the velocity
ve have been included with dotted lines in Fig. 2(c). The
B-relaxation contribution Av z can be obtained in terms of the
frequencies w7 also introduced at the end of Sec. III B: one

. A o * TA ()
obtains from Eq. (23b) Avg=vz-v, with UB=UOVA(“’;3)~
These velocities are marked by open (023) and filled (vg)
diamonds in Fig. 11(a). The rest of the sound-velocity in-
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crease towards v, is due to the microscopic process. As men-
tioned in the previous subsection, considerable portion of the
microscopic process is due to the harmonic vibrational dy-
namics. The contributions Av,, Avg, and Av,, are indicated
by vertical arrows in Fig. 11(a). Since there is an overlap
between the « and B regimes (see Sec. Il C), there is a cor-
responding overlap between Av, and Av.

The full sound-velocity variation for 7=1.8 can be under-
stood in this way in terms of the contributions from a- and
[B-relaxation processes and from the microscopic vibrational
dynamics. Notice that the structural-relaxation contributions
can be adequately described only with the logarithmic ¢ axis.
This explains why in Fig. 2(c) the approach of v, towards the
hydrodynamic value v, could not be resolved, but only the
approach towards vg can be observed. Thus, the sound-
velocity variation shown in Fig. 2(c) mostly reflects the mi-
croscopic contribution Av,.

In glass states, the a process is arrested, ﬂ the hydro-
dynamic sound velocity is altered to 0y=v,v1+C. There are
at most 3 and u contributions to the sound-velocity increase
from this hydrodynamic value. At and near 7., the 8 contri-
bution, Av B=UE—170, cannot be neglected, where v}}
=vg\A(wp) with wy for glasses defined at the end of Sec.
IIT B. This feature can be understood from Fig. 11(b), a re-
drawing of the inset of Fig. 3(a) with the logarithmic ¢ axis,
where the 8 contribution Avg and the microscopic contribu-
tion Av,, (defined as the rest of the sound-velocity increase
towards v..) are marked by vertical arrows. The B-relaxation
contribution Avg cannot be resolved with the linear-g axis,
and this explains why in Fig. 3(a) the approach of v, towards
0, with decreasing ¢ is retarded.

For temperatures further away from 7, the B-relaxation
contribution becomes smaller, and the sound-velocity in-
crease from 0, is entirely due to the microscopic process.
This explains why in Fig. 3(b) the approach of v, towards 9,
can be observed for 7=1.47 even with the linear-¢g axis. By
further decreasing the temperature to 7=0.5, a new feature
shows up reflecting the dominant harmonic nature in the
stiff-glass-state dynamics. As discussed in connection with
Fig. 10, there appears a frequency interval where A(w) be-
comes smaller than A(w=0). According to Eq. (23b), this
gives rise to a “negative” dispersion, and explains the result
for T=0.5 shown in Fig. 3(c).

IV. LOW-FREQUENCY EXCITATIONS IN LONGITUDINAL
AND TRANSVERSAL CURRENT SPECTRA

The evolution of the AOP is related to the arrest of density
fluctuations caused by the cage effect, and the AOP is the
result of a mapping of the cage distribution on the frequency
axis (see Sec. III C). Since the arrest of density fluctuations
is driven by the ones with a wave number g near the
structure-factor-peak position [28], this interpretation of the
AOP suggests that it appears in spectra of all probing vari-
ables that couple to density fluctuations of short wave-
lengths. But different probing variables will weight the os-
cillating complexes differently, and therefore the shape and
the peak position of the AOP will depend somewhat on the
probe. Two such examples have been analyzed in Ref. [24]:
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the tagged-particle density correlators and the velocity cor-
relator W(z). In particular, it has been shown there how the
AOP in the memory-kernel spectrum i} (w) for W(z) [see
Fig. 7(c)] accounts for the excess intensity in the density of
states 2W"(w)/ 7 with respect to the Debye model.

In this section, we investigate how the AOP manifests
itself in spectral features of the longitudinal and transversal
current spectra. This issue is relevant since in recent compu-
tational studies [8,10] two excitations have been observed in
the longitudinal current spectra, but the low-frequency
boson-peak-like excitations have been assigned to the trans-
versal mode. Since there is no direct cross correlation be-
tween the longitudinal and transversal current dynamics, the
appearance of the transversal mode in the longitudinal spec-
tra is interpreted as being due to “mixing” phenomena [18].
This is in contrast to the above interpretation of the AOP,
according to which possible low-frequency excitations in
both of the longitudinal and transversal current spectra
should be the manifestation of the AOP. Indeed, the AOP is
present also in the memory kernel for the transversal current
correlators, and its spectral features are quite similar to the
one for the longitudinal current correlators as can be inferred
from Fig. 7(c). To corroborate our statement, we will also
study the density dependence of spectral features, because
such study was claimed to support the interpretation in terms
of the mixing of the longitudinal and transversal modes (see
Sec. I).

A. Manifestation of AOP in spectral features

We present with solid lines in Fig. 12 typical density fluc-
tuation spectrum &;’(w), longitudinal current spectrum

d)’t;//(w), and transversal current spectrum d)ZI(w) at deep in
the glass state, 7=0.5<T,. These results are based on the
full MCT equations of motion described in Sec. II. The wave
number ¢g=3.7 chosen for the demonstration is about half of
the structure-factor-peak position (see Fig. 1). The fluctua-
tion spectrum g?)g(w) shown in Fig. 12(a) exhibits two peaks
for =10, and illustrates a hybridization of the high-
frequency sound with the modes building the AOP [24]: the
narrow peak located at higher frequency is due to the high-
frequency sound propagation, and a broad lower-frequency
excitation reflects the AOP studied in Sec. III C. On the other
hand, there is apparently only one peak in the longitudinal
current spectrum (bgl(co) shown in Fig. 12(b). It is due to the
high-frequency sound, and the peak position ws M is nearly
the same as the one for the fluctuation spectrum. It is not
clear how the AOP manifests itself in the spectral shape of
¢§”(w) since, compared to %(w), the low frequency part is
suppressed due to the presence of the factor w’ [see Eq.
(12)]. The transversal current spectrum (bg”(w) shown in Fig.
12(c) also exhibits only one peak. Its peak frequency wg max
is located at a lower frequency than wlq‘ M reflecting a
smaller transversal sound velocity wg M/ g compared to the
longitudinal one. Again, it is not clear whether there is a
contribution to the spectral shape of d);”(w) from the AOP. It
is the purpose of this subsection to clarify this point.
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FIG. 12. (Color online) (a) Density fluctuation spectrum g?)Z(w),
(b) longitudinal current spectrum qS;"(w), and (c) transversal current
spectrum qﬁj(w) at wave number ¢=3.7 for p=1.093 and T=0.5.
Solid lines are based on the full MCT equations of motion described
in Sec. II. Dash-dotted lines show curves within the generalized
hydrodynamic description, Egs. (33). Dashed lines denote the HFS
part based on Egs. (34), whereas dotted lines refer to the AOP
portion from Egs. (35). Curves for &Z(w) are obtained from those
for (f);”(a)) via Eq. (12).

To this end, we will derive approximate formulas special-
ized to describe each of the high-frequency-sound (HFS) and
low-frequency-AOP portions of the spectra. The starting
point is the following expression under the generalized hy-
drodynamic description [see Eq. (21) and citation [34]], ob-
tained from Eq. (13) with the hatted memory kernel 71, (w)
approximated by its g— 0 limit, /(@) =1 ,_o(w):

wzﬁzrﬁ"(w)

T [0~ A () + [0 (@)

A (33a)

Here A(w):l—wﬁz’(w). Corresponding description for the

fluctuation spectrum &;(w) is derived via Eq. (12). The for-
mula (33a) describes hybridization of two oscillations: one is

a bare sound with dispersion Qq, whose wave-number de-
pendence is shown in Fig. 13(a), and the other is represented
by the AOP spectrum in 7i2”(w). The AOP region in the spec-
trum 71" (w) shall be defined as )_<w<(), in terms of the
threshold frequencies (), introduced via the SGA spectrum

in Sec. III C. These frequencies are marked in Fig. 14(a). The
hybridization occurs in the range Q_<f2q<ﬂ . indicated in
Fig. 13(a) where the two oscillations overlap. The general-
ized hydrodynamic description for the transversal current can
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FIG. 13. (Color online) Bare dispersion relation Qq for the lon-

gitudinal sound (solid line) and Q; for the transversal sound
(dashed line) at T=0.5 for p=1.093 (a) and p=0.95 (b). Horizontal
dotted lines denote the threshold frequencies (). (see Fig. 14), and
arrows mark the Debye wave number ¢, and the structure-factor-
peak position ¢,y-

be introduced similarly on the basis of Eq. (17):
(1))

[ ~ (1A ()P + [ QD) i () P
(33b)

¢l (0) =

Here rit(w)=1i1]_y(w) and A(w)=1-wi}(w). Since i"(w)
~m7(w) as shown in Fig. 7(c), one understands that the hy-
bridization of the bare transversal sound of dispersion Qg
with the AOP occurs also in the range Q_<Qg< Q, indi-
cated in Fig. 13(a). Figure 12 demonstrates that the general-
ized hydrodynamic description (dash-dotted lines) reproduce
main features of all spectra fairly well. In particular, the
subtle hybridization of the high-frequency sound and the
AOQOP for &Z(w) is treated semiquantitatively correctly, justi-
fying the use of Egs. (33) as starting equations.

The HFS portion of d) (w) shall be approximated by a
Lorenzian (multiplied by wz) with the width determined at

the peak frequency wL max,

2A2.,2m( L max
™ (wq )

¢$_HFSN(w = 2 [, max\2712 A2 ape L maxy12
[0 = (@ ™V + [0 (™))
(34a)

The dashed curve in Fig. 12(b) shows the result based on this
formula, and the corresponding HFS curve for the fluctuation
spectrum o s'HFS (w)/ w? is included in Fig. 12(a). One un-
derstands that the formula (34a) describes the HFS portion of

FIG. 14. (Color online) (a) Solid line denotes the memory-
kernel spectrum 7it(w) for p=1.093 and 7=0.5, while dash-dotted
line refers to the SGA spectrum based on Egs. (30). Arrows mark
the threshold frequencies (), defined below Egs. (30). Dotted line
denotes the frequency dependence of the function d)ﬁ'AOP”(w) given
in Eq. (35a) in arbitrary units, and its peak frequency wagp is
marked by an arrow. Long dashed line denotes the corresponding
result based on Eq. (36a). (b) The same as in (a), but for p=0.95
[37].

these spectra well. Thus, the rest of the spectral intensity in
the low-frequency regime should be due to the AOP.

Corresponding expression for the HFS part of the trans-
versal current spectrum reads

Z(QT)z AI!( T maX)

[ (wT maX)2]2 + [w(QT)2 A//( T maX)]Z
(34b)

T-HES”
oh 1 (0) =

Figure 12(c) shows that this formula (dashed line) fairly
catches the main peak of the spectrum, but the predicted
width is considerably narrower than the one of the full MCT
solution (solid line). This feature can be understood in terms
of the AOP contribution as follows. We first notice that

gm”xz 39 for ¢g=3.7 is located in the central region of the
AOP [see Fig. 14(a)]. Let us introduces frequencies @, in
this central regime so that @ <o’ ™ <@,. Since there
holds m’(w)=m"(w) as shown in Fig. 7(c), the Kramers-
Kronig relation implies Ay{w)= A(w). One therefore under-
stands from Fig. 10 that Aj() in the central regime of the
AOP increases with w, i.e., AT(w )<AT(wT md")<AT(w+)
Since in lowest order w; % is the solution to the equation
(0] ™92=(Q))?An(w] ™) [see Eq. (22)]. one has
(QT)2AT(w )< (wT max)2< (QT)2AT(w+ Combined with &>

( Tma)2 < @2, this leads to an inequality [&?

—( ; maxy 212 > [ai—(()g)?AT(at)]z. We also notice from Fig.
7(c) that there is only a weak w dependence in m7(w) in the
central regime of the AOP. All this together, one finds on the

basis of Egs. (33b) and (34b): ¢! (&.)> ¢! ™™'(&,). This
way, one understands that the residual intensity in Fig. 12(c)
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which cannot be described as the HFS portion (dashed line)

is caused by the frequency dependence of A (w) near qum“

which in turn is due to the AOP. From the mentioned reason-
ing, it is clear that such deviation from the Lorenzian shape
of the spectrum occurs whenever the sound resonance fre-
quency is located in the central regime of the AOP. This
explains why such deviation is small for the longitudinal
current spectrum shown in Fig. 12(b), whose resonance fre-
quency wi; X ~65 exceeds (), and is not located in the

central regime of the AOP. Such larger resonance frequency

ws M than expected from the bare dispersion Qq for ¢

=3.7 shown in Fig. 13(a) is due to the positive dispersion
discussed in Sec. III.

In view of the results presented so far, one understands
that there are residual spectral intensities due to the AOP
in the frequency regime w< " "™ In the following, we
will derive approximate formulas extracting such AOP
portion based on Egs. (33). For this purpose, let us consider
the denominator on the right-hand side of Eq. (33a) [w?
—Q;&(w)]2+[wfl§ﬁ1"(w)]2. The appearance of the HFS peak
is mainly due to the decrease of the first term towards zero
approaching the resonance position "’2 % Since we are in-
terested in the off-resonant regime w< wL T this term will

be approximated by its the small-w 11m1t [wz—(l;AA(w)]2

~fl:. Correspondingly, only the leading-order contribution
for small @ shall be retained in the second term

[wﬁgrﬁ"(w)]zz[wﬁf]n%” (w=0)]?. This results in the follow-
ing expression for possible AOP portion in d)g,(w):

o’ " (w)

HA () = (350)

4 QZ 1+ [ (w=0)]

According to the derived formula, the ¢ and w dependences
are factorized. This implies that the peak position of the AOP
portion—when it is visible—is g independent. The frequency
dependence of the formula (35a) is shown as dotted line in
Fig. 14(a), and its peak frequency, to be denoted as wyqp, is
marked by an arrow. Furthermore, one infers from the ¢
dependence of Qq shown in Fig. 13 that the intensity of the
AOP portion is predicted to increase upon increase of the
wave number for g=gq,, whereas this trend becomes re-
versed for ¢ = gp. Corresponding formula for the transversal
current spectrum can be derived starting from Eq. (33b):

1 i)
(@H2 1+ [wri(0=0)F

RO (35b)

Since m(w) =m"(w) [see Fig. 7(c)], Egs. (35) imply that the
peak positions of the AOP portions of both longitudinal and
transversal current spectra—when they are visible—are lo-
cated at the same frequency wyop. Furthermore, a stronger
intensity of the AOP portion is predicted for the transversal
current spectra in the pseudo first Brillouin zone since there

holds Qq>flg as can be seen from Fig. 13(a). Finally, we
notice that it is reasonable to further approximate the above
formulas as

PHYSICAL REVIEW E 74, 031205 (2006)

oA () = (36a)
1 Qz 1+ [wn® (w=0)] ’

1 wzm(Tl)”(a))

¢T—AOP”
(@12 1+ [0 (=0

q

(36b)

since it is the one-mode contribution which provides the
dominant contribution to the memory kernel and which de-
scribes the AOP, whereas the two-mode contribution pro-
vides a background spectrum as discussed in Sec. III C. Fig-
ure 14(a) demonstrates that indeed the difference between
the curves based on Egs. (35) and (36) is small. Our motiva-
tion for introducing Egs. (36) will become clear in the next
subsection.

The dotted lines in Fig. 12 are based on Egs. (35). For the
density fluctuation spectrum [Fig. 12(a)], it is seen that the
dotted line, obtained from Eq. (35a) via the relation (12),
extracts the AOP portion quite reasonably. It is also seen
from Fig. 12(b) that Eq. (35a) provides a reasonable account
of the residual low-frequency intensity in the longitudinal
current spectrum located at w= @AOP- Notice that the AOP

appears differently i 1n ¢"(w) and qS "(w) reflecting the differ-
ence of the factor w? To understand the result shown in Fig.
12(c) for the transversal current spectrum, we notice that, by
construction, the applicability of the formula (35b) is limited
to the small-w regime considerably lower than the sound
resonance position w; M3 Therefore, the dotted line in Fig.
12(c) in the region @= ' ™ has no physical meaning. Nev-
ertheless, it is seen that the dotted line accounts for the re-
sidual intensity in the low-frequency regime which cannot be
described as the HFS portion (dashed line). Thus, Eq. (35b)
describes the low-frequency part of the deviation from the
Lorenzian shape explained above.

The variation of the longitudinal and transversal current
spectra (solid lines) with changes of wave number ¢ is pre-
sented in Figs. 15 and 16, along with their decomposition
into the HFS part (dashed lines) and possible AOP portion
(dotted lines). The dispersion relation and the full width at
half maximum (FWHM) as a function of ¢ are summarized
in Fig. 17. We start from the discussion on the longitudinal
current spectra. When ¢ is small so that ws maxX < ()_, there is
practically no effect from the AOP on the spectral shape.
(However, the AOP affects the resonance frequency wL fax
near {)_ as discussed in Sec. III D.) Therefore, the spectrum
for g=0.5 shown in Fig. 15 is dominated by the HFS portion
(dashed line), and there is no physical meaning in the dotted
line for this g value. Thus, the spectrum for ¢g=0.5 is very
close to Lorenzian (multiplied by w?), and its width agrees
with the one from the hydrodynamic prediction ¢ vom”(w
=0) as demonstrated in Fig. 17(b). As ¢ increases so that
ok ™ becomes larger than ()_, effects from the AOP set in.
These effects increase the spectral width, as exemplified for
g=1.3 and 2.1 in Fig. 15, in two ways. First, the width be-
comes larger compared to the hydrodynamic width because
A”(wl‘ M%) > 11" (w=0) when the resonance frequency wL max
is located in the AOP regime, ()_ <w2 X<, [see Flg
14(a)]. This shows up as the deviation of the dashed line
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FIG. 15. (Color online) Longitudinal current spectra qﬁlq‘”(w)
(solid lines) at p=1.093 and T=0.5 for indicated wave numbers.
Dashed lines denote the HFS part based on Eq. (34a), whereas
dotted lines refer to the AOP portion obtained from Eq. (35a).

from the dotted line in Fig. 17(b). In addition, the frequency

dependence of A(w), which again is caused by the AOP, also
enlarges the width as explained above in connection with
Fig. 12(c). This latter effect leads to a the non-Lorenzian
shape of the spectrum, i.e., the deviation of the solid line
from the dashed line for g=1.3 and 2.1 shown in Fig. 15, and
also explains the difference between corresponding circles
and dashed line in Fig. 17(b). The dotted lines in Fig. 15
account for the low-frequency part of the non-Lorenzian
spectra as discussed above. As ¢ is increased further, the
p(isitive dispersion effect becomes important, and it pushes
max

w, considerably above frequencies expected from the

bare dispersion Qq as shown in Fig. 17(a). Thereby, there
opens a frequency window, where wyop< wé T holds and
the appearance of the AOP itself can be observed in the
spectra. This feature holds ¢=2.9 as shown in Fig. 15. As
mentioned above, there is no g dependence in w,gp, Which

PHYSICAL REVIEW E 74, 031205 (2006)

p=1.093
0.06 L) L) L) L) L) L) L)

0.04

0.02

0.00

0.04

0.02

0.00

0.04

0.00

01 (@)

0.08

0.04

0.00

0.20

0.10

0.00
2.00 |

1.00 | J

......

000 =1 1 1 1 1 1

FIG. 16. (Color online) Transversal current spectra (bz;/(w)
(solid lines) at p=1.093 and T=0.5 for indicated wave numbers.
Dashed lines denote the HFS part based on Eq. (34b), whereas
dotted lines refer to the AOP portion obtained from Eq. (35b).

results in flat dispersion curve for the low-frequency excita-
tions as demonstrated with open diamonds in Fig. 17(a).
Corresponding results for the transversal current spectra
shown in Figs. 16 and 17 an be explained similarly. But here,
the positive dispersion of “)Z % from the hydrodynamic law
gty with B =v0\e‘“C§:0, obtained from the leading-order ex-
pansion of Qg, is not so strong as in the longitudinal case.

This is because the bare transversal sound dispersion Qg for
g=gqp is located below the maximum frequency w=40 of
the the susceptibility spectrum wri”(w) (see the bottom panel
for T=0.5 in Fig. 8), where the positive dispersion effect is
most significant as explained in Sec. III. Thus, there is no
frequency regime where waop < wg M holds for the trans-
versal current spectra, which can be inferred from Fig. 17(a).
Therefore, only the width of ¢ (w) is affected by the AOP,
which is summarized in Fig. 17(c). However, this feature is
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FIG. 17. (Color online) (a) Peak positions w’; M of d)én(a))
(open circles) and w! ™ of d)z;’(w) (filled circles) as a function of
q for p=1.093 and 7=0.5. Solid and dashed lines denote the bare
dispersions Qq and QqT, respectively. Dotted lines exhibit the hydro-
dynamic dispersion laws g0, and qﬁg. Peak positions of the AOP

portion in qu”(w) are denoted by open diamonds. Horizontal arrows
mark €, and wppp taken from Fig. 14(a). (b) Full width at half

maximum (FWHM) for qﬁs”(w) (circles) as a function of g. Dashed

line denotes the Lorenzian width Qﬁn%”(w; maX) predicted by Eq.
(34a). Dotted line refers to the hydrodynamic width, qzzﬁénﬁ” (w

=0). Vertical arrow marks the wave number where wé M=

holds. (c) The same as in (b), but for ¢(7;,(w) for which the Loren-
zian width (dashed line) is given by (Qg)zrﬁ/}(wg M%) and the hy-
drodynamic width (dotted line) by qz(ﬁg)zrﬁ'}(wzm. Vertical arrow

marks the wave number where wZ M=) _ holds.

altered when the density is decreased, as we will see in the
next subsection.

B. Longitudinal and transversal current spectra
at lower density

In this subsection, effects of varying density on spectral
features of the longitudinal and transversal current spectra
shall be investigated. Specifically, a density p=0.95 lower
than 1.093 studied so far will be considered, but with tem-
perature 7=0.5 fixed.
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Upon decrease of the density, the bare sound dispersions

Qq and Q7 and the memory-kernel spectrum #"(w) are
shifted to lower frequencies as demonstrated in Figs. 13(b)
and 14(b), respectively. Notice the striking similarity be-
tween the change in i"(w) upon decrease of the density at
fixed T and the change upon increase of the temperature at
fixed p found in Fig. 7(b). Indeed, the critical temperature is
decreased to 7.~ 0.644 for p=0.95, and lowering the density
at fixed T=0.5 drives the system closer to the critical point.
As discussed with Fig. 7(b), a strong central peak is formed
when the system approaches the critical point, and the modes
building the AOP get buried under its tail. But again, Fig.
14(b) demonstrates that the SGA kernel ritg; ,(w) extracts the
buried AOP portion quite reasonably [37]. Thus, in analogy
to what is found in Fig. 7(b), the AOP shifts towards lower
frequencies upon decrease of the density, accompanied by an
increase of its spectral intensity.

As a related problem, we found that the use of Egs. (35)
to extract the AOP portion from current spectra leads to un-
plausible results. This is because of the mentioned develop-
ment of the central peak, leading to quite large value of
m"(w=0). As will be demonstrated in the following [see
Figs. 20(b) and 20(c)] such large value of " (w=0) caused
by the critical decay near T, is not appropriate for handling
the high-frequency dynamics. We will therefore use Eqgs.
(36) instead of Egs. (35), which essentially amounts to re-
placing m"(w=0) with nﬁ(z)//(w=0). The curves based on Egs.
(36) are not much affected by the critical dynamics because
(i) only corrections to the critical decay enter into 7®" () as
explained in connection with Fig. 7(b) and (ii) the critical-
decay contribution in )" (w) is suppressed in Eq. (36a) due
to the presence of the factor w” in its denominator. As dem-
onstrated in Fig. 14(a), there is practically no difference be-
tween the use of Egs. (35) and (36) for p=1.093, and we
expect that physics is not altered with the use of the latter for
p=0.95.

Longitudinal and transversal current spectra for p=0.95
(solid lines) with changes of wave number ¢ are presented in
Figs. 18 and 19, along with their decomposition into the HFS
part (dashed lines) and possible AOP portion (dotted lines).
As mentioned above, the dotted lines in these figures are
based on Egs. (36). The dispersion relation and the FWHM
as a function of ¢ are summarized in Fig. 20. It is seen from
Figs. 20(b) and 20(c) that indeed the hydrodynamic predic-
tion for the width with 7"(w=0) does not work for p=0.95;
instead, the corresponding prediction with m®"(w=0) rea-
sonably accounts for the width in the small-g regime.

It is seen by comparing Figs. 15 and 18 that the AOP
portion of the longitudinal current spectra for the smaller
density p=0.95 is located at lower frequencies and its inten-
sity is more enhanced. These differences simply reflect the
shift of the AOP to lower frequencies accompanied by an
increase of its spectral intensity for p=0.95. In addition, the
positive dispersion of the sound velocity and the deviation
from the Lorenzian shape of the spectra start at smaller g for
p=0.95, as can be inferred by comparing Figs. 17 and 20.
These features are also due to the shift of the AOP to lower
frequencies upon decrease of the density. Furthermore, there
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FIG. 18. (Color online) The same as in Fig. 15, but for a lower
density p=0.95, and dotted lines referring to the AOP portion are
based on Eq. (36a) as discussed in the text.

is no “negative” dispersion (see Sec. III D) for p=0.95 since
the memory kernel for 7=0.5 at this density is not dominated
by the harmonic contributions [see Fig. 14(b)]. Otherwise,
the variation of the longitudinal current spectra with changes
of g for p=0.95 is quite similar to the one found for p
=1.093, and the discussion shall not be repeated.

The variation of the transversal current spectra with
changes of ¢ for p=0.95 is also quite similar to the one found
for p=1.093, as can be understood by comparing Figs. 16
and 19. But here, the resonance frequency wg T of the
transversal sound exhibits a strong positive dispersion as
shown in Fig. 20(a). Again, this is caused by the shift of the
AOP to lower frequencies. The positive dispersion of the
transversal sound velocity due to the contribution from the
AOP can be discussed quite similarly to what is presented in
Sec. III for the longitudinal sound. Thereby, there opens a
frequency window also for the transversal current spectra,
where wyop< wg M holds and the appearance of the AOP
itself can be observed in the spectra. Such AOP portion can
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FIG. 19. (Color online) The same as in Fig. 16, but for a lower
density p=0.95, and dotted lines referring to the AOP portion are
based on Eq. (36b) as discussed in the text.

be observed for g=3.7 in Fig. 19, yielding a flat dispersion
curve for the low-frequency excitations of the transversal
current spectra as demonstrated with filled diamonds in Fig.
20(a). This is in contrast to the result found for p=1.093,
where waop> ! ™ holds for the whole ¢ range and the
effects from the AOP showed up only in the width of the
transversal current spectra.

V. CONCLUDING REMARKS

In this paper, we presented theoretical investigation on the
high-frequency collective dynamics in liquids and glasses at
microscopic length and time scales—the anomalous disper-
sion of the high-frequency sound velocity and the nature of
the low-frequency excitation called the boson peak—based
on the mode-coupling theory (MCT) for ideal liquid-glass
transition. The MCT explains the evolution of the structural-
relaxation processes as precursor of the glass transition at
critical temperature T,, which is driven by the mutual block-
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FIG. 20. (Color online) The same as in Fig. 17, but for a lower
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ing of a particle and its neighbors (cage effect) [23,28]. On
the other hand, the theory also predicts the development of
harmonic vibrational excitations in stiff-glass states
T<T.—<called the anomalous-oscillation peak (AOP)—
which exhibit the properties of the boson peak [24]. On the
basis of these previous MCT works, the present study has
revealed/discussed the following points. We first demon-
strated that the AOP persists also near and above 7., and
considerable portion of the microscopic process in systems
ranging from high-7 liquids down to deep-in-glass states can
be described as a superposition of harmonic vibrational dy-
namics (Sec. III C). It is then discussed how the interference
of the sound mode with the structural-relaxation processes
and vibrational excitations shows up as anomalies in the
sound-velocity dispersion depending on the temperature
(Sec. MID). Usually, the term “the anomalous sound-
velocity dispersion” is used as synonym for positive disper-
sion as, e.g., known from the viscoelastic model, and indeed
this is valid for most of the temperature range investigated in
the present study. But, we pointed out also the possibility of
observing negative dispersion—the decrease of the sound
velocity upon increase of the wave number—at very low
temperatures where the sound-velocity dispersion is domi-
nated by the contribution from the vibrational dynamics. We
also studied spectral features of the longitudinal and trans-
versal current dynamics (Sec. IV). It was demonstrated that
the low-frequency excitation, observable in both of the glass-
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state longitudinal and transversal current spectra at the same
resonance frequency, is the manifestation of the AOP. The
presence of the AOP in the transversal current spectra leads
to the interference between transversal sound mode and the
AOP. As a result, it was shown that the transversal sound
velocity also exhibits the anomalous dispersion. These re-
sults of the theory have been demonstrated for a model of the
Lennard-Jones system. In the following, we discuss connec-
tions of these theoretical results with previous findings from
inelastic-x-ray-scattering (IXS) and molecular-dynamics
(MD) computer simulation studies.

In the vicinity of T,, the structural-relaxation contribu-
tions to the sound-velocity dispersion show up at very small
wave numbers, which can fully be appreciated only with the
logarithmic ¢ axis (see Fig. 11). Therefore, with the linear-¢
axis adopted in conventional studies on the dispersion rela-
tion, the sound velocity v, in the small-g limit is located
above the hydrodynamic value v [see Fig. 2(c)], and this
even at T=4.0 [see Fig. 2(b)] which is more than twice of the
critical temperature 7,.. We notice that this temperature is
also higher than the freezing temperature 7,~ 3.3 which is
estimated based on the so-called Hansen-Verlet criterion
[27]. Thus, except for a very high temperature such as T
=10 [see Fig. 2(a)], the variation of the sound velocity v,
which is visible in the linear ¢ axis basically reflects the
contribution from the microscopic process. This theoretical
result is in contrast to the traditional picture based on the
viscoelastic model according to which the anomalous disper-
sion is fully ascribed to the structural relaxation, but is in
agreement with finding from recent IXS studies on simple
liquid metals near the melting temperature [12-16].

The description of the microscopic process in terms of the
AOP—a superposition of harmonic oscillations of particles
inside their cages—implies that the decay of the memory
kernel at microscopic times log,,r<-1 (see Fig. 4) reflects
the dephasing of different oscillatory components in the
force fluctuations. This is in consistent with the implication
from the computer-simulation study on harmonic glass [7].
Such microscopic process, despite arrested structural relax-
ations, accounts for the positive dispersion in glass states
(see Fig. 3), whose presence has been reported from recent
MD and IXS studies [6—11]. That the microscopic process
due to the AOP persists both in liquid and glass states with
only weak temperature dependence of its characteristic time
or frequency (see Fig. 8) is in accord with the computer-
simulation result presented in Ref. [9].

To see further implications of the theory, we show in Fig.
21 the sound velocities v,(7) as a function of T for fixed ¢
=102 (solid line) and ¢=0.5 (dash-dotted line). (The argu-
ment 7 shall be added here to emphasize the T dependence.)
The density is fixed to p=1.093, and v,(7) are obtained from
Eq. (23b) with A(w) determined for each temperature (see
Fig. 6). Assuming that LJ particles under study are of argon
size (=0.34 nm), the wave number ¢g=0.5 (1.5 nm™") is in
the lowest momentum-transfer range in IXS measurements,
and ¢=1072 (0.03 nm™!) is a typical momentum transfer in
Brillouin light scattering (BLS) experiments. As shown in
Fig. 3(c) for a stiff-glass state T7=0.5, a negative dispersion is
observable for g<<1 where the sound velocity v,(T) is
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FIG. 21. (Color online) Sound velocities v,(T) as a function of
T at p=1.093 for g=1072 (solid line) and ¢=0.5 (dash-dotted line),
which are based on Eq. (23b) with A(w) determined for each tem-
perature (see Fig. 6). Hydrodynamic sound velocities vo(7) for T
>T. and 0o(T)=v(T) (see text) for T<T, are denoted as open
circles and filled squares, respectively. v(T) for T>T,, given by
va(T)=vy(T)/\1-fj, are also denoted as filled squares. Dotted line
shows the square-root singularity translated to vy (7), ie., va(T)
=vo(T)N1=£o(T) with fo(T)=fo+ho\o!/(1-\) for T<T,. and
fo(D) =15 for T>T,. Dashed line exhibits the B-relaxation contribu-
tion to v,(7) which is based on Eq. (23b) with A(w) determined
from the MCT asymptotic formula (29).

smaller than the hydrodynamic (¢ — 0) value. This is due to
the dominant harmonic nature of the dynamics at 7=0.5,
because of which there appears a frequency interval where
A(w) is smaller than its w— 0 limit (see Fig. 10). The pres-
ence of the negative dispersion is reflected in Fig. 21 as the
emergence of the low-T region where the IXS sound velocity
[v,(T) for g=0.5] is smaller than the BLS sound velocity
(g=1072). Such T dependence of the IXS and BLS sound-
velocity data in the low-T region has been reported for glyc-
erol [1,38] [see Fig. 5(b) of Ref. [1]]. Thus, there is an ex-
perimental result which is consistent with the presence of the
negative dispersion predicted by the theory. That the differ-
ence between the IXS and BLS sound-velocity data in the
low-T region is smaller in Fig. 21 than the one found in Fig.
5(b) of Ref. [1] for glycerol and that such difference is not
clearly observable in orthoterphenyl [39] might be rational-
ized by the stronger influence of vibrational modes (boson
peaks) in the dynamics of network glass former glycerol than
in fragile glass formers such as the LJ system and orthoter-
phenyl [40]. According to this reasoning, the presence of the
negative dispersion is also expected in strong glass formers
like silica where the influence of vibrational dynamics is
even stronger [40]. The sound velocity data for vitreous
silica reported in Fig. 3 of Ref. [11] seems to indicate this
possibility, but large error bars do not allow ones to draw a
decisive conclusion. It would therefore be of value to re-
analyze the data for silica with improved resolution.
Hydrodynamic sound velocities vy(7) for T>T. and
0o(T)=vo(T)/\1=fo(T) for T<T, are included in Fig. 21 as
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FIG. 22. (Color online) (a) The memory-kernel spectrum " (w)
and (b) the SGA spectrum riigg,(w) obtained with the cutoff q"
=40 (solid lines), 80 (dashed lines), and 120 (dotted lines) for the
hard-sphere system at packing fraction ¢=0.6. As in Ref. [24], the
static structure factor S, has been evaluated within the Percus-
Yevick approximation, and the units of length and time have been
chosen so that the hard-sphere diameter d=1 and the thermal ve-
locity v=2.5.

open circles and filled squares, respectively. vy(7) increases
with increasing 7 because in our study 7 is varied with den-
sity fixed, leading to increased pressures at elevated tempera-
tures. On the other hand, the T dependence of 0y(T) is domi-
nated by that of f,(T) (see Fig. 1), and this explains the
increase of 0y(7T) with decreasing T. Here a side remark shall
be added concerning the notion of the “hydrodynamic”
sound velocity 0y(T) for glass states referring to T<T,. The
MCT in its idealized form, adopted in the present study, pre-
dicts the structural arrest at the critical temperature 7. which
is located above the calorimetric glass-transition temperature
T,. In reality there are slow dynamical processes—referred
to as hopping processes—which restore ergodicity for T
<T.. These processes, which are studied within the extended
version of the MCT [41], change the ideal elastic peaks
7f,(T) 8(w) of density fluctuation spectra gb;’(w) into quasi-
elastic a peaks of nonzero width also for T<T,. f,(T) in real
systems therefore has to be interpreted as an effective
Debye-Waller factor [42], which can be measured as area
under the quasielastic « peak in ¢ (w) or by determining the
plateau of the ¢,(t)-versus-log¢ curve. Correspondingly,
0o(T) should be interpreted as the extension of v (7)—the
sound velocity in the high-frequency limit of the « regime—
introduced in Sec. Il D to T<T.. v(7) for T>T, are given
by v2(T)=vo(T)/V1-f; (see Sec. NI D), and are also in-
cluded with filled squares in Fig. 21: v&(T) defined below
and above T, merge at T..

The mentioned dependence of v(T) on fy(T) has been
utilized to extract experimentally the zero wave-number limit
of the Debye-Waller factor via the relation fo(T)=1
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~[vo(T)/v&(T)]? [43.44] and to test the square-root singular-
ity as predicted by the MCT, fo(T)=fi+ho\o/(1=N\) for T
<T, and fo(T) =/, for T>T, [see Eq. (4)]. The dotted line in
Fig. 21 shows the square-root singularity translated to v% (7).
In our system, there is no possibility to detect the singularity
based on the IXS sound velocity [v,(T) for ¢=0.5], which
basically reflects the contribution from the microscopic pro-
cess (see Fig. 11). On the other hand, the BLS sound velocity
(g=1072) probes much lower momentum-transfer range, and
is thus affected also by the structural-relaxation processes. In
particular, the B-relaxation contribution to v,(7T) plays an
important role in the vicinity of T, (see Fig. 11), as can also
be inferred by comparing the solid and dashed lines in Fig.
21, the latter being obtained based on Eq. (23b) with A(w)
determined from the MCT asymptotic formula (29) for the 8
relaxation. Thus, the B relaxation must be included for reli-
able determination of fy(7) via the sound velocity data,
which is in full agreement with the conclusion drawn in Ref.
[44]. (See Fig. 13 of Ref. [44] where BLS data for CaKNO;
corresponding to solid line and filled squares in Fig. 21 are
shown.)

We studied in Sec. IV how the AOP manifests itself in the
spectral shape of the glass-state longitudinal and transversal
current spectra at low frequencies. For small wave numbers
where the sound resonance frequencies are located below the
low-frequency threshold of the AOP, wL(T)m“<Q_, there is
practically no effect from the AOP, and the longitudinal and
transversal current spectra are dominated by the sound exci-
tations of the Lorenzian spectral shape. By increasing the
wave numbers so that the sound resonance frequencies enter
the AOP region, O_<aw""™* the hybridization of the
sound mode with the AOquecomes important, and the shape
of the current spectra deviates from Lorenzian. As the wave
number is increased further, the interference of the sound
mode with the AOP leads to the positive dispersion of the
sound velocities, pushing w-""™ considerably above fre-
quencies expected from the %are dispersion. Thereby, there
opens a frequency window, where the appearance of the AOP
itself can be observed in the spectra at low frequencies. Fur-
thermore, our approximate formulas (35) predict that (i)
there is no g dependence in the peak frequency w,op of the
AQP portions in the current spectra, (ii) waop is nearly the
same for both of the longitudinal and transversal current
spectra since m"(w) = my(w) as shown in Fig. 7(c), and (iii)
the intensity of the AOP portion is stronger for the transver-
sal current spectra than for the longitudinal ones in the
pseudo first Brillouin zone. These theoretical predictions,
demonstrated in Figs. 15-20 for the LJ system, are in agree-
ment with previous findings from MD and IXS studies
[8,10,11,17]. Thus, the low-frequency excitations observable
at the same resonance frequency wuop in both of the glass-
state longitudinal and transversal current spectra are the
manifestation of the AOP. Usually, the boson peaks are dis-
cussed below T,. On the other hand, the glass state in the
present paper refers to T<<T.,. Since T.. is located above T,
our theoretical results for glasses apply also for some ranges
of the liquid state in the conventional terminology.

According to our theoretical results, it is essential to have
the positive dispersion of the transversal sound velocity for
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the appearance of the low-frequency excitations in the trans-
versal current spectra, whose presence has never been dis-
cussed so far. This comes out from our study on the density
dependence of the dispersion relation, shown in Figs. 17(a)
and 20(a) for the higher and the lower densities, respectively.
Such density dependence of the dispersion relation is in ac-
cord with the one reported from the computer simulation for
vitreous silica (see Fig. 4 of Ref. [10]). It would therefore be
of value if simulation studies could test whether or not our
theoretical prediction agrees with their data.

We notice that the intensity of the low-frequency excita-
tions for the LJ system studied in this paper is weaker than
the one, e.g., known from computer-simulation results on
silica [8,10]: the low-frequency excitations in the present
study are shoulders rather than peaks. In addition, the rela-
tive strength of the low-frequency excitations in the transver-
sal current spectra compared to those in the longitudinal ones
(see Figs. 18 and 19) is not so enhanced as in the cited
simulation results. Again, these features may be ascribed to
the fact that the LJ system can be classified as a fragile glass
former, in which the boson peak is less pronounced than in
strong glass formers like silica [40].

Finally, let us make a comment on the cutoff problem
mentioned in Ref. [24]. As already noticed there, the MCT
results for the hard-sphere system in stiff-glass states change
if the cutoff ¢" of the wave-number grids used in the calcu-
lations is varied. This is demonstrated in Fig. 22(a) showing
the ¢" dependence of the memory-kernel spectrum 71" (w) for
the hard-sphere system at packing fraction ¢=0.6 studied in
Ref. [24]. Tt is seen that the intensity of 7”(w) increases with
increasing ¢°. Furthermore, the broad harmonic-oscillation
“peak” reflecting the AOP, observable in 7i”(w) for the cutoff
¢"=40 adopted in Ref. [24], disappears for ¢"=120; it shows
up only as a shoulder. Such ¢* dependence reflects the slow
decrease towards zero of the direct correlation function c¢; of
the hard-sphere system for k tending to infinity, because of
which the relevant coupling coefficient V, [see Eq. (2b)]
does not approach zero even in the k— oo limit. However,
this does not mean that there is no AOP in the hard-sphere
system. As discussed in Sec. III C, the AOP portion of
m"(w), even when it is buried under the tail of the quasielas-
tic peak, is well extracted by the SGA spectrum rigg,(w).
Figure 22(b) demonstrates that there is no ¢* dependence in
iigsa(w) provided a sufficiently large ¢* is chosen. In this
sense, the AOP is well defined in the hard-sphere system.
But, it does not show up as a peak in /m"(w) due to the
two-mode contributions, which are neglected within the
SGA. Thus, the increase of the intensity of m”(w), in particu-
lar, the smearing out of the “gap” for 0 <w<()_, with in-
creasing ¢" is due to the development of the two-mode con-
tributions. Because of the strong anharmonic effects, no
harmonic-oscillation peak in the spectrum m”(w) is expected
for the hard-sphere system.

On the other hand, introducing the cutoff is equivalent to
softening the hard-sphere potential. Indeed, we have con-
firmed that there is no cutoff problem in the LJ system con-
sidered in this paper, and that all the essential results pre-
sented in Ref. [24] can be reproduced for this system. In
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particular, one observes harmonic-oscillation peak for the LJ
system in stiff-glass states as shown in Fig. 7(a), which is
free from the mentioned cutoff problem. Thus, the whole
physics discussed in Ref. [24] for stiff-glass states remain
valid for systems where particles interact with regular inter-
action potentials.
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