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We have used equilibrium and nonequilibrium molecular dynamics simulations to study the solute self-
diffusion coefficient and the shear rate dependence of the solution viscosity in solutions of model nanocolloidal
particles that range in mass ratio from �=1 up to �=50 and size ratio from s=1 up to s=4.03 at various
concentrations. The zero shear rate viscosities and the initial rates of shear thinning were determined from data
in the shear rate region in which the suspension is strongly shear thinning while the solvent remains Newtonian
or is weakly shear thinning. The rate of shear thinning increased dramatically with solute volume fraction,
regardless of whether the increase was due to increasing solute size or increasing the solute concentration. In
a series of simulations in which the mass ratio was varied while keeping the size ratio fixed at s=1, we found
that the approach of the viscosities and self-diffusion coefficients to their limiting mass ratio independent
values was well described by a rather simple exponential dependence on mass ratio. The concentration depen-
dence of the limiting infinite mass ratio values of the self-diffusion coefficients and zero shear rate viscosities
were determined, and used to compute the hydrodynamic radius RH of the solute particles by various methods.
The values of RH that were obtained by the different methods were reasonably consistent with each other, and
indicated that the radius at which the slip boundary condition holds is slightly smaller than the cross-interaction
radius between the solute and solvent particles.
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I. INTRODUCTION

The self-diffusion coefficient D for a single, rigid, spheri-
cal solute particle of mass m2 and radius RH that are large
compared to the mass and radius of the particles comprising
the infinite bath of equilibrium solvent of viscosity �s in
which it is dissolved, is given by the Stokes-Einstein formula
�1�

D =
kBT

�
=

kBT

C��sRH
, �1�

where kB is Boltzmann’s constant, T is the temperature, � is
the friction coefficient, and C is a numerical constant deter-
mined by the hydrodynamic boundary condition for the sol-
vent at the surface of the solute particle. The value of C is 6
for stick and 4 for perfect slip. The Stokes-Einstein relation
is expected to be valid when the solute undergoes diffusive
motion through a solvent that can be treated as an inelastic
hydrodynamic continuum. These conditions are usually re-
garded as being satisfied in the Brownian limit, convention-
ally defined as the limit where the solute to solvent mass
ratio �=m2 /m1 approaches infinity �2�. Equation �1� shows
that under these conditions, the self-diffusion coefficient is
expected to be independent of the mass of the solute particle.

Despite its origins in Brownian motion theory, the Stokes-
Einstein equation is often used to describe the relationship
between the solute diffusion coefficient and size and the sol-
vent viscosity for solutions of molecules that are of a size
and mass comparable to that of the solvent, even extending

to situations where the solute is just a tagged solvent mol-
ecule. However, the interpretation of the boundary condition
and the hydrodynamic radius of the solute particle then be-
come problematic. In an effort to clarify the circumstances
under which the Stokes-Einstein equation is satisfied, several
studies have recently been conducted to determine the way in
which the limiting behavior described by Eq. �1� is ap-
proached when the solute particle size and mass are in-
creased from values that are comparable to those of the sol-
vent �3–7�.

Bhattacharyya and Bagchi �3� used a mode coupling
theory to investigate the diffusion coefficient of a solute par-
ticle in a solvent, where the size of the solute particle was
comparable to the size of the solvent particles. They found
that the Stokes-Einstein relation with the slip boundary con-
dition is approached for size ratios of about 2–3, with only a
weak dependence on mass ratio.

Nuevo, Morales, and Heyes �4� used molecular dynamics
simulations to investigate the size and mass ratio dependence
of the velocity autocorrelation function and diffusion coeffi-
cient of the solute for size and mass ratios in the range 2–5
and 1–27, respectively. They found that when the density of
the solute particle was much less than the density of the
solvent particles, the velocity autocorrelation function oscil-
lated strongly at short times. However, the mass ratio depen-
dence of the self-diffusion coefficient was weak in compari-
son to the size ratio dependence, in agreement with other
studies. They used the Stokes-Einstein equation with a stick
boundary condition to analyze their results, but did not dis-
cuss the validity of this boundary condition, or the value of
the effective hydrodynamic radius, in detail. However, a
unique feature of their work was that they also considered
the concentration dependence of the solution viscosity and
the solute self-diffusion coefficient. They interpreted their
diffusion results in terms of a truncated power series expres-
sion for the concentration dependence of the long-time self-
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diffusion coefficient of a colloidal particle with stick bound-
ary conditions

D���
D

= 1 − kD,1� + ¯ , �2�

where D is the infinite dilution value of the solute self-
diffusion coefficient and � is the volume fraction of solute.
The value of kD,1 is 2.10 for stick boundary conditions �8,9�.
To interpret the concentration dependence of the viscosity,
they used a similar equation for the concentration depen-
dence of the viscosity of a suspension

����
�s

= 1 + k�,1� + ¯ , �3�

where �s is the solvent viscosity and the value of k�,1 was
assumed to be equal to the value of 2.5 calculated by Ein-
stein �10�, again assuming stick boundary conditions. The
agreement between the simulation results and the theoretical
expressions was only qualitative.

Ould-Kaddour and Levesque �5� used molecular dynam-
ics computer simulations to investigate the validity of the
Stokes-Einstein relation as the mass and size of the solute
particles were varied. They concluded that for solutions in
which the size ratio between the solute and solvent particle
diameters is fixed at s=d2 /d1=0.5, and the mass ratio is
varied, the Stokes-Einstein formula with a slip boundary
condition becomes valid when the mass ratio, �, is greater
than 40. For solutions of particles with mass ratio �=1 and
varying size ratio, they concluded that the Stokes-Einstein
formula with slip boundary conditions is valid for size ratios
s greater than 4. Combining the data for all systems that were
deemed to be in the hydrodynamic limit, they obtained a
value for the effective hydrodynamic radius of the solute of
a=��12

* , where �=1.1±0.1 and �12
* is the cross radius of the

Lennard-Jones interaction between the solvent and solute
particles.

Schmidt and Skinner �7� performed a series of very pre-
cise molecular dynamics simulations using a model for the
solute particles that was designed to maintain the density at
the same value as the average internal density of a solvent
particle. In agreement with the results of Ould-Kaddour and
Levesque �5�, they found that using a hydrodynamic radius
equal to the cross radius of the Lennard-Jones interaction
between the solute and solvent particles gave results that
converged to the Stokes-Einstein relation with a slip bound-
ary condition at sufficiently high values of the mass ratio
��=100�.

In all of the above studies, the slip boundary condition
seems most appropriate because the interaction between the
solvent and solute particles is a central force with no tangen-
tial component, and there was no attractive component to the
interaction between solute and solvent particles that could
create a strongly adsorbed layer of solvent around each sol-
ute particle. Despite initial indications to the contrary �11�,
there now appears to be a consensus that the slip boundary
condition is obtained in the Brownian limit for this type of
solute-solvent interaction. However, there is not yet complete
agreement on the way that the hydrodynamic radius should

be calculated, especially for particles that are too light or
small for their dynamic properties to have reached the
Brownian limit. It remains to be determined whether, by a
suitable choice of the hydrodynamic radius, the range of va-
lidity of the Stokes-Einstein relation could be extended to
lower mass or size ratios than the limiting values that have so
far been observed.

We have published the results of a preliminary investiga-
tion of the behavior of the solute and solvent velocity auto-
correlation functions, memory functions, self-diffusion coef-
ficients, and suspension viscosities as a function of the mass
ratio � for particles with size ratio s=1 interacting via a
truncated and shifted Lennard-Jones potential �6�. The vis-
cosity of a suspension is generally more important in indus-
trial and technological applications than the self-diffusion
coefficient of the solute, but apart from the investigation of
Nuevo et al. �4� and our previous study, there have been no
detailed studies of changes in the viscosity of a nanocolloidal
suspension, as the Brownian limit is approached. Our results
showed that the memory function of the solute velocity au-
tocorrelation function decayed rapidly in comparison to the
velocity autocorrelation function, at high mass ratio �=10
and low solute concentration. This was interpreted as a sig-
nature of the approach to the Brownian limit. The shear rate
dependence of the viscosity became more pronounced as the
mass ratio was increased, so that for the highest mass ratio
�=50 studied, the solution viscosity was significantly shear
thinning over a range of shear rates for which the solvent
was essentially Newtonian. The concentration dependence of
the solute self-diffusion coefficient and the zero shear rate
suspension viscosity were also studied. When analyzed in
terms of the thermodynamic �rather than hydrodynamic� vol-
ume fraction, values of kD,1=0.95 and k�,1=2.33 were found
at mass ratios of �=10 and �=20, respectively. These values
did not represent asymptotic high mass ratio limits, and no
detailed discussion of the hydrodynamic radius, the bound-
ary condition, or the hydrodynamic volume fraction was
given.

In this paper, we extend our results for the disparate mass,
s=1 systems, including higher mass ratio ��=50� and con-
centration �x2=0.5� data. We determine the infinite mass ra-
tio limiting behavior for solute particles with s=1 by ex-
trapolation. We also present results for disparate-size systems
in which the volume fraction is varied by changing the con-
centration at fixed mass and size ratio in the first set of data,
and then by changing the size and mass ratios at fixed num-
ber fraction in the second set. The shear rate dependence of
the solution viscosity is determined for both types of system
and from these results we obtain the zero shear rate viscosity.
We use our data for the concentration dependence of the zero
shear rate viscosity to obtain an independent measure of the
hydrodynamic radius that is then compared with that ob-
tained from the Stokes-Einstein equation assuming a slip
boundary condition.

II. SIMULATION DETAILS

We consider two types of system. In the first, disparate-
mass system, the mass ratio �, between the solute and sol-

MCPHIE, DAIVIS, AND SNOOK PHYSICAL REVIEW E 74, 031201 �2006�

031201-2



vent particles is increased while keeping the particle sizes
equal. In the second, disparate-size system, the solute par-
ticle size is also increased in such a way that the internal
density of the solute particle approaches the average density
of the solvent continuum, using a scheme that is similar to
that used by Schmidt and Skinner �7�. This system is in-
tended to more closely resemble experimental colloids where
the particles are density matched to the solvent so that the
effect of gravity and associated sedimentation problems are
avoided.

The particles interact via a truncated and shifted Lennard-
Jones potential which is modified to include a hard core �12�.
A similar potential was used by Nuevo et al. �4� and by
Schmidt and Skinner �7�. The interaction potential �in re-
duced units� is

�ab�r� = 4��r − cab�−12 − �r − cab�−6� + 1 �4�

if cab	r	cab+21/6, where cab is the core diameter of the
interaction between particles of species a and b= �1,2�. For
separations r
cab+21/6, the potential is zero. The solvent
�species 1� particles are taken to have no core c11=0 and unit
mass m1=1. The solute particles �species 2� have core radius
c22 related to the size ratio and mass m2=�, where � is the
mass ratio between the solute and solvent particles. The
value of the cross-interaction core radius is c12= 1

2c22. We
have chosen a truncation point of r=21/6, corresponding to
the minimum of the potential, which results in a hard, purely
repulsive interaction �Weeks, Chandler, and Andersen
�WCA� �13��.

To minimize the number of parameters in the model sys-
tem and to best remove the influence of the nature of the
interaction between the particles, all of the interaction pa-
rameters except for the core radius are taken to be the same
regardless of the species of the particles.

To study the size ratio between the species, an equivalent
hard sphere diameter of the particles must be approximated.
Hess, et al. �14� suggest a number of methods to approxi-
mate the size of the particles in a one-component equilibrium
WCA fluid. The simplest method they outline is also the one
which gives the best results in their study of the comparison
between a modified Carnahan-Starling relation and results
obtained from simulations. In that method the diameter of
the particles is that value of r for which ��r�=kBT. We here
take the reduced temperature of the system to be kBT=1 in
which case the solvent particles have diameter d1�1 and the
solute particles d2�1+c22.

The systems are simulated using the homogeneous
SLLOD equations of motion which induces a linear velocity
profile in the fluid. The temperature and pressure of the sys-
tem are controlled via a Gaussian isokinetic thermostat �15�
and a modified Nosé-Hoover barostat devised by Mel-
chionna, Ciccotti, and Holian �16�. The full equations of mo-
tion are

ṙi =
pi

mi
+ i�̇yi − ��ri − R� ,

ṗi = Fi − i�̇pyi − �� + ��pi,

� =
1

2K0
�

i
� pi

mi
· Fi − �̇

pxipyi

mi
� − � ,

�̇ =
1

Qp
	 p

p0
− 1
 ,

V̇ = 3�V , �5�

where ri, pi, and mi are the position, peculiar �nonstreaming�
momentum and mass of the ith particle, �̇ is the strain rate, R
is the position of the center of mass, p0 is the desired pres-
sure, � is the thermostat multiplier, K0 is the total kinetic
energy, � is the barostat multiplier, Qp is a parameter associ-
ated with the strength of the barostat, and V is the system
volume. Note that the expression for the thermostat multi-
plier differs from the usual Gaussian isokinetic thermostat to
include the effect of the barostat. To maintain the velocity
profile the SLLOD equations of motion should be used in
conjunction with compatible periodic boundary conditions
such as those of Lees and Edwards �17�.

The instantaneous pressure is given by p= 1
3Tr�P� where

P is the pressure tensor. The microscopic expression for the
pressure tensor in a homogeneous system with only pairwise
additive interactions, is �15�

PV =�
i

pipi

mi
−

1

2�
i�j

rijFij� , �6�

where rij =r j −ri is the minimum-image pair separation vec-
tor and Fij is the pair force between particles i and j. In
systems of particles with no internal degrees of freedom in-
teracting via a central force such as the one considered here,
the instantaneous pressure tensor is symmetric.

The shear rate dependent viscosity of the suspension can
be calculated by

���̇� = −
Pxy

�̇
, �7�

where Pxy is the xy component of the pressure tensor. Re-
cently there has been much work on a new class of integra-
tors �18–22�. These so-called symplectic integrators are
stable over a large range of time step �t� values. The well
known velocity-Verlet integrator �23,24� is an example of an
equilibrium symplectic integrator but is only applicable to
Newtonian equations of motion.

Zhang et al. �25,26� have developed symplectic integra-
tors for two sets of equations of motion which include the
Gaussian thermostat. The first integrator was developed for
the undriven, equilibrium equations of motion with the
Gaussian isokinetic thermostat �25�. The second integrator is
an extension of this to include the shear rate dependent terms
of the SLLOD equations of motion including the shear rate
dependent thermostat multiplier �26� �Appendix B�. We have
extended this series of integrators to include the barostat
terms, details of which may be found in the Appendix.

These symplectic integrators possess superior stability
and exhibit much less drift than the fourth order Gear inte-
grator �27�, when applied to these equations of motion. They

VISCOSITY OF A BINARY MIXTURE: APPROACH TO¼ PHYSICAL REVIEW E 74, 031201 �2006�

031201-3



do, however, have a higher degree of error of O�t3�. These
errors do not accumulate in any particular direction in the
conserved quantities so that the energy or the temperature
remain constant or fluctuate around a central value. Zhang et
al. �26� have also shown that numerical errors in the pressure
and other nonconserved properties are less for the Zhang
series of integrators than for the Gear integrator.

III. VISCOSITY OF A DISPARATE-MASS BINARY FLUID

The first series of investigations considers a model sus-
pension where the mass of the solute particles is varied while
keeping the size ratio constant at s=1. The core diameter of
the solute particles is set to zero, so that the only difference
between the solute and solvent particles is their respective
masses. This is an interesting system from a theoretical point
of view since the Brownian limit has often been taken to
mean that the mass ratio between the solute and solvent par-
ticles approaches infinity, �→� �2,28,29�, without referring
to the size ratio.

Two sets of simulations were performed to test the mass
ratio dependence of the viscosity of this model system. The
simulations were carried out at a constant reduced tempera-
ture of T=1.0 and number density of n=0.85, with the total
number of particles being set to N=2048.

The first set of simulations had mass ratios �= �1
−10,20,30,40,50� at a constant number of solute particles
N2=80 and total number of particles N=2048, giving a num-
ber fraction of x2=N2 /N=80/2048�0.04 for the number
fraction of solute particles. �Generally only results for the
mass ratios �= �1,2 ,5 ,10,20,50� are shown for clarity.� The
shear rate was varied in steps of 0.04 up to 0.2, after which it
was varied in steps of 0.2 up to 1.6. The number of time
steps used was 20 000 for the zero shear rate run, 120 000 for
the �̇=0.04 and 0.08 runs, 80 000 for the �̇=0.12 and 0.16
runs, and 40 000 for the higher shear rate runs. Half of the
time steps were for equilibration and the other half were for
production of results.

The second set of simulations had mass ratios
�= �1,2 ,5 ,10,20� and number fractions x2

= �0.04,0.1,0.2,0.5�, corresponding to solute numbers N2

= �80,205,410,1024�, again keeping the total number of par-
ticles fixed at N=2048. The shear rate was varied in steps of
0.04 up to 0.2. The number of time steps used in this set of
simulations was the same as those used in the first set of
simulations.

The viscosity computed from the first set of disparate-
mass simulations is shown in Fig. 1. The viscosity shows
typical shear thinning but also an interesting phenomenon
where the viscosities tend to become equal regardless of
mass ratio at high shear rates. The degree of shear thinning is
increased in the solutions with higher mass ratios, and the
onset of shear thinning occurs at a much lower shear rate for
the �=50 solution than for the pure solvent ��=1�. This
trend is also observed in the solutions with lower mass ratio,
but is less pronounced. By symmetry arguments it can be
shown that if a power series expansion of the shear rate
dependence of the viscosity exists, then to leading order in �̇,
the viscosity is proportional to the square of the shear rate

���̇� = �0 − �2�̇2, �8�

where �0 is the zero shear rate viscosity and �2 is the second
order coefficient in the expansion. There has been much de-
bate about the expected functional form of the viscosity at
low shear rates �30–34� and the argument is far from re-
solved, however we found that the parabolic functional form
described our data well, and we used it as a convenient
method for extrapolating to the zero shear rate viscosity and
quantifying the degree of shear thinning at low shear rates.
Only results for shear rates lower than the onset of power
law shear thinning were included in the fits �i.e., the first five
values of the shear rate �̇�0.2�. At the highest value of the
concentration and mass ratio �x2=0.50 and �=10,20�, the
maximum shear rate included in the fits was reduced further
if the quadratic fit failed to describe the data well. In these
cases, the first three values were used to obtain the lines of
best fit. The results of this analysis may be seen in Table I.
As expected, the viscosity of the suspension increases with
increasing mass ratio and concentration. The first row of data
��=1� demonstrates the reproducibility of our results. For
this value of �, the solvent and solute are identical, so each
number fraction represents a system of 100% solvent. The
values of �0 in this row are all within uncertainties of each
other, and the same is true for the values of �2. The zero
shear rate viscosity of the pure solvent is obtained by aver-
aging these values, giving �s=2.261±0.004, and the average
value of �2 is equal to 1.1±0.1.

Due to the scaling units used the viscosity of the pure
solute fluid �x2=1� is related to the viscosity of the pure
solvent by �0

solute=�1/2�0
solvent. The state point of the solute

fluid is the same as that of the solvent fluid, that is the tem-
perature and pressure remain constant under this scaling.

We expect the value of the zero shear rate viscosity to
become mass independent as the mass ratio is increased at a
given solute number fraction, similar to the self-diffusion
coefficient. Therefore, it should be possible to fit a function
with an asymptote to the data to obtain a value of the limit-

FIG. 1. Viscosity versus shear rate for different values of the
mass ratio at fixed solute concentration x2�0.04 and fixed size ratio
�s=1�. Error bars are approximately the same size as the plot sym-
bols at low shear rates and smaller than the plot symbols at high
shear rates and are omitted for clarity.
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ing infinite-mass-ratio suspension viscosity at each value of
the number fraction. We found that our results were well
described by the following function:

�0 = �s + ��� − �s��1 − e−a��−1�� , �9�

where �� is the limiting value of the viscosity at infinite
mass ratio and �s is the solvent ��=1� viscosity. This func-
tion has the desired behavior; at a mass ratio of �=1, we
have �0=�s, and at infinite mass ratio, the suspension vis-
cosity approaches a constant value ��; but we know of no
theoretical justification for this functional form for the mass
ratio dependence.

The results of nonlinear least squares fits to Eq. �9� are
shown in normalized form in Fig. 2. A surprising result is
that the rate of approach to mass-independence varies non-
monotonically with concentration. The value of a is smallest
for number fraction x2=0.04, then it increases significantly at
x2=0.10, after which it begins to decrease again. Encouraged
by the success of this relatively simple description, we have
reanalyzed our data for the mass ratio dependence of self-
diffusion coefficients reported in our earlier work �6�, using
the functional form

D − D�

Ds − D�

= e−b��−1�, �10�

where Ds is the self-diffusion coefficient of the pure solvent.
The results shown in Fig. 3 indicate that Eq. �10� describes
the data surprisingly well, and once again we observe the
surprising result that the approach of the self-diffusion coef-
ficient to mass independence occurs most slowly for the low-
est concentration system. Values of the limiting infinite mass
ratio viscosities and self diffusion coefficients, along with the
rates of approach to mass ratio independence, are shown in
Table II.

The concentration dependence of the self diffusion coef-
ficient is very well fitted by a quadratic function that gives a
value for D at infinite dilution and infinite mass ratio of
D���=0�=0.056±0.001. This result can be used, with the
solvent viscosity found previously ��s=2.261±0.004� to ob-
tain a value of RH=0.63±0.01 for the hydrodynamic radius,
assuming that the slip boundary condition applies. The
solute-solvent interaction cross radius, suggested by Ould-
Kaddour and Levesque �5� as a possible candidate for the
hydrodynamic radius, is only r12= �d1+d2� /2=1.0, which is
significantly greater than this value.

TABLE I. Mass-ratio dependence of the zero shear rate viscosity �0 and initial rate of shear thinning �2

for disparate-mass �equal size� suspensions, for various number fractions x2.

�

x2=0.04 x2=0.10 x2=0.20 x2=0.50

�0 �2 �0 �2 �0 �2 �0 �2

1 2.265�5� 1.2�2� 2.257�6� 1.0�2� 2.262�5� 1.1�2� 2.26�6� 1.1�2�
2 2.290�5� 1.1�2� 2.346�6� 1.3�2� 2.435�6� 1.7�2� 2.716�7� 2.5�2�
5 2.333�5� 1.1�2� 2.470�6� 1.5�2� 2.715�5� 2.8�2� 3.495�7� 4.3�3�

10 2.375�6� 1.4�2� 2.580�5� 2.2�2� 2.950�5� 3.3�2� 4.38�1� 12.8�9�
20 2.424�5� 1.9�2� 2.699�8� 3.3�4� 3.247�5� 5.3�2� 5.48�1� 23�1�
30 2.444�6� 2.1�2�
40 2.468�5� 2.2�2�
50 2.473�5� 2.1�2�

FIG. 2. Approach of the viscosity to a mass-ratio independent
value for different values of the solute concentration.

FIG. 3. Approach of the solute self-diffusion coefficient to a
mass-ratio independent value for different values of the solute
concentration.
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We now consider the concentration dependence of the vis-
cosity. The solution viscosity is plotted against the thermo-
dynamic volume fraction of solute for different values of the
mass ratio in Fig. 4. The concentration dependence of the
limiting infinite mass ratio viscosity from Table II is also
shown. The short dashed line is the expression for the vis-
cosity of a suspension of colloidal hard spheres including
hydrodynamic interactions with the stick boundary condi-
tion, given by Wajnryb and Dahler �35�,

�

�s
= 1 + 2.5� + 5.9147�2 �11�

and the long dashed line is their expression for slip boundary
conditions

�

�s
= 1 + � + 1.8954�2. �12�

At low concentrations, the concentration dependence of
the viscosity for infinite mass ratio might be expected to
resemble the results for a colloidal suspension, as described

by the Einstein relation �3� with k�,1=2.5. This equation pre-
dicts that the viscosity should be simply related to the vis-
cosity of the solvent and the hydrodynamic volume fraction
occupied by the solute particles, independent of the solute to
solvent particle mass ratio. The Einstein expression is de-
rived from a hydrodynamic calculation of the flow around a
massive solute particle suspended in a fluid, and thus will
become valid in the hydrodynamic limit. This limit is
reached when the solvent particles act not as a collection of
microscopic particles, but as a continuous fluid, and in this
sense could also be called the continuum limit. The condi-
tions for this limit will be satisfied when the time scale as-
sociated with the motion of the solute particles becomes
much longer than the time scale associated with the relax-
ation of the solvent fluid. An appropriate time scale for the
solute particles can be defined by the average time taken to
move one particle diameter. If the solute particles are in ther-
mal equilibrium with the solvent, this time will increase as
the square root of the mass ratio ���1/2. In the Brownian
limit �→�, this time scale will also go to infinity �→�.
Therefore a sufficient condition for the approach to the hy-
drodynamic limit is that the Brownian limit is approached.

The results of fitting the Einstein equation to the low
number fraction zero shear rate viscosities, up to and includ-
ing x2=0.20, were presented in a previous publication �6�.
The results showed that the concentration dependence de-
scribed by the Einstein formula is approached, but not
reached, as the mass ratio is increased to �=20. A similar
result was found by Nuevo et al. �4�. It is now clear that
there are reasons for expecting that the Einstein equation will
not describe the limiting behavior of this system. We have
already seen that the slip boundary condition seems to be
most appropriate for the systems that we are simulating,
whereas the Einstein equation assumes a stick boundary con-
dition. It is also known �36,37� that the Einstein relation is
only expected to be valid for very dilute suspensions �
�0.03. Therefore, in this paper, we have interpreted our re-
sults using Wajnryb and Dahler’s extension of Einstein’s for-
mula to second order in volume fraction with stick boundary
conditions �Eq. �11�� and their expression for the concentra-
tion dependence of the viscosity to second order in volume
fraction, assuming slip boundary conditions �Eq. �12��. The
coefficient of the first order term of Eq. �11� is Einstein’s
result 2.5, and the coefficient of the second order term
5.9147 is an improved value of the one originally calculated
by Batchelor �38� as 6.2. Equation �12� �35� appears to be the
only result published for the slip boundary condition.

In order to accurately compare our results with theoretical
predictions which give the concentration in terms of volume
fraction, we must find an appropriate way to calculate the
hydrodynamic volume fraction. It is helpful here to clearly
distinguish between the hydrodynamic and thermodynamic
volume fractions. This problem has previously been consid-
ered in the context of comparing the thermodynamic and
hydrodynamic properties of solutions of particles with soft
repulsive interactions �39�. The hydrodynamic volume frac-
tion is the volume fraction calculated from the hydrodynamic
radius, which may differ from the bare or “dry” volume of
the particles. Calculation of the hydrodynamic volume frac-
tion becomes problematic for very small solute particles, be-

TABLE II. Limiting infinite mass ratio values of the solution
viscosity and solute self-diffusion coefficient and their rate of ap-
proach to the limit �see Eqs. �9� and �10��, for various number
fractions x2.

x2 �� a D� b

0.04 2.471�4� 0.093�6� 0.052�2� 0.20�6�
0.1 2.72�3� 0.15�2� 0.0501�7� 0.31�4�
0.2 3.32�7� 0.13�2� 0.0435�7� 0.31�3�
0.3 0.0381�5� 0.31�2�
0.4 0.034�1� 0.33�3�
0.5 6.1�2� 0.09�1� 0.0287�8� 0.35�2�

FIG. 4. Relative zero shear rate viscosity versus thermodynamic
volume fraction for different solute to solvent particle mass ratios,
keeping the size ratio constant at s=1. The mass ratios are �=1
�unfilled circles�, �=2 �squares�, �=5 �diamonds�, �=10 �crosses�,
�=20 �plus signs�, and �=� �filled circles�. The solid line is a
quadratic fit to the �=� data and the short and long dashed lines
are the theoretical curves for stick and slip boundary conditions,
respectively.
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cause it requires knowledge of the radius of the surface
around the solute particle at which the hydrodynamic slip or
stick boundary condition is satisfied by the solvent. For a
very small particle, the hydrodynamic radius may differ by a
significant fraction from the bare radius of the solute particle.
On the other hand, the thermodynamic volume fraction is
well defined, regardless of the sizes of the components of a
solution. It is defined as

� =
Vsolute

V
=

N2v2

V
= nx2v2, �13�

where v2 is the partial molecular volume of solute particles

v2 = 	 �V

�N2



N1

, �14�

n= �N1+N2� /V is the total number density of the suspension,
and x2 is the number fraction of solute particles. The total
volume of the system is given by

V = N1v1 + N2v2. �15�

Particles with identical interactions and sizes will have iden-
tical molar volumes, regardless of their mass, in an equilib-
rium solution. Using this fact, we find that v2=1/n, where n
is the total number density. Equation �13� then shows that for
this series of simulations, in which the mass ratio is varied at
constant size ratio s=1, the thermodynamic volume fraction
� of the solute particles is equal to the number fraction x2.
Calculation of the effective particle diameter from the ther-
modynamic volume fraction, assuming that all particles are
identical spheres occupying one molar volume each, gives
d=1.31. This can be used to obtain a value of the hydrody-
namic radius of RH=0.655, which agrees reasonably well
with the value of 0.63 found earlier from the limiting infinite
mass-ratio self-diffusion coefficient and the Stokes-Einstein
relation. The partial molecular volume is an equilibrium ther-
modynamic property, which will be independent of the mass
of the solvent particle, but the hydrodynamic radius obtained
from the self-diffusion coefficient and the Stokes-Einstein
relation is a dynamic property that will depend on the mass
ratio. Therefore, the comparison must be made cautiously,
but the thermodynamic volume fraction is nevertheless a
convenient measure of concentration for the comparison in
Fig. 4.

A quadratic fit to the infinite mass ratio viscosity versus
thermodynamic volume fraction data shown in Fig. 4 gives
the result � /�s=1+1.2�3��+4.0�9��2. This is significantly
different from the expected result for the slip boundary con-
dition �12�. The discrepancy could be due to an inadequate
estimate of the hydrodynamic radius, or an incorrect assump-
tion regarding the hydrodynamic boundary condition.

If the hydrodynamic radius is instead calculated from the
bare radius, the volume fraction calculated for the highest
concentration �x2=0.5� is �=0.22. This would place the
highest concentration points for �=� and �=20 both well
above the theoretical curve for the stick boundary condition.
Clearly, the stick boundary condition does not apply. How-
ever, when the volume fraction is calculated from the ther-
modynamic volume per particle, the highest concentration

point at �=0.50, as shown in Fig. 4, falls above the theoret-
ical curve for the slip boundary condition. If it is assumed
that the slip boundary condition applies, and the volume
fraction is calculated using a hydrodynamic radius that has
been adjusted to force agreement with the theoretical curve, a
hydrodynamic radius of RH=0.73 is found. This value is
larger than the Stokes-Einstein hydrodynamic radius
0.63±0.01 and the thermodynamic radius 0.655 but smaller
than the interaction cross radius 1.0. The agreement between
the values of hydrodynamic radius calculated from the con-
centration dependence of the viscosity and the Stokes-
Einstein equation is only fair. Improvement of the agreement
may require reconsideration of the remaining assumption of
perfect slip. More surprising is the approximate agreement
between the values of the hydrodynamic radius and the ther-
modynamic and cross-interaction radii. These quantities are
not defined in terms of hydrodynamic quantities and do not
vary with the mass ratio, but in this instance, they neverthe-
less provide reasonable estimates of the hydrodynamic ra-
dius.

IV. VISCOSITY OF A DISPARATE-SIZE BINARY FLUID

In experimental studies of colloidal systems, the solute
particles generally have constant density that is independent
of the size of the particle. If this density is equal to the bulk
solvent density then the effects of gravity can be ignored and
the colloidal particle motion is then due solely to Brownian
motion, hydrodynamic drag, and interactions with other sol-
ute particles. We wish to study a system that approaches this
behavior as the size ratio between the solute and solvent
particles is increased.

In our simulations of solutions of disparate-sized par-
ticles, we have changed the particle size by increasing the
core of the solute particles in the potential energy function
�4�. The density of the solute particles is chosen to fulfil two
limiting requirements. The first is that at a size ratio of s
=d2 /d1=1 the mass of a solute particle equals the mass of a
solvent particle, so that in the equal size limit the particles
are identical. The second is that in the limit as the size ratio
between the species approaches infinity �s→�� the mass of
the solute particle is such that it has an internal mass density
as close as possible to the fluid density surrounding it. A
convenient method of achieving this is to take the density of
the solute particle core �see Eq. �4��, of radius 1

2c22, to be
equal to the fluid density and the density of the shell, of
thickness 1

2 , to be equal to the internal density of a solvent
particle. Figure 5 shows the approximate size ratio obtained
using this scheme. Note that in calculating the core radius for
specific mass ratios, the bulk number density of the solvent is
taken as the zero shear rate, pure solvent ��̇=0, x2=0� num-
ber density. This is an approximation which is good at low
volume fraction but becomes progressively worse as the sol-
ute volume fraction is increased. For the volume fractions
studied here this approximation is adequate.

The internal density of the solvent particles, which have
mass m1=1 and diameter d1=1, is 6 /�, and the density of
the pure solvent at constant pressure is the equilibrium num-
ber density n0. The mass of the core of the solute particles is
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mcore =
�

6
c22

3 n0 �16�

and the mass of the shell is

mshell = �c22 + 1�3 − c22
3 . �17�

It is important to be able to characterize the solute particles
primarily by size. This requires that the sum of equations
�16� and �17� be solved to give the core diameter c22 as a
function of solute mass. For a pure solvent number density of
n0=0.85 the core diameters corresponding to the set of mass
ratios investigated may be seen in Table III.

Two sets of simulations were performed to study the ef-
fect of solute size on the viscosity of a model suspension.
The simulations were performed at a constant temperature of
T=1.0 and pressure of p=9.04, which corresponds to a pure
solvent fluid number density of n0=0.873. As in our previous
set of simulations, the total number of particles was set to
N=2048.

The simulations of the disparate-size mixtures were per-
formed at constant solution pressure to ensure that the results
would be comparable to our s=1 results in the previous sec-
tion. For equal sized particles, the thermodynamic properties
of the solution remain constant as the solute to solvent par-

ticle mass ratio and the concentration are increased. In the
current set, the thermodynamic properties must change when
the particle size ratio or the concentration are changed. The
most convenient way of maintaining comparable conditions
for the two sets of simulations is to keep the solution pres-
sure constant.

The first set of simulations was used to study the size ratio
dependence of the suspension viscosity. The simulations had
mass ratios �= �1,2 ,5 ,10,20,50� and a constant molar con-
centration of solute particles of x2�0.005 corresponding to
N2=10. The volume fraction of the solute particles increases
as the mass ratio increases, so the number fraction was cho-
sen to allow the study of reasonably large size ratios, corre-
sponding to large volume concentrations. The shear rates
used were �̇= �0,0.02,0.1,0.2,0.3�, with a time step of ei-
ther t=0.01 or 0.005 and a total number of time steps of
100 000 for equilibration and a further 100 000 for produc-
tion of results. The �=10 and 50 simulations were extended
to shear rates of �̇=1.0 in steps of 0.1.

The second set of simulations was used to study the
concentration dependence of the suspension viscosity at a
fixed value of the size �and mass� ratio. The mass
ratio was set at �=10, corresponding to a size ratio of s
=2.225, and the number fraction was taken to be x2
= �0.001,0.005,0.01,0.02,0.04�. The shear rates, time step
and numbers of time steps were the same as those used in the
first set of simulations. The x2=0.005 and 0.01 sets were
extended to �̇=1.0 in steps of 0.1.

The shear rate dependence of the viscosity for the x2
=0.005 and �=10 suspensions at low shear rates are shown
in Figs. 6 and 7. Both figures show similar behavior. The
viscosity at low shear rates depends strongly on the number
fraction and size ratio. The viscosity decreases with increas-
ing shear rate. The suspensions with larger number fraction
or larger size ratio, both of which correspond to larger vol-
ume fractions, show a greater degree of shear thinning, and
this shear thinning is seen to occur at lower shear rates. For
the x2=0.005, �=50 suspension the Newtonian region is
never reached. At large shear rates the suspension viscosities

TABLE III. Core diameters c22 and corresponding size ratios s
used in the disparate-size mixture simulation for various solute to
solvent mass ratios �.

� c22 s

1 0 1

2 0.262 1.262

5 0.735 1.735

10 1.225 2.225

20 1.869 2.869

50 3.030 4.030

FIG. 5. Approximate size ratio s between solute and solvent
particles. Squares represent the composite core-shell solute par-
ticles. The solid line is the size ratio of solute particles with an
internal density equal to the solvent particles and the dashed line
that of neutrally buoyant solute particles.

FIG. 6. Viscosity versus shear rate for the x2=0.005 disparate-
size suspension, for various mass �and size� ratios. The different
symbols correspond to mass ratios of 1 �unfilled circles�, 2 �unfilled
squares�, 5 �unfilled diamonds�, 10 �filled circles�, 20 �filled
squares�, 50 �filled diamonds�.
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do not approach a common limiting value, unlike the s=1
simulations, see Fig. 1. Heyes �40� has observed strong shear
thinning of hard sphere suspensions modeled by a Brownian
dynamics simulation algorithm1 which does not include the
solvent explicitly and does not give any dependence on mass
ratio. Heyes found that the degree of shear thinning increased
with increasing solute volume fraction, as is observed in this
work.

The shear thinning behavior of these suspensions is much
more pronounced than that of the equal size suspensions de-
scribed in the previous section. To obtain the zero shear rate
viscosities and a quantitative measure of the initial rate of
shear thinning, we fitted a second order polynomial function
to the viscosity versus squared shear rate data, given by

���̇� = �0 − �2�̇2 + �4�̇4. �18�

The results of these fits are shown in Tables IV and V.
We again used the thermodynamic volume fraction as our

measure of concentration for the disparate-size suspensions.
In constant pressure simulations at low solute concentration,
it is a very good approximation to assume that the partial
molecular volume of the solvent remains constant regardless
of solute concentration. Then, if n0 denotes the number den-
sity in the pure solvent, the partial volume of the solute par-
ticles in a suspension at the same pressure will be given by

v2 =
1

nx2
�1 −

n

n0
�1 − x2�� , �19�

so that the volume fraction of the solute particles will be
given by

� = 1 −
n

n0
�1 − x2� . �20�

The partial volume of the solute particles in the first set of
simulations, in which the solute number fraction remains
fixed at x2�0.005, was calculated using equations �14� and
�19�. The first expression was evaluated by performing simu-
lations at the state points �N=2047,N2=9� and �N
=2049,N2=11�, with T=1.0, p=9.04, and �̇=0, and approxi-
mating v2 by

v2�N = 2048,N2 = 10� = 	 �V

�N2



N1

�
1

2
�V�N=2049,N2=11� − V�N=2047,N2=9�� . �21�

The partial volumes from this calculation and those calcu-
lated from Eq. �19� are compared in Table VI against the
bare volume of a solute particle �s3 /6, which is expected to
become a good approximation to the partial volume for large
values of s. It can be seen that the thermodynamic partial
volume is very well approximated by assuming that partial
volume of the solute particles remains constant. The thermo-
dynamic volume fractions for the disparate-size solutions
calculated using the partial molecular volumes given in col-
umn 5 of Table VI are shown in Table VII.

The zero shear rate viscosities from both sets of simula-
tions are plotted against thermodynamic volume fraction in
Fig. 8. The difference between altering the volume fraction
by changing the concentration or the size of the solute par-
ticle is small for these solutions. A quadratic fit to the vis-

1The particular Brownian dynamics algorithm used by Heyes in-
cludes the random Brownian force, the hydrodynamic drag force,
and the direct solute-solute interaction forces. It does not include
the solvent mediated many-body hydrodynamic interactions be-
tween the solute particles.

TABLE IV. Variation of the fit coefficients in Eq. �18� with mass
and size ratio at constant solute number fraction x2=0.005.

� s �0 �2 �4

1 1 2.63�2� 3.4�7� 13�6�
2 1.262 2.63�2� 2.7�8� 7�7�
5 1.735 2.62�1� 4.8�5� 35�5�

10 2.225 2.79�2� 4�1� 14�8�
20 2.869 2.99�3� 6.6�10� 32�11�
50 4.03 3.60�7� 12�3� 63�20�

TABLE V. Variation of the fit coefficients in Eq. �18� with solute
number fraction x2 at constant mass ratio �=10 and size ratio s
=2.225.

x2 �0 �2 �4

0 2.62�3� 3.4�13� 12�11�
0.000976563 2.64�2� 2.9�9� 8�8�
0.004882813 2.79�2� 4.0�10� 14�8�
0.009765625 2.95�4� 4.8�15� 17�13�
0.01953125 3.36�4� 9.2�15� 42�13�
0.0390625 4.27�3� 21.6�12� 120�10�

FIG. 7. Shear rate dependent viscosity of the �=10 �s
�2.225� disparate-size suspension, for various solute number frac-
tions x2=0.0 �unfilled circles�, 0.001 �unfilled squares�, 0.005 �un-
filled diamonds�, 0.010 �filled circles�, 0.020 �filled squares�, and
0.040 �filled diamonds�.
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cosity versus thermodynamic volume fraction results for the
constant �=10 data gives � /�s=1+1.6�2��+5.4�8��2

�shown as a dot-dash line in Fig. 8�. The constant x2
=0.005 data covered a smaller range of volume fractions,
and were better fitted by a straight line, with the result
� /�s=1+1.2�3��. The fact that the disparate-size data and
the extrapolated infinite mass ratio, s=1 data do not fall on a
common curve when plotted against thermodynamic volume
fraction indicates again that the thermodynamic volume frac-
tion does not quite match the hydrodynamic volume fraction.
The radius of the �=10, s=2.225 spheres calculated from
the partial molecular volume is r=1.25, which can be com-
pared with the interaction cross-radius of 1.61 and the bare
radius 1.11. For a mass ratio of �=50, we find that the radius
from the partial molecular volume is 2.14, the interaction
cross radius is 2.52 and the bare radius is 2.02.

Using the same procedure as for the s=1 systems studied
in the previous section, we can adjust the hydrodynamic ra-
dius to force the data to fit the theoretical curve for the vis-
cosity of a hard sphere suspension with the slip boundary
condition �35�. The results, shown in Fig. 9, show that a very
good fit to the theoretical curve can be obtained by this pro-
cedure. The hydrodynamic radius used to calculate the vol-
ume fraction for this forced fit was given by RH= �c22+1
+�� /2 where the value of � was adjusted to obtain an ad-
equate fit. For the constant �=1, s=2.225 series of data, a
value of �=0.7 was required, giving RH=1.46. For the con-

stant x2=0.005 series, we found �=0.2. For the �=50 mass
ratio, this gives a hydrodynamic radius of RH=2.11.

A summary of the results that we have obtained for the
difference between the hydrodynamic radius and the bare
particle radius of solute particles suspended in an explicitly
simulated solvent is given in Table VIII.

TABLE VI. Partial volumes v2 disparate-size mixture, with sol-
ute number fraction x2�0.005, for various mass ratios. Columns 4
and 5 are calculated using Eqs. �21� and �19�, while the last column
is the bare volume of a single spherical solute particle.

� s n v2

1 1 0.873 1.145 1.145 0.524

2 1.262 0.870 1.983 1.955 1.052

5 1.735 0.862 4.226 4.273 2.735

10 2.225 0.848 8.140 8.117 5.768

20 2.869 0.821 16.013 16.140 12.365

50 4.030 0.745 41.240 41.326 34.270

TABLE VII. Solute volume fractions in the disparate-size mix-
tures calculated from Eq. �19� for the x2=0.005 constant solute
number fraction disparate-size mixtures at various mass ratios �first
three columns� and for the �=10 constant mass ratio �s�2.225�
mixtures at various number fractions �last three columns�.

Const. x2=0.005 Const. �=10

� n � x2 n �

1 0.873 0 0 0.873 0

2 0.870 0.008 0.001 0.868 0.007

5 0.862 0.018 0.005 0.848 0.033

10 0.848 0.033 0.01 0.824 0.066

20 0.821 0.064 0.02 0.780 0.124

50 0.746 0.150 0.04 0.705 0.225

FIG. 8. Zero shear rate viscosities of the disparate-size mixtures
plotted against the thermodynamic volume fraction. The unfilled
circles are the results for the x2=0.005 constant solute number frac-
tion disparate-size mixtures and the squares are results for the �
=10 constant mass ratio disparate-size mixtures. For comparison,
the limiting infinite mass ratio viscosities from Fig. 4 are also
shown �filled circles�. The short dashed line is the theoretical curve
for the stick boundary condition and the long dashed line is the
theoretical curve for the slip boundary condition. The dot-dashed
line is a quadratic fit to the disparate-size solution viscosity data.

FIG. 9. Relative zero shear rate viscosity plotted against hydro-
dynamic volume fraction calculated with an adjustable parameter.
The filled circles are the extrapolated infinite mass ratio s=1 data,
the unfilled circles are the results for the mixtures with constant
number fraction x2=0.005 and variable size and mass ratio, the
squares for the constant mass ratio �=10, and size ratio s=2.225
mixtures with variable concentration. The short dashed line repre-
sents the theoretical result for a system of hydrodynamically inter-
acting hard spheres with slip boundary condition and the long
dashed line is the result for the stick boundary condition.
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V. CONCLUSIONS

Our simulations have shown that the viscosity of a sus-
pension of small solute particles becomes strongly shear
thinning when the solute to solvent mass ratio or size ratio is
increased. Increasing the volume fraction of solute dramati-
cally increases the rate of shear thinning when the mass or
size ratio is greater than 1. For a series of systems in which
the mass ratio is increased at constant size ratio s=1, the zero
shear rate viscosity approaches mass ratio independence at a
rate that depends on the concentration. The rate of approach
to mass independence surprisingly varies nonmonotonically
with concentration, unlike the rate of approach to mass inde-
pendence of the self diffusion coefficient. The most rapid
approach to mass ratio independence for the solution viscos-
ity occurs at a solute number fraction of x2=0.1. The
asymptotic infinite mass ratio self diffusion coefficient ex-
trapolated to zero concentration and the solvent viscosity can
be used to obtain the hydrodynamic radius of the solute par-
ticles in the infinite mass ratio limit. When the slip boundary
condition is assumed, we obtain a value for the hydrody-
namic radius that agrees reasonably well with the value ob-
tained by fitting the infinite mass ratio viscosity versus vol-
ume fraction data with an adjustable hydrodynamic radius to
calculate the volume fraction. Both values are less than the
cross-interaction radius between the solvent and solute mol-
ecules.

A similar set of simulations in which the size ratio was
also varied produced results showing that the hydrodynamic
radius was again larger than the bare spherical radius of the
solute particles, but less than the cross-interaction radius. In
all of the above analysis, it has been assumed that the perfect
slip hydrodynamic boundary condition is satisfied. In future
work, better agreement between the different results would
probably be obtained by independently determining the de-
gree of slip and the hydrodynamic radius.
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APPENDIX: ZHANG INTEGRATOR FOR A NOSÉ-
HOOVER BAROSTAT

The SLLOD equations of motion, with a Gaussian isoki-
netic thermostat and a Nosé-Hoover barostat, equations �5�,

were used in this study. We also chose to use a symplectic
integration scheme based on that developed by Zhang et al.
�25,26�. This integration scheme requires the splitting of the
equations of motion into parts which are exactly soluble, and
then factorizing the propagator to minimize error. Here we
detail the further steps required for the inclusion of the
barostat.

With the inclusion of the barostat the positional equations
of motion, and the associated split equations of motion E1,
become

E1 =� ṙi =
pi

mi
+ i�̇yi − �ri,

ṗi = 0 ,

�̇ = 0 ,

V̇ = 3�V ,

�
where the center of mass �R� is set to zero for simplicity,
although it is not necessary. This set of equations has the
exact solution

xi�t� = x�0�e−�t + 	 pxi

mi
+ �̇

pyi

mi

1

�
�1 − e−�t�

+ �̇	y�0� −
1

�

pyi

mi

te−�t,

yi�t� = y�0�e−�t +
pyi

mi

1

�
�1 − e−�t� ,

zi�t� = z�0�e−�t +
pzi

mi

1

�
�1 − e−�t� ,

and

pi�t� = pi�0� ,

��t� = ��0� ,

V�t� = V�0�e3�t.

There are two sets of equations for the momenta equations of
motion, a driven and undriven set, both of which are un-
changed from the original work �25,26� �Appendix B�. That
is,

E2 =�
ṙi = 0

ṗi = Fi − �0pi, �0 =
1

2K0
�

i

pi

mi
· Fi,

�̇ = 0,

V̇ = 0,
�

and

TABLE VIII. Values of the difference between the hydrody-
namic radius and the bare sphere radius �=RH−s /2 calculated by
various methods.

� s � �cross radius� ������� � �Stokes-Einstein�

� 1 0.5 0.23 0.13

10 2.225 0.5 0.35

50 4.03 0.5 0.1

VISCOSITY OF A BINARY MIXTURE: APPROACH TO¼ PHYSICAL REVIEW E 74, 031201 �2006�

031201-11



E3 =�
ṙi = 0

ṗi = − i�̇pyi − ��pi, �� = −
�̇

2K0
�

i

pxipyi

mi
,

�̇ = 0,

V̇ = 0
�

The solutions of these sets of equations of motion may be found in the references.
One further set of split equations of motion is required for the Nosé-Hoover barostat multiplier. This set is

E4 =�
ṙi = 0 ,

ṗi = 0 ,

�̇ =
1

�p
	 p

p0
− 1
 ,

V̇ = 0,
� �A1�

which has the simple solution ri�t�=ri�0�, pi�t�=pi�0�, ��t�=��0�+ 1
�p

� p
p0

−1�� t, and V�t�=V�0�. These equations of motion are
then applied by using the factorizing the propagator using the Trotter scheme. That is,

eiLt = eE4t/2eE3t/2eE2t/2 � eE1t � eE2t/2eE3t/2eE4t/2 + O�t3� . �A2�

More elucidating details may be found in Refs. �25,26�.
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