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A methodology is proposed that pushes the thermodynamic perturbation theory �TPT� from first order to
higher order. The second-order correction is superior to a macroscopic compressibility �MC� approximation of
Barker and Henderson. The present third-order TPT performs far better than the original first-order TPT and
second-order TPT based on the MC approximation for many subfields in fluid statistical mechanics, such as
predicting excess Helmholtz free energy, excess chemical potential, bulk pressure, gas-liquid coexistence, and
solid-liquid equilibrium of very short-range potential fluids. A nonuniform version of the TPT is proposed; it is
also shown that the nonuniform third-order TPT performs far better than the nonuniform first-order TPT in
predicting density profile of fluids in critical region. The present report indicates that the TPT still can be a
“universal” and accurate theoretical tool that has general applicability in fluid statistical mechanics, especially
in soft-matter physics.
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I. INTRODUCTION

Liquid state theory had been developed greatly during the
past 40 years, different basic concepts for determination of
structure and thermodynamics had been proposed and ap-
plied successfully, some of which can be listed as integral
equation theory �IET� �1�, thermodynamic perturbation
theory �TPT� �1,2�, simulation method �3�, and density func-
tional theory �DFT� �4�. As the first quantitatively satisfac-
tory theory of the liquid state, the TPT is extremely influen-
tial in the modern theory of fluids. The TPT can predict
excess Helmholtz free energy �EHFE�, a fundamental ther-
modynamic quantity from which any other thermodynamics
can be derived out. The TPT is also extended to calculate the
EHFE of a crystal, and therefore the TPT dominates in the
field of solid-liquid and solid-gas transition. The TPT, by
combination with the concept of weighted density, results in
inhomogeneous EHFE density functional for a tail part of a
nonhard-sphere potential, and therefore also contributes to
the development of the classical DFT �4,5�, which dominates
over the theoretical investigation of inhomogeneous phe-
nomena �including solid �6�� over the past two decades.
Therefore, one can conclude that the TPT has played an im-
portant role in fluid and solid statistical mechanics. During
the past decade, soft matter has drawn a lot of attention by
researchers, and the focus of attention has moved to the hard
sphere with a short-range attraction, ubiquitous in physical
systems constituted by macroparticles �7�. Accompanying
the change of interest focus, there appear signs that the TPT
is becoming less and less popular. The reason for such unfa-
vorable situation is twofold. One is that the first-order TPT is
very inaccurate for short-range and/or discontinuous poten-
tials; the second-order version of the TPT, i.e., the macro-
scopic compressibility �MC� approximation suggested by
Barker and Henderson �8�, only improves the first-order TPT
very little, or is even more inaccurate than the first-order
counterpart when nonuniform phenomena are under consid-

eration. The other reason is that a self-consistent Ornstein-
Zernike �OZ� integral equation theory �IET� is made more
and more accurate by incorporating one or more self-
consistent conditions �9�. It is shown that one version �10� of
the self-consistent OZ IET can be acceptably accurate for
case of potentials of an intermediate range. However, it
should be pointed out that a theoretical description for ex-
tremely short-range potentials is still a challenge. Consider-
ing that the self-consistent OZ IET is unusually unwieldy for
thermodynamics calculations, and its extension to inhomoge-
neous free energy functional is, if not impossible, at least
very unstraightforward; On the contrary, the TPT is free of
the disadvantages associated with the self-consistent OZ IET.
Therefore, it is a pressing task to improve the accuracy of the
current TPT but still retain the simplicity of calculation. Such
a task would greatly push the theoretical investigation of
problems from simple fluids to complex fluids, from uniform
phenomena to nonuniform phenomena. The present report
will report such an endeavor.

II. THEORETICAL FORMALISM

Consider a pair potential that can be written as a sum of a
reference part and a perturbation part,

u�r� = uref�r� + uper�r� . �1�

Now introduce a coupling parameter 0���1 that linearly
connects the reference and full potential,

u�r;�� = uref�r� + �uper�r� . �2�

The EHFE Fex��� of a system of N particles in a volume V
interacting via the pair potential

u�r;��

at temperature T is

Fex��� = − kT ln�� drNe−��i�ju�rij;��� VN	 , �3�

where �=1/kT, k is Boltzmann’s constant, and rij = 
ri−r j
.
Differentiating with respect to � and making use of definition*Corresponding author. Email address: chixiayzsq@tom.com
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of two-body distribution function ��2��r1 ,r2 ;��,

�Fex���/�� = 1/2� � dr1dr2uper�r12���2��r1,r2;�� . �4�

For a uniform liquid state, Eq. �4� reduces to

�Fex���/�� = N2��b� drr2uper�r�g�r,�,�b� , �5�

where g�r ,� ,�b� is the radial distribution function �rdf� of
bulk fluid with pair potential

u�r;��

and bulk number density �b=N /V. Correspondingly one has

�nFex���/��n = N2��b� drr2uper�r���n−1�g�r,�,�b�/���n−1�,

n � 1. �6�

Expanding Fex��� around �=0, one obtains

Fex��� = Fex�0� + �
n=1

	

�n 
�nFex���/��n
�=0

n!
. �7�

The EHFE Fex for the system of N particles in a volume V
interacting via the full pair potential Eq. �1�, corresponds to
Fex�1�, and Fex�0� corresponds to the reference fluid EHFE
Fex-ref. Therefore, we have

Fex = Fex-ref + �
n=1

	
1

n!
N2��b� drr2uper�r�


� ��n−1�g�r,�,�b�
���n−1� �

�=0
. �8�

Truncating the series at the first order, Eq. �8� leads to the
first-order TPT due to Zwanzig �2�,

Fex = Fex-ref + Fex-Tail = Fex-ref

+ N2��b� drr2uper�r�g�r,0,�b� , �9�

where g�r ,0 ,�b� stands for the rdf of the reference fluid of
number density �b. Higher order terms are concerned with
calculation of derivatives of the g�r ,� ,�b� with respect to �
at �=0. We will calculate these derivatives numerically by
finite difference; this incurs calculation of g�r ,� ,�b� with �
=0, ±�� , ±2��, where ��=0.01 is a small increment. Due
to the nonlinearity of the OZ IET, the OZ IE has to be solved
numerically, in combination with a bridge function approxi-
mation, to produce g�r ,� ,�b�. Although a very accurate
hard-sphere �i.e., �=0 case� bridge function approximation
free of adjustable parameter is well known, we do not hold a
good knowledge of the approximation for non-hard-sphere
cases, i.e., ��0, without any adjustable parameter. Consid-
ering that �= ±�� , ±2�� with ��=0.01 is near the hard-
sphere case, we approximate the bridge function for the
former by the bridge function approximation for the latter.
For the hard-sphere bridge function approximation, we em-
ploy the Malijevsky-Labik bridge function �11�. An algo-
rithm by Labik et al. �12� for solving the OZ IE is employed.

Although we expect to improve the performance of the
TPT by retaining more terms, the numerical accuracy adds a
limit on the maximum number of the terms retained. The
above algorithm only allows one to retain the terms up to the
third order; inclusion of higher terms only induces deviation
of Fex as a function of density from a smooth curve, and this
will induce significant error for the derivative quantities such
as pressure, excess chemical potential, and determination of
critical point whose calculation involves first- or even third-
order differential of Fex with respect to density. Therefore,
we will concentrate on the third-order TPT in the present
report, i.e.,

Fex = Fex-ref + Fex-Tail, and Fex-Tail = �
n=1

3

Fex-n, �10�

where

FIG. 1. Fex-n /NkT for the SW potential with �=1.5 and T*=1.
The solid and open points give the simulation results �for
Fex-2 /NkT� of Barker and Henderson �22� and Alder et al. �23�,
respectively.

FIG. 2. The Fex vs density �b
3 for the core-softened fluid.
Symbols are for the present grand canonical ensemble Monte Carlo
�GCEMC� simulations, while lines are for TPT predictions. a stands
for the present third-order TPT, while b the original first-order TPT.

SHIQI ZHOU PHYSICAL REVIEW E 74, 031119 �2006�

031119-2



Fex-n =
1

n!
N2��b� drr2uper�r�� ��n−1�g�r,�,�b�

���n−1� �
�=0

.

In the present report, we are limited to potentials with a
hard-sphere core. Therefore, the reference fluid is the hard-
sphere fluid, Fex-ref is calculated by a well-known Carnhan-
Starling equation of state �CS EOS� �13�.

In Fig. 1, the present calculation and those from several
previous approximations for the Fex-2 of a square well poten-
tial fluid denoted by Eq. �11� are presented as a function of
density; the present calculations for the Fex-3 and Fex-4 are
also presented. In Fig. 1, MC, LC, SA are, respectively, ab-
breviations for macroscopic compressibility, local compress-
ibility, and superposition approximation.

u�r� = 	 r/
 � 1,

− � 1 � r/
 � � ,

0 r/
 � � ,

�11�

where �, � are, respectively, the energy parameter and the
potential range parameter. Throughout the text, a reduced
temperature is denoted as T*=kT /�. The present improve-
ments over the previous approximations are tremendous, es-
pecially for cases of intermediate and high densities; it is

shown that the third-order correction Fex-3 is still evident
around the critical density, and its inclusion is therefore nec-
essary. The absolute value of Fex-4 is very small compared
with the sum of the previous terms. The Fex from the third-
order TPT and the original first-order TPT are presented for a
very short-range core-softened fluid in Fig. 2,

u�r� = �, r � 
 ,

− ��; 
 � r � b ,

− �, b � r � c ,

0, r � c , �12�

where � is less than 1 or even less than zero to make the u�r�
a core-softened potential. It is shown that the original first-
order TPT is only qualitative, but the third-order TPT is very
accurate for this most fundamental quantity. In the present
Fig. 2 and following Figs. 3 and 4, and 7, the simulation data
are obtained by grand canonical ensemble Monte Carlo
�GCEMC� simulations carried out at constant chemical po-
tential, volume, and temperature. The general features of the
GCEMC method are described elsewhere �3�. Further, some

FIG. 3. The ��ex vs density �* for the core-softened fluid of
�=0.5. Symbols are for the present grand canonical ensemble
Monte Carlo �GCEMC� simulations, while lines are for the present
third-order TPT �a� and the second-order MC approximation TPT
�b� predictions.

FIG. 4. The Z vs density �* for the core-softened fluid of �
=0.5. Symbols are for the present grand canonical ensemble Monte
Carlo �GCEMC� simulations, while lines are for the present third-
order TPT �a� and the second-order MC approximation TPT �b�
predictions.
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details peculiar to this study are discussed in one of our
previous work �14�.

In Figs. 3 and 4 the excess chemical potential �ex and
compressibility factor Z �=�P /�b, where P is pressure� for
the core-softened fluid denoted by Eq. �12� are presented.
Instead of the original first-order TPT results as done in Fig.

2, the well-known second-order MC approximation TPT re-
sults are presented together with the present third-order TPT
results for a comparison. For this noncontinuous and short-
range potential, the second-order MCA TPT quickly be-
comes unacceptably inaccurate, while the present third-order

TABLE I. Thermodynamic properties of the core-softened fluid from the present GCEMC simulation, the
present second-order TPT, and the present third-order TPT.

�b
3 Second-order TPT Third-order TPT

b /
=1.1,c /
=1.2,T*=0.59

Z ��ex �Fex Z ��ex �Fex

0.11196 0.84095
�0.75315�

−0.31477
�0.51036�

�0.15572
��0.2635�

0.78961 �0.4336 �0.22319

0.31917 0.55543
�0.49286�

�0.89348
��1.15797�

�0.44891
��0.65083�

0.53329 �1.03275 �0.56837

0.51482 0.32856
�0.43914�

�1.38612
��1.47407�

�0.71468
��0.91321�

0.33889 �1.49381 �0.83154

0.71230 0.64087
�0.80463�

�1.27923
��1.26074�

�0.92011
��1.06537�

0.60675 �1.43348 �1.04246

0.81613 1.89524
�1.73936�

� 5.7010E 3
��0.29681�

�0.90095
��1.03617�

1.86696 �0.15876 �1.02513

b /
=1.1,c /
=1.2,T*=0.83

0.10163 0.99647
�0.97125�

�8.4211E 3
��0.06358�

�4.8923E−3
��0.03483�

0.97887 �0.04851 �0.02737

0.31202 1.05039
�1.02322�

5.5927E 2
��0.03532�

5.5391E−3
��0.05854�

1.04161 0.00527 �0.03734

0.52156 1.31029
�1.3405�

0.38839
�0.35094�

7.8094E−2
�0.01043�

1.31385 0.3496 0.03624

0.70988 2.25964
�2.31204�

1.53873
�1.52465�

0.27909
�0.23062�

2.24663 1.4826 0.23444

0.81133 3.71103
�3.63619�

3.24113
�3.10908�

0.53010
�0.47289�

3.70444 3.18974 0.4737

b /
=1.2,c /
=1.5,T*=1.1

0.11273 0.67617
�0.63385�

�0.67220
��0.76726�

�0.34837
��0.4011�

0.65747 �0.72443 �0.38188

0.3085 0.29384
�0.35335�

�1.55810
��1.56398�

�0.85193
��0.91733�

0.32293 �1.56452 �0.88585

0.53424 0.69413
�0.67315�

�1.52662
��1.57309�

�1.22075
��1.24624�

0.72968 �1.50624 �1.23569

0.71003 3.15975
�3.20225�

1.12151
�1.14245�

�1.03824
��1.0598�

3.19557 1.1531 �1.04809

0.80243 5.72760
�5.92017�

4.09699
�4.22011�

�0.63061
��0.70006�

5.744 4.11248 �0.63152

b /
=1.2,c /
=1.5,T*=1.55

0.10336 0.87946
�0.86796�

�0.25427
��0.2805�

�0.13373
��0.14846�

0.87271 �0.27241 �0.14512

0.31746 0.82192
�0.83942�

0.50113
�� 0.50259�

�0.32306
��0.34202�

0.83294 �0.5025 �0.33426

0.52381 1.48157
�1.46935�

0.16780
�0.14663�

�0.31377
��0.32272�

1.49462 0.17517 �0.31918

0.70222 3.76789
�3.76759�

2.85843
�2.85351�

9.0542E−2
�0.08592�

3.78088 2.86976 0.08762

0.81008 6.51019
�6.65066�

6.17245
�6.21062�

0.66226
�0.55996�

6.51404 6.176 0.66111
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TPT still does the job quite well. The second-order MC ap-
proximation TPT is given by �8�,

Fex = Fex-ref + Fex-Tail

= Fex-ref + N2��b� drr2uper�r�g�r,0,�b�

− N�2��b� drr2uper
2�r�g�r,0,�b�

1

�
� ��b

�P
	

ref
,

�13�

where compressibility of the reference hard-sphere fluid is
calculated by the CS EOS �13�.

Figure 1 shows that the major contribution comes from
the second order; is there any compensation of the errors
between second- and third-order contributions? To answer
the problem, I give a comprehensive comparison between the
second- and third-order versions of the present TPT in Table
I. From Table I, one can conclude that the third-order version
is always more accurate than the second version for predic-
tion of the Fex, and there is not any compensation of the
errors between second- and third-order contributions. How-
ever, for predictions of Z and ��ex, the third-order version is
not always more accurate than the second-order version, but
is more accurate than the second-order version in most cases.
We believe that this unusual phenomena is not associated
with the compensation of errors but associated with the er-
rors due to taking numerical derivatives to obtain the Z and
��ex from the Fex. Taking into account the fact that the com-
putational task is almost equal for both the third-order and
second-order versions, we suggest the third-order version
should be employed in future applications.

Figure 5 presents the predicted gas-liquid coexistence
curve for the SW fluid with several ranges, and shows that
our third-order TPT also performs quite well for this global
quantity except that a little deviation is observed very near
the critical region. To indicate the applicability to very short-
range potential fluids, a popular topic in soft-matter physics,
we report the solid-liquid transition for a hard-core attractive
Yukawa �HCAY� fluid of a very short range,

u�r� = 	 , r/
 � 1; − �
 exp�− �*�r − 
�/
�/r,

r/
 � 1.

We employ the third-order TPT for the fluid phase Fex,
whereas we employ the solid phase version �15� of the first-
order TPT for the solid phase Fex. For the solid phase, the
particles are fixed at crystal grid, g�r ,� ,�b� only displays
very little and negligible change due to changing of �. There-
fore,


��n−1�g�r,�,�b�/���n−1�
�=0

with n�1 are very near zero, and the first-order version of
the TPT is sufficiently accurate for solid phase. The present
Fig. 6 and Fig. 4 in Ref. �15� show that the present third-
order TPT is superior to a fifth-order inverse temperature
expansion approximation �16� based on a mean spherical ap-
proximation �MSA�. The fifth-order inverse temperature ex-
pansion approximation is, however, limited to the HCAY flu-
ids because of an employment of the analytical MSA.

We extend the TPT to a nonuniform case. The reference
part Fex-ref����� can be treated by any existing hard-sphere
density functional approximations; in this report, the adjust-
able parameter free version of the Lagrangian theorem-based
density functional approximation �17� is employed for the
Fex-ref�����. Whereas the tail part is treated by the weighted
density concept �4–6�,

Fex-Tail����� =� dr��r�fex-Tail��̃�r�� ,

where fex-Tail=Fex-Tail /N, the weighted density is defined by
following the decoupled simple weighted density approxima-
tion �18�,

�̃�r� =� dr���r��w�
r − r�
;�b� ,

a renormalized tail part of the MSA second-order direct cor-
relation function is chosen as the weighting function, i.e.,

w�r;�b� = − uper�r�/� dr�− uper�r�� .

FIG. 5. Gas-liquid coexistence curve for the SW fluid for three
ranges. Symbols are for the MC simulation results �19�, while lines
are for the present third-order TPT.

FIG. 6. Solid-liquid transition for the HCAY fluid with �*=25.
Symbols give the simulation results �24�, while lines are for the
present third-order TPT.
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It should be pointed out that in the present report, the
reference systems is the hard sphere system, therefore
uper�r�=0 for r�
, and uper�r�=u�r� for r�
. Then, the
nonuniform Fex����� is a sum of Fex-ref����� and Fex-Tail�����.
With the Fex����� as input, one can treat many inhomoge-
neous phenomena in the framework of DFT �4�. To give a
stringent comparison between the third-order and first-order
TPT in a case of nonuniformity, we present the density pro-
file of the SW fluid in coexistence with a bulk SW fluid very
near the critical point �for the �=1.5, the critical density and
critical temperature �19� are �b
3=0.3079 and T*=1.2172,
respectively� in Fig. 5, which clearly displays the superiority
of the third-order TPT over the original first-order TPT. The
external potential �ext�r� responsible for the density profile is
due to a hard spherical cavity of effective radius 3
, i.e.,

�ext�r� = 	 r/
 � 3

=0 r/
 � 3. �14�

III. DISCUSSION AND CONCLUSION

The

� ��n�g�r,�,�b�
���n� �

�=0

is a crucial quantity for numerical implementation of the
present third-order TPT. Although there is a semianalytical
expression for g�r ,0 ,�b� �25�, in order to keep self-
consistency of the calculation of

� ��n�g�r,�,�b�
���n� �

�=0

by finite difference method, the g�r ,� ,�b� with �
=0, ±�� , ±2�� should be calculated in a unified way with
the help of the approximate OZ IET as detailed in the text. In
fact, if one calculates the g�r ,� ,�b� with �= ±�� , ±2�� by
the approximate OZ IET, but the semianalytical expression
for g�r ,0 ,�b� �25� is used, the resultant

� ��n�g�r,�,�b�
���n� �

�=0

is unusually oscillatory as a function of r even for n=1, and
the associated Fex is also unusually oscillatory as a function
of �b, an erroneous result which, after differentiation with
respect to �b, only results in mistaken Z and �ex. In fact, even
if the g�r ,� ,�b� with �=0, ±�� , ±2�� is calculated in a
unified way, i.e., by the approximate OZ IET as done in the
present report, the present finite difference method for the

� ��n�g�r,�,�b�
���n� �

�=0

only allows one to retain the terms up to the third order.
Another approximation associated with the calculation of the

� ��n�g�r,�,�b�
���n� �

�=0

is employing the Malijevsky-Labik bridge function of the
hard sphere �i.e.,�=0� for a case of nonhard sphere �i.e.,�
�0�. In general, the associated error is not obvious since the
finite difference method is only associated with very small �.
However, the associated error will increase as the tempera-
ture decreases since lowering of temperature is equal to a
rising of �. Therefore, the present third-order TPT performs
excellently for a case of not very low temperature, but the
performance somewhat deteriorates when the temperature
decreases, as displayed in Figs. 2–4 and 7.

To conclude, we propose a methodology for extending the
TPT to higher orders, the methodology is completely nu-
merical, and therefore applicable to fluids of any potentials.
The present third-order TPT performs very well in predicting
thermodynamic and structure properties of both uniform and
nonuniform cases, especially the excellent performance sus-
tained for the two extreme cases, i.e., the extremely short-
range potential and the critical region. Other applications in-
clude simplifying the numerical solution of the self-
consistent OZ IET �9,10� and hierarchical reference theory
�20� by externally supplying accurate free energy or other
thermodynamic quantities as input, and also include supply-
ing accurate input into a renormalization group approach
�21� for fluids of extremely short range. Therefore the
present-third order TPT will be of general interest for the
fluid statistical mechanics, especially in the fields of soft-
matter physics where simple and accurate theoretical de-
scription is still lacking. Work along these lines will be re-
ported in succeeding publications.
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FIG. 7. Density profile of the SW fluid in coexistence with the
bulk fluid near the critical point. Symbols are for the present
GCEMC simulations, while solid lines are for present third-order
TPT predictions; dashed or dotted lines are for the original first-
order TPT predictions.
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