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We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using
continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are
added or removed instantaneously at the start of each step then the long time asymptotic limit yields a
fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard
diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita
rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction
kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from
the above two models are compared with a phenomenological model with standard linear reaction kinetics and
a fractional order temporal derivative operating on a standard diffusion term. We have also developed further
extensions of the CTRW model to include more general reaction dynamics.
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I. INTRODUCTION

Reaction-diffusion equations have been studied exten-
sively as mathematical models of systems with reactions and
diffusion across a wide range of applications including;
nerve cell signaling, animal coat patterns, population dis-
persal, and chemical waves. The generic form of these equa-
tions is �1�

�n�x,t�
�t

= D�2n�x,t� + f�n�x,t�� , �1�

where n is a vector whose components represent the numbers
of a particular species per unit volume. The first term on the
right hand side accounts for the spatial diffusion of the spe-
cies and D is a diagonal matrix whose elements are the dif-
fusivities of the different species. The second term on the
right hand side, a functional of n, accounts for “reactions”
that produce or destroy species. This partial differential equa-
tion can be motivated by a mesoscopic description based on
a coarse grained representation of space with diffusion be-
tween cells and reactions within cells �1�. The cells are con-
sidered to be arbitrarily small so that the diffusion of reac-
tants within cells is instantaneous. In this case the reactants
within cells are homogeously mixed and the production or
destruction of particles in the cells is a reaction-limited pro-
cess that can be modeled according to the law of mass action.
The characteristic length scale lD and time scale �D for the
mesoscopic description are defined relative to the following

physical scales: the characteristic size of a reaction zone �lR;
the characteristic microscopic diffusion time for encounters
between reactants ��D; the microscopic reaction time ��R;
the size of the domain L; the time scale of the experiment T.
Explicitly �i� �lR� lD�L and �ii� ��D���R��D�T. The
length scale lD and the time scale �D are both considered to
be arbitrarily small but �in the case of standard Brownian
motion� lD

2 /�D is finite.
In this mesoscopic description the number density n�x , t�

can be interpreted as an ensemble average over many statis-
tical realizations of the system �1� or as the number density
for a particular realization if the number density is suffi-
ciently large. An underlying assumption in the formulation of
Eq. �1�, is that the diffusion between cells is standard Brown-
ian motion.

Over the past few decades an intensive effort has been put
into developing theoretical models for systems with diffusive
motion that cannot be modeled as standard Brownian motion
�2–4�. The signature of this anomalous diffusion is that the
mean square displacement of the diffusing species ���x�2�
scales as a nonlinear power law in time, ie., ���x�2�� t�.
Faster than linear scaling ���1� is referred to as superdif-
fusion and slower than linear scaling �0���1� is referred
to as subdiffusion. In recent years the additional motivation
for these studies has been stimulated by experimental mea-
surements of subdiffusion in porous media �5�, glass forming
materials �6�, biological media �7,8�, and Monte Carlo stud-
ies of subdiffusion in materials with trapping or binding sites
�9�. One of the most successful theoretical paradigms to
emerge from this research has been fractional calculus mod-
els for anomalous diffusion justified at a mesoscopic level by
continuous time random walks �CTRWs� �3,4,10�. In the
CTRW model anomalous subdiffusion arises when the
asymptotic long time limit of the waiting time probability
density function is heavy tailed, ie., 	�t�� t−�−1 with 0��
�1. The evolution equation for the concentration of nonre-
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acting species undergoing subdiffusion can then be modeled
using a fractional diffusion equation which differs from the
conventional diffusion equation in that it has a fractional
order temporal derivative acting on the spatial Laplacian.

In recent years reaction terms have been incorporated
with anomalous subdiffusion in the CTRW-fractional calcu-
lus paradigm yielding so called fractional reaction-diffusion
equations �11–22�. Most of these studies posit a fractional
order temporal derivative acting on the spatial Laplacian
with standard classical rate equations for the reaction terms
�11–15,18,20–23�. However, some studies consider the frac-
tional temporal order derivative to operate on both the La-
placian and classical rate equation reaction terms �16,17,19�.
These two models produce very different Turing patterns in
two-species activator-inhibitor systems �24�. In the absence
of experimental results to validate either model we have been
led to reconsider the theoretical foundations of the models.
Both models were obtained from balance equations for
CTRWs with source or sink terms. In the original model
introduced by Henry and Wearne �11� the source or sink term
was convolved with the survival probability for random
walkers. The heuristic interpretation was that the concentra-
tion of walkers at x and t is composed of walkers coming
from other positions x� at earlier times t�� t, plus walkers
that were added by reactions at location x at earlier times
t�� t and then survived there, minus walkers removed by
reactions at location x at earlier times t�� t that would oth-
erwise have survived at this location had they not been re-
moved. The replacement of this source or sink term with
standard reaction rate kinetics �see, e.g., Refs. �12,14,20,22��
is then ad hoc. The model introduced by Seki, Wojcik, and
Tachiya �16,17� was for the particular problem of geminate
recombination and the extension to other reaction rate kinet-
ics �19� is again ad hoc. Very recently, Sokolov, Schmidt,
and Sagués �25� revisted the problem of reactions with sub-
diffusion, and in the case of a monomolecular conversion
A→B, they found that the fractional reaction-diffusion equa-
tion includes the effects of the reactions in both an additive
reaction term and a nonstandard diffusion term. The latter
cannot be represented by a temporal fractional order deriva-
tive operating on a standard diffusion term.

Here we have revisited the CTRW model to allow for the
addition or removal of species via one of three different lin-
ear processes: �i� Walkers are added or removed via a source/
sink term with linear reaction rate kinetics in the generalized
CTRW model introduced by Henry and Wearne �11�. The
long time asymptotic limit is a fractional reaction-diffusion
equation with standard linear reaction kinetics and a frac-
tional order temporal derivative operating on a standard dif-
fusion term. �ii� A constant proportion of walkers is added or
removed instaneously at the start of each step. In this case
the long time asymptotic description in terms of fractional
reaction-diffusion equations yields a fractional order tempo-
ral derivative operating on both the diffusion term and a
linear reaction kinetics term. �iii� Walkers are added or re-
moved at a constant per capita rate during the waiting time
before a step is made. Here the long time asymptotic limit in
terms of fractional reaction-diffusion equations can be repre-
sented with standard linear reaction kinetics but a fractional
order temporal derivative operating on a nonstandard diffu-
sion term.

A subdiffusive CTRW model for case �ii� with a linear
degradation term was considered recently by Hornung,
Berkowitz, and Barkai �26�. Here we have formulated the
CTRW in terms of a fractional diffusion equation with a
fractional order temporal derivative operating on both the
�Laplacian� diffusion term and the �linear� reaction term. In
case �iii� we obtain similar CTRW results to those recently
reported by Sokolov, Schmidt, and Sagués �25� but we have
represented the long time asymptotics by a fractional reac-
tion diffusion equation with a linear reaction term and a tem-
poral order fractional derivative operating on a nonstandard
diffusion term.

We have obtained explicit solutions for the three frac-
tional reaction-diffusion equations considered in these mod-
els. The different solutions are informative of different physi-
cal processes involving anomalous diffusion with linear
reaction dynamics.

The remainder of these notes are organized as follows. In
Sec. II we summarize the CTRW formalism for �possibly
anomalous� diffusion. Most of this material up to the formu-
lation of the master equation appears elsewhere but we have
revisited it here to clarify the subsequent extension to include
source and sink terms. In Sec. III we introduce linear reac-
tion dynamics into the CTRW formalism according to the
different processes outlined above and we derive the appro-
priate fractional reaction-diffusion equations for the long
time asymptotic behavior. In Sec. IV we outline further ex-
tensions of the CTRW model to include more general reac-
tion dynamics. In Sec. V we present explicit solutions of the
fractional reaction-diffusion equations resulting from the dif-
ferent linear models. In Sec. VI we discuss the results.

II. CONTINUOUS TIME RANDOM WALKS

The continuous time random walk �CTRW� was intro-
duced by Montroll and Weiss �27�, and Scher and Lax �28�,
as a generalization of the standard random walk introduced
by Pearson in 1905 �29�. In Pearson’s formulation the ran-
dom walk consists of a sequence of equal length steps taken
at regular time intervals. In the CTRW the waiting times
between successive steps and the length of the steps are both
random variables with the associated probability density

�x , t� for the particle to step a distance x after waiting a
time t. In the original formulation by Montroll and Weiss
�27� the walk was considered to have taken place on a dis-
crete lattice.

A fundamental quantity to calculate is the conditional
probability density p�x , t �x0 ,0� that a walker starting from
position x0 at time t=0 is at position x at time t. First it is
useful to consider the conditional probability density
qn�x , t �x0 ,0� that a walker starting at x0 at time zero arrives
at position x at time t after n steps. This latter probability
density satisfies the recursion equation �28�

qn+1�x,t�x0,0� = 	
x�



0

t


�x − x�,t − t��qn�x�,t��x0,0�dt�,

�2�

where 
�x−x� , t− t�� is the probability density that a random
walker jumps a distance x−x� after waiting a time t− t� in a
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single step. Note that the sum over x� includes the possibility
x�=x. The initial condition that the walker is at x0 at time
zero

q0�x,t�x0,0� = �x,x0
��t� �3�

satisfies the normalization

	
x�



0

�

q0�x�,t��x0,0�dt� = 1. �4�

The conditional probability density q�x , t �x0 ,0� that a walker
arrives at position x at time t after any number of steps is
given by

q�x,t�x0,0� = 	
n=0

�

qn�x,t�x0,0� . �5�

Note that we can write

	
n=0

�

qn�x,t�x0,0� = q0�x,t�x0,0� + 	
n=0

�

qn+1�x,t�x0,0� ,

so that, after performing a summation over n, the recursion
relation �2�, can be written as �28,30�

q�x,t�x0,0� = 	
x�



0

t


�x�,t��q�x − x�,t − t��x0,0�dt�

+ ��t��x,x0
. �6�

In the remainder it is supposed that the probability density

�x , t� decouples in space and time, i.e.,


�x,t� = 	�t���x� , �7�

where 	�t� is the waiting time probability density given by

	�t� = 	
x�


�x�,t� �8�

and ��x� is the step length probability density given by

��x� = 

0

�


�x,t��dt�. �9�

It is also useful to define the survival probability distribution
�t� that the walker does not take a step in time interval t

�t� = 1 − 

0

t

	�t��dt� = 

t

�

	�t��dt�. �10�

The conditional probability density p�x , t �x0 ,0� that a
walker starting from the origin at time zero is at position x at
time t is equivalent to the probability density that the walker
arrived at x at any earlier time t� and thereafter did not take
a step, i.e. �27,28,30�,

p�x,t�x0,0� = 

0

t

q�x,t − t��x0,0��t��dt�. �11�

The results in Eqs. �6� and �11� can be combined using
Laplace transforms to yield the master equation for the prob-

ability density p�x , t �x0 ,0�. The Laplace transform of Eq.
�11� yields

p̂�x,u�x0,0� = q̂�x,u�x0,0�̂�u� , �12�

and the Laplace transform of Eq. �6� yields

q̂�x,u�x0,0� = 	
x�


̂�x�,u�q̂�x − x�,u�x0,0� + �x,x0
. �13�

We can combine these two results to obtain

p̂�x,u�x0,0� = 	
x�


̂�x�,u�̂�u�q̂�x − x�,u�x0,0� + ̂�u��x,x0
,

=	
x�


̂�x�,u�p̂�x − x�,u�x0,0� + ̂�u��x,x0
. �14�

The inverse Laplace transform of Eq. �14� now yields the
master equation �30�

p�x,t�x0,0� = �t��x,x0
+ 	

x�



0

t

p�x�,t��x0,0�

�
�x − x�,t − t��dt�. �15�

Most of the recent literature on CTRWs take Eq. �15�, or
the continuum version �31�

p�x,t�x0,0� = �t��x,x0
+ 


0

t

	�t − t��

��

−�

�

��x − x��p�x�,t��x0,0�dx��dt�

�16�

as the starting point for further analysis. For example Main-
ardi and co-workers �31� motivate this equation on probabil-
ity arguments with the interpretation that the first term ex-
presses the persistence of a walker at the initial position and
the second term is the contribution from a walker being at
point x� at time t� and then jumping to x and t after waiting
a time t− t�.

It follows from Eq. �15�, that if there is an initial concen-
tration of c�x0 ,0 �x0 ,0� random walkers at x=x0 at time t
=0 and if these walkers do not interact then the expected
concentration c�x , t �x0 ,0� at position x and time t is given by

c�x,t�x0,0�
c�x0,0�x0,0�

= �t��x,x0
+ 	

x�



0

t c�x�,t��x0,0�
c�x0,0�x0,0�

�
�x − x�,t − t��dt�. �17�

After multiplying by the initial concentration we have

c�x,t�x0,0� = �t�c�x0,0�x0,0��x,x0
+ 	

x�



0

t

c�x�,t��x0,0�

�
�x − x�,t − t��dt�. �18�

Now suppose that we have a different initial concentration at
each possible starting point x0 and sum over all possible
starting points then
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x0

c�x,t�x0,0� = 	
x0

�t�c�x0,0�x0,0��x,x0

+ 	
x�



0

t

	
x0

c�x�,t��x0,0�
�x − x�,t − t��dt�

�19�

=�t�c�x,0�x,0� + 	
x�



0

t

	
x0

c�x�,t��x0,0�

�
�x − x�,t − t��dt�. �20�

We now identify the number density

n�x,t� = 	
x0

c�x,t�x0,0� �21�

as the total expected concentration of walkers at position x
and time t �independent of their starting locations� and

n�x,0� = c�x,0�x,0� �22�

as the initial concentration of walkers at x. The result in Eq.
�20� can now be written as

n�x,t� = �t�n�x,0� + 	
x�



0

t

n�x�,t��
�x − x�,t − t��dt�.

�23�

III. CONTINUOUS TIME RANDOM WALKS WITH
SUBDIFFUSION AND LINEAR REACTION KINETICS

In earlier work �11� we considered an extension of the
conservation equation �23� to incorporate sources and sinks
as follows:

n�x,t� = �t�n�x,0� + 	
x�



0

t

n�x�,t��
�x − x�,t − t��dt�

+ 

0

t

�t − t��s�x,t��dt�. �24�

The heuristic interpretation of the additional source/sink term
was that it represents the net contribution to the concentra-
tion of walkers at x and t due to �i� walkers added at x at time
t�� t that then do not jump from x over the time �t− t�� and
�ii� walkers removed at x at time t�� t that would not other-
wise have jumped from x during the time �t− t��. Thus walk-
ers with survival characteristics represented through �t� are
added or removed from the system at a rate s�x , t�. If the
source/sink term arises from reactions among the walkers,
then it is tempting to replace s�x , t� with f�n�x , t��, the stan-
dard reaction rate kinetics from the law of mass action. How-
ever, the resulting phenomenological model has not been jus-
tified at the mesoscopic level of the random walks and the
physical interpretation is not clear. Nevertheless one of the
appealing features of this model is that the asymptotic long
time limit yields a fractional reaction-diffusion equation �11�
that only differs from the standard reaction-diffusion equa-

tion through a fractional temporal order derivative operating
on the standard spatial Laplacian. This model can thus be
derived phenomenologically from the standard conservation
law for reaction-diffusion processes �32� by replacing the
general flux transport with a fractional temporal order deriva-
tive operating on the gradient of the concentration—a time
fractional Fickian process �33�. Similarly the space fractional
diffusion equation �34� can be reconciled with a space frac-
tional Fickian process �35�. In the models below we have
attempted to move beyond a phenomenological description
by incorporating the physical basis of the source/sink terms
at the level of the random walks.

A. Instantaneous creation and annihilation processes

In this subsection we consider a simple extension of the
standard CTRW model to include the instantaneous addition
or removal of a fixed proportion of the walkers at the start of
the waiting time before they take their next step. A subdiffu-
sive CTRW formulation of this problem in the case of re-
movals �physically representing the degradation of morpho-
gens� was considered recently by Hornung, Berkowitz, and
Barkai �26�. In the derivation below we show that the CTRW
for this problem can be formulated as a fractional reaction-
diffusion equation. One of the appealing features of this rep-
resentation is that it provides a ready comparison between
standard reaction-diffusion equations and the corresponding
problem with anomalous diffusion. Another appealing fea-
ture is that standard mathematical methods for partial differ-
ential equations and the mathematical tools of fractional cal-
culus can be employed to provide the asymptotic long time
behaviour of this problem without further approximation.

The probability density for walkers to arrive at position x
at time t at the end of their �n+1�th step, given that a fixed
proportion are added or removed instantaneously �at the start
or end of the step�, is now given by

qn+1�x,t� = 

0

t

	
x�

�qn�x�,t�� ± kqn�x�,t���	�t − t����x − x��dt�.

�25�

Here we have increased ��� or reduced ��� the walkers that
arrived after n steps by a constant proportion k� �0,1�. We
could of course write r= �1±k� and then

qn+1�x,t� = r

0

t

	
x�

qn�x�,t��	�t − t����x − x��dt�. �26�

Similar to Eq. �6� we can now sum over n to obtain

q�x,t� = r	
x�



0

t

	�t − t����x − x��q�x�,t��dt� + ��t��x,x0
,

�27�

where we have included the initial condition that walkers are
starting at x0.

We now consider the probability density for walkers to be
at x at time t. This is given by
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p�x,t� = r

0

t

�t − t��q�x,t��dt�, �28�

i.e., the walkers at x at time t are those that arrived there at
an earlier time t� t� and then did not jump away, increased
or reduced by the constant fraction of arrivals that were
added or removed by the source/sink term. Note that in the
case r=1−k, Eq. �28� can be written as �26�

p�x,t� = 

0

t

��t − t��q�x,t��dt� �29�

with

��t� = 1 − �1 − k�

0

t

	�t��dt� − k

0

t

	R�t��dt� �30�

and 	R�t�=��t�. In this representation, 	R�t� is a degradation
time density �taken to be instantateous here� and k can be
considered as the probability for degradation to occur, so that
��t� is the probability that the walker survives at position x
and does not degrade during the time interval t.

It follows from Eq. �27� that we can also write

p�x,t� = r

0

t

�t − t���x,x0
��t��dt� + r2


0

t

�t − t��

�	
x�



0

t�
	�t� − t����x − x��q�x�,t��dt��dt�.

�31�

We can combine the results of Eqs. �28� and �31� as in the
derivation of the master equation �15� to obtain

p�x,t� = r�t��x,x0
+ r	

x�



0

t

p�x�,t��	�t − t����x − x��dt�.

�32�

Allowing for walkers starting from different initial positions
and proceeding through steps similar to those leading to Eq.
�23� we have the following equation for the number density:

n�x,t� = r�t�n�x,0� + r	
x�



0

t

n�x�,t��	�t − t����x − x��dt�.

�33�

The fractional reaction diffusion equation in Henry and
Wearne �11� was derived after a spatial Fourier transform
and temporal Laplace transform of the master equation �24�,
with asymptotic expansions for small values of the Fourier
and Laplace variables, followed by inverse transforms using
the definition of the Riemann-Liouville fractional derivative.
We follow this approach here starting with the new balance
equation �33�. The Fourier-Laplace transform of Eq. �33�
with Fourier variable q and Laplace variable u yields

n̂̂�q,u� = r̂�u�n̂�q,0� + r	̂�u��̂�q�n̂̂�q,u� . �34�

The Laplace transform of the survival probability �10�, can
be written as

̂�u� =
1

u
−

	̂�u�
u

�35�

and the small q asymptotic expansion of the step length den-
sity is given by

�̂�q� � 1 −
q2�2

2
+ O�q4� �36�

with

�2 =
 r2��r�dr �37�

finite. We can thus approximate Eq. �34� as

un̂̂�q,u� = r�1 − 	̂�u��n̂�q,0� + ru	̂�u�1 −
q2�2

2
�n̂̂�q,u� .

�38�

We now consider asymptotic small u results for a heavy
tailed waiting time density

	�t� �
�

�D
 t

�D
�−�−1

�39�

that is characteristic of anomalous subdiffusion �see, e.g.,
Ref. �3��. In this expression � is a dimensionless constant
and �D is the characteristic mesoscopic time scale. The
asymptotic Laplace transform for this density function is ob-
tained from a Tauberian �Abelian� theorem �36,37� as

	̂�u� � 1 −
���1 − ��

�
�D

�u�. �40�

The asymptotic results in Eqs. �39� and �40� apply for times
t��D. We now substitute the above expansion into Eq. �38�
to arrive at

un̂̂�q,u� = r
���1 − ��

�
�D

�u�n̂�q,0� + ru1 −
���1 − ��

�
�D

�u��
�1 −

q2�2

2
�n̂̂�q,u� . �41�

If we rearrange this equation and retain only leading order
terms then

un̂̂�q,u� − n̂�q,0� = −
�

���1 − ���D
� u1−�

�1 − r

r
n̂̂�q,u� +

q2�2

2
n̂̂�q,u�� .

�42�

The above equation can also be derived without long time
asymptotics in the special case where the waiting time den-
sity is given by the derivative of a Mittag-Leffler function
�38�. The inverse Laplace transform and inverse Fourier
transform of Eq. �42� now yields

�n

�t
= D���D1−��2n

�x2 +
�

���1 − ���D
�  r − 1

r
�D1−�n , �43�
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with the diffusivity

D��� =
�2�

2���1 − ���D
� �44�

and we use the notation

D1−��y�x,t�� =
�1−�

�t1−� y�x,t� + L−1� �−�

�t−� y��x,t��t=0�,

0 � � � 1, �45�

where

�1−�

�t1−� y�x,t� �46�

is the Riemann-Liouville fractional derivative defined as the
ordinary derivative of the Riemann-Liouville fractional inte-
gral

D−��y�x,t�� =
�−�

�t−� y�x,t� =
1

����
0

t y�x,t�
�t − s�1−�ds,

0 � � � 1. �47�

Note that the operator D� has a different definition depend-
ing on whether � is positive, Eq. �45�, or negative, Eq. �47�
�see Appendix A�. Note too that the inverse Laplace trans-
form of the fractional integral evaluated at time zero, which
appears in the operator D1−� in Eq. �45�, will cancel in Eq.
�43� if the method of Laplace transforms is applied to find
the solution.

The fractional reaction-diffusion equation �43�, has a frac-
tional order temporal derivative operating on both the diffu-
sion term and a linear kinetics reaction term. Before leaving
this section we note that Eq. �42� for the Fourier-Laplace
representation of the CTRW is consistent with Eq. 10 in Ref.
�26�. However after representing Eq. �40� by a fractional
reaction-diffusion equation in Eq. �43� we can find an ex-
plicit solution in this space-time domain without further ap-
proximation �see Sec. V.�. By comparison, the authors of
Ref. �26� obtain an approximate space-time representation of
Eq. �10� �see Sec. IV of Ref. �39��.

B. Noninstantaneous creation and annihilation processes

We now consider an extension of the CTRW model to
include the addition or removal of walkers at a constant per
capita rate during the times that they wait before taking their
next step. The CTRW model in this case is similar to that
recently formulated �25� for monomolecular conversions.
The probability density for arrivals at the end of the �n
+1�th step in this case is given by

qn+1�x,t� = 

0

t

	
x�

�qn�x�,t��e±k�t−t���	�t − t����x − x��dt�.

�48�

The exponential factor accounts for the constant per capita
increase ��� or decrease ��� during time intervals t− t�. In
the usual way after summing over n we have

q�x,t� = 	
x�



0

t

	�t − t����x − x��q�x�,t��e±k�t−t��dt� + ��t��x,x0
.

�49�

The probability for walkers to be at x at time t is now given
by

p�x,t� = 

0

t

�t − t��q�x,t��e±k�t−t��dt� �50�

=

0

t

�t − t��e±k�t−t��	
x�



0

t�
	�t� − t��

���x − x��q�x�,t��e±k�t�−t��dt��dt�

+ 
t

�t − t��e±k�t−t���x,x0
��t��dt� �51�

=�t�e±kt�x,x0
+ 	

x�



0

t

p�x�,t��e±k�t−t��

�	�t − t����x − x��dt�. �52�

The concentration balance equation in this case is

n�x,t� = �t�e±ktn�x,0� + 	
x�



0

t

n�x�,t��e±k�t−t��

�	�t − t����x − x��dt�. �53�

and the Fourier-Laplace transform of the balance equation
results in

n̂̂�q,u� = ̂�u � k�n̂�q,0� + 	̂�u � k��̂�q�n̂̂�q,u� . �54�

From the result in Eq. �35� we can rewrite the above equa-
tion as

�u � k�n̂̂�q,u� = �1 − 	̂�u � k��n̂�q,0�

+ �u � k��̂�q�	̂�u � k�n̂̂�q,u� . �55�

In the case of anomalous sub-diffusion we use the
asymptotic results in Eqs. �36� and �40� to obtain

un̂̂�q,u� − n̂�q,0� = −
�

���1 − ���D
� �u � k�1−�q2�2

2
n̂̂�q,u�

± kn̂�q,u� �56�

and then after taking the inverse Fourier and Laplace trans-
forms

�n�x,t�
�t

= L−1�D����u � k�1−��2n̂�x,u�
�x2 � ± kn�x,t� ,

�57�

where it remains to evaluate the inverse Laplace transform
represented by the operator L−1�¯�. This step follows from
the identity

HENRY, LANGLANDS, AND WEARNE PHYSICAL REVIEW E 74, 031116 �2006�

031116-6



L−1�u1−�ŷ�u�� = D1−�y�t� �58�

together with the shift theorem

L−1�z�u ± k�� = e�ktz�t� �59�

so that finally we have

�n

�t
= e±ktD���D1−�e�kt�

2n

�x2� ± kn . �60�

We note in passing that we can use Leibniz’s formula ex-
tended to fractional derivatives �40� to rewrite the above
equation as

�n

�t
= e±ktD���	

j=0

� 1 − �

j
��D je�kt��D1−�−j�

2n

�x2� ± kn

�61�

or, equivalently,

�n

�t
= D����D1−��2n

�x2� ± kn

+ D���	
j=0

�
��2 − ��

��1 − � − j��j + 1�!
��k� j+1�D−�−j�

2n

�x2� .

�62�

IV. CONTINUOUS TIME RANDOM WALKS WITH
SUBDIFFUSION AND GENERAL REACTION KINETICS

A. Instantaneous creation and annihilation processes

In this subsection we consider arbitrary reaction kinetics
coupled with the CTRW model to include the instantaneous
addition or removal of walkers at the start of the waiting
times between steps. The general equation for the density for
walkers to arrive at position x at time t at the end of their
�n+1�th step in this case can be written

qn+1�x,t� = 

0

t

	
x�

�qn�x�,t�� + sn�x�,t���	�t − t����x − x��dt�,

�63�

where sn�x , t� is the density for walkers that are added and/or
removed at the start of the waiting time for the �n+1�th step.

If we identify s�x , t�=	n=0
� sn�x , t� then the arrival density

is given by

q�x,t� = 	
x�



0

t

	�t − t����x − x���q�x�,t�� + s�x�,t���dt�

+ ��t��x,x0
. �64�

The density for a random walker to be at x at time t is now

p�x,t� = 

0

t

�t − t���q�x,t�� + s�x,t���dt� �65�

and the balance equation for the concentration of walkers at
x and t becomes

n�x,t� = �t�n�x0,t� + 	
x�



0

t

	�t − t����x − x��n�x�,t��dt�

+ 

0

t

�t − t��s�x,t��dt�. �66�

The asymptotic long time behaviour is then governed by the
nonhomogeneous fractional diffusion equation

�n

�t
= D���D1−�� �2n

�x2� + s�x,t� . �67�

The above balance equation �66� leading to the nonhomoge-
neous fractional diffusion equation �67� was motivated by
heuristic arguments in Ref. �11�. We could consider these
equations with any source or sink term for s�x , t� including
reaction terms

s�x,t� = f�n�x,t�� �68�

but the physical interpretation of this is not clear. For ex-
ample, in the case of linear reaction dynamics f�n�x , t��
= ±kn�x , t� we have

�n

�t
= D���D1−�� �2n

�x2� ± kn�x,t� , �69�

but this does not equate with the fractional reaction diffusion
equation �43�, corresponding to the CTRW model with linear
reaction dynamics s�x , t�=	n=0

� ±kqn�x , t�= ±kq�x , t� that we
considered in Sec. III A. To further highlight the difference
between the two models it is useful to compare the balance
equations directly. Note that we can rewrite the balance
equation �33� as

n�x,t� = �t�n�x,0� + 	
x�



0

t

	�t − t����x − x��n�x�,t��dt�

+
r − 1

r
n�x,t� . �70�

Thus the source term s�x , t� in the general balance equation
�66� corresponding to this model is given by equating



0

t

�t − t��s�x,t��dt� =
r − 1

r
n�x,t� . �71�

It is a simple matter to solve this equation for s�x , t� by the
method of Laplace transforms. Explicitly we have

ŝ�x,u� =
r − 1

r

n̂�x,u�

̂�u�
�72�

and then after using the asymptotic results in Eqs. �35� and
�40� we have

s�x,t� =
r − 1

r

�

���1 − ���D
� D1−�n , �73�

so that Eq. �43� is again seen as a special case of Eq. �67�.
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B. Noninstantaneous creation and annihilation processes

In this subsection we consider arbitrary time dependent
creation and annihilation processes coupled with the CTRW
model to include the non-instantaneous addition or removal
of walkers during the waiting times between steps. There are
two generalizations as follows.

1. General linear model

In the preceding model for non-instantaneous reactions
the proportion of particles and density surviving each step
was modeled by the exponential function arising from con-
stant per capita creation and annihilation processes. Here we
consider a more general balance equation in which the pro-
portion surviving in each step is any non-negative function
f�t�. In this case the balance equation can be written as

n�x,t� = �t�f�t�n�x,0� + 	
x�



0

t

n�x�,t��	�t − t����x − x��

�f�t − t��dt�. �74�

Taking the Fourier-Laplace transform of Eq. �74� and using
Eq. �36� we find

n̂̂�q,u��1 − L�	�t�f�t���u�� = L��t�f�t���u�n̂�q,0�

− q2�2

2
L�	�t�f�t���u�n̂̂�q,u� .

�75�

This equation can be simplified by exploiting relation-
ships between the transforms L��t�f�t���u� and
L�	�t�f�t���u�. First we note

d

dt
��t�f�t�� = − 	�t�f�t� + f��t��t� , �76�

where we have used the identity

d

dt
=

d

dt
t

�

	�t��dt�� = − 	�t� . �77�

Now taking the Laplace transform of Eq. �76� we find

uL��t�f�t���u� − �0�f�0� = − L�	�t�f�t���u�

+ L��t�f��t���u� �78�

or

− L�	�t�f�t���u� = uL��t�f�t���u� − f�0� − L��t�f��t���u�

�79�

noting �0�=1. Equation �75� then becomes after some ma-
nipulation and inverting the Fourier transform

L� �n

�t
��u� =

�2

2

L�	�t�f�t���u�
L��t�f�t���u�

�2n̂

�x2

+
L��t�f��t���u� + f�0� − 1

L��t�f�t���u�
n̂ . �80�

To simplify further requires detailed information about the
small u behaviour of the three transforms L��t�f�t���u�,
L�	�t�f�t���u�, and L��t�f��t���u�. In the case of f�t�=ekt,
the coefficient of n̂ simplifies to k and the ratio L�	�t�f�t��
��u� /L��t�f�t���u� simplifies to L�	�t���u−k� /L��t���u
−k� which can be further simplified given the form of 	�t�.

2. General reaction-kinetics model

We finally consider the extension of the CTRW model for
general reaction-kinetic equations for reactions between the
end of the nth step and the end of the �n+1�th step, i.e.,

�qn

�t
= f�qn� . �81�

In this general case we can integrate over the time interval
t− t� to write the arrival density after the �n+1�th step as

qn+1�x,t� = 

0

t

	
x�

F−1�F�qn�x,t��� + �t − t���	�t − t��

���x − x��dt�, �82�

where

F��qn� =
1

f�qn�
. �83�

We can also write

p�x,t� = 

0

t

�t − t��F−1�F�q�x,t��� + �t − t���dt�, �84�

where q�x , t�=	n=0
� qn�x , t� but it is not clear how to obtain

the balance equation from Eqs. �82� and �84� except in the
special linear case f�qn�= ±kqn.

V. COMPARISON OF FRACTIONAL REACTION-
DIFFUSION EQUATION MODELS

In this section we present solutions to the three model
systems.
Model I:

�n

�t
= D���D1−�� �2n

�x2� ± kn . �85�

Model II:

�n

�t
= D���D1−�� �2n

�x2� ±
k

1 ± k
 �

���1 − ���D
� �D1−�n .

�86�

Model III:

�n

�t
= D���e±ktD1−�e�kt�

2n

�x2� ± kn . �87�

In the infinite domain �Greens solution� the initial condi-
tion is taken to be the delta function, i.e., n�x ,0�=��x�. It is
convenient to rewrite the models I and II equations �85� and
�86� in the form
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�n

�t
= D���D1−��2n

�x2 + KD1−�n , �88�

where �=1 and K= ±k in model I and �=� and K
= ± k

�1±k� � �

���1−���D
� � in model II. The solutions to the two

models can thus be constructed as special cases of Eq. �88�.
As a further simplification we also write model III, Eq. �87�,
as

�n

�t
= eKtD���D1−�e−Kt�

2n

�x2� + Kn , �89�

where K= ±k.

A. Solution model I and II

From Appendix B we have the infinite domain �Green’s
solution� of Eq. �88� given by

n�x,t� =
1

�4�Dt�	
j=0

�
�Kt�� j

j!

�H1,2
2,0� x2

4Dt���1 −
�

2
+ �j,��

�0,1� 1

2
+ j,1� ��� .

�90�

For model I we set �=1 and K= ±k to give

n�x,t� =
1

�4�Dt�	
j=0

�
�±kt� j

j!

�H1,2
2,0� x2

4Dt���1 −
�

2
+ j,��

�0,1� 1

2
+ j,1� ���

�91�

and for model II we set �=� and K= ±k* to give

n�x,t� =
1

�4�Dt�	
j=0

�
�±k*t�� j

j!

�H1,2
2,0� x2

4Dt���1 −
�

2
+ �j,��

�0,1� 1

2
+ j,1� ��� ,

�92�

where

±k* =
±k

1 ± k

�

��1 − ��
. �93�

B. Solution model III

To find the solution to Eq. �89� we first make the substi-
tution

n�x,t� = eKty�x,t� �94�

noting that n and y have the same initial condition. Equation
�89� then becomes after simplifing

�y

�t
= DD1−��2y

�x2 �95�

which is the fractional diffusion equation. Equation �95� has
the solution in the infinite domain �3�

y�x,t� =
1

�4�Dt�

�H1,2
2,0� x2

4Dt���1 −
�

2
,��

�0,1� 1

2
,1� ��� . �96�

The solution of model III in the infinite domain is then
�with K= ±k�

0

0.1
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0.3

0.4

0.5

0.6

n(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 1. �Color online� The infinite solution for model I at the
dimensionless times t=0.1 �red�, 1.0 �blue�, and 5.0 �black� with
K=−1, D=1, and �=1/2. The peak height decreases with increas-
ing time.
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n�x,t� =
e±kt

�4�Dt�

�H1,2
2,0� x2

4Dt���1 −
�

2
,��

�0,1� 1

2
,1� ��� . �97�

C. Particular results and moments

In Figs. 1–3 the infinite domain solution of the equations
of models I, II, and III �Eqs. �88� and �89�� are shown at
various times in the case �=1/2, K=−1, and D=1. Note that
in the case of model I the solution has become negative and
hence is physically unrealistic at t�5 �Figs. 1 and 4�. The
reason for this is simply that the reaction term in this model
is attempting to remove more walkers than there are avail-
able to jump. The solution �Figs. 2 and 3� in the case of the
other two models is always positive because we only ever
attempt to remove a fraction of the walkers that are available.
The solution in the case of model III decays to zero more
rapidly than in the case of model II.

In Figs. 5 and 6, the zeroth order and second order mo-
ments are given for each model which are

�x�0��t�� = � eKt, models I, III,

E�,1�Kt�� , model II
� �98�

and

�x�2��t�� = �
2Dt�E1,��Kt� , model I,

2Dt�E�,1�Kt�� , model II,

2Dt�

��1 + ��
eKt, model III,� �99�

where E�,��z� is the generalized Mittag-Leffler function �see
Appendix B�.

In Figs. 7–9 the infinite domain solution of the equations
of models I, II, and III �Eqs. �88� and �89�� are shown at
various times in the case �=1/2, K=1, and D=1. Note tha-
tin the case of model I the solution does not become negative
as it did previously �Fig. 7�.
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x

FIG. 2. �Color online� The infinite solution for model II at the
dimensionless times t=0.1 �red�, 1.0 �blue�, and 5.0 �black� with
K=−1, D=1, and �=1/2. The peak height decreases with increas-
ing time.
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FIG. 3. �Color online� The infinite solution for model III at the
dimensionless times t=0.1 �red�, 1.0 �blue�, and 5.0 �black� with
K=−1, D=1, and �=1/2. The peak height decreases with increas-
ing time. The profile at t=5.0 lies along the x axis.
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VI. SUMMARY AND DISCUSSION

In this paper we revisited the CTRW model for anoma-
lously diffusing particles to incorporate linear reaction dy-
namics in a mesoscopic level description. The primary mo-
tivation for this work was to relate the reaction terms in
fractional order reaction-diffusion equations to physical pro-
cesses in a mesoscopic description and where possible to
elucidate different solutions characteristic of these different
physical processes. Three different model systems were ex-
plored in detail. Model I was based on an earlier CTRW
balance equation that we originally motivated with heuristic
arguments in Ref. �11�. In this model a fraction of the walk-
ers are added or removed at a constant rate in time, indepen-
dent of the diffusion process. This leads to a fractional
reaction-diffusion equation with linear reaction dynamics
added to a standard fractional diffusion term, i.e., a fractional
order temporal differential operator D1−�, operating on the
Laplacian diffusion term. If the reaction term is negative in
this model then the solution becomes negative �so that the
model breaks down�. This compares with the standard reac-
tion diffusion equation with negative linear reaction kinetics
where the solution remains positive for all times. This is a
clear demonstration that in anomalous subdiffusion with re-
actions the removal of walkers cannot be performed indepen-
dent of the diffusion process.

In model II a constant proportion of the available walkers
are added or removed instantaneously at the start of each

jump. In this case the CTRW model leads to a fractional
reaction diffusion equation with a fractional order temporal
differential operator D1−� operating on both the Laplacian
diffusion term and a linear reaction dynamics term. This
model is special case of the fractional reaction-diffusion
model proposed by Yuste, Acedi, and Lindenberg �19� for
general �possibly nonlinear� reaction kinetics. The model
does not yield unphysical negative solutions but it does not
recover the mean field reaction kinetics equation for homo-
geneous concentrations.

In model III the available walkers are added or removed
at a constant rate during the time interval between steps. A
similar CTRW model was formulated recently for monomo-
lecular reactions �25�. The resultant fractional reaction-
diffusion equation that we derived from the CTRW model
in this case has a linear reaction dynamics term added
to a nonstandard fractional diffusion term, explicitly,
e±ktD���D1−��e�kt �2n

�x2 �. This model equation does not lead to
unphysical negative solutions and it recovers the mean field
reaction kinetics equation for homogeneous concentrations.

The development of fractional reaction diffusion equa-
tions as models for anomalous subdiffusion with nonlinear
reaction kinetics remains an open problem. While it is a
simple matter to generalize the above fractional reaction-
diffusion equations by replacing the linear reaction dynamics
term in each case by a nonlinear reaction term the physical

0
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0.04

n(r,5)

–4 –3 –2 –1 1 2 3 4

x

FIG. 4. The infinite solution for model I at the dimensionless
time t=5.0 with K=−1, D=1, and �=1/2.
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FIG. 5. �Color online� The zeroth order moments of the infinite
solution for models I and III �red�, and model II �blue� with K
=−1, D=1, and �=1/2. The result for model II is the upper curve
at t=5.
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meaning of this is not clear and it may lead to unphysical
behavior. This is because the simplification in the CTRW
models that results from replacing 	nf�qn� with f�	nqn� does
not apply if f�qn� is a nonlinear function. The explicit linear
solutions and the physical interpretation of the linear models
in this paper provides a useful guide for future theoretical
and computational studies.
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APPENDIX A: RIEMANN-LIOUVILLE FRACTIONAL
OPERATORS

The Riemann-Liouville fractional integral is given by

�−�

�t−� y�x,t� =
1

����
0

t y�x,t�
�t − s�1−�ds, � � 0. �A1�

and the Riemann-Liouville fractional derivative is given by

�1−�

�t1−� y�x,t� =
�

�t

1

����
0

t y�x,t�
�t − s�1−�ds �A2�

for 0���1. In the paper we have introduced the related
operators for 0���1,

D1−��y�x,t�� =
�1−�

�t1−� y�x,t� + L−1� �−�

�t−� y��x,t��t=0�
�A3�

and

D−� =
�−�

�t−� y�x,t� . �A4�

APPENDIX B: SOLUTION OF LINEAR FRACTIONAL
REACTION DIFFUSION EQUATIONS

In this appendix we consider the infinite domain �Green’s
solution� for the general linear fractional reaction-diffusion
equation given by

�n

�t
= D���D1−��2n

�x2 + KD1−�n , �B1�

where the fractional order temporal differential operator
D1−� is defined in the paper in Eq. �45�.

To solve models I and II we use an approach similar to
that recently described by Langlands for modified fractional
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FIG. 6. �Color online� The second order moments of the infinite
solution for models I �red�, II �blue�, and III �black� with K=−1,
D=1, and �=1/2. At t=5 the result for model II is the upper curve
and the result for model I is the lower curve.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 7. �Color online� The infinite solution for model I at the
dimensionless times t=0.1 �red�, 1.0 �blue�, and 5.0 �black� with
K=1, D=1, and �=1/2. The peak height increases with increasing
time.
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diffusion equations �41�. First we take the Fourier-Laplace
transform of Eq. �88�

un̂̂ − n̂�q,0� = − D���q2u1−�n̂̂ + Ku1−�n̂̂ �B2�

which upon solving for n̂̂ gives

n̂̂�q,u� =
u�−1n̂�q,0�

u� + Dq2 − Ku�−� . �B3�

This can be rewritten in the form �taking into account the
initial condition�

n̂̂�q,u� = 	
j=0

�
Kj

j!

j!u�−�1+��−��j�

�u� + Dq2� j+1 . �B4�

Now from Podlubny �42� we have the Laplace transform of
involving the derivative of the Mittag-Leffler function is

L�t�j+�−1E�,�
�j� �− at����u� =

j!u�−�

�u� + a� j+1 , �B5�

where the derivative of the Mittag-Leffler function is given
by

E�,�
�j� �y� =

djE�,��y�
dyj = 	

n=0

�
�j + n�!yn

n!����j + n� + ��
. �B6�

Setting a=q2, and �=1+ ��−��j in Eq. �B5� we can then
invert the Laplace transform in Eq. �B4� to give

n̂�q,t� = 	
j=0

�
�Kt�� j

j!
E�,1+��−��j

�j� �− q2Dt�� . �B7�

To invert the Fourier transform we note that the derivative of
the Mittag-Leffler function in Eq. �B6� can be written as a
Fox function �see, e.g., Ref. �3��

E�,�
�j� �y� = H1,2

1,1�− y��− j,1�
�0,1� �1 − ��j + ��,��

��� . �B8�

So to invert the transform in Eq. �B7� we need only to invert,
for each j, the term

0

0.5

1

1.5

2

n(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 8. �Color online� The infinite solution for model II at the
dimensionless times t=0.1 �red�, 1.0 �blue�, and 2.0 �black� with
K=1, D=1, and �=1/2. The peak height increases with increasing
time.
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n(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 9. �Color online� The infinite solution for model III at the
dimensionless times t=0.1 �red�, 1.0 �blue�, and 2.0 �black� with
K=1, D=1, and �=1/2. The peak height increases with increasing
time.
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ĥj�q,t� = E�,1+��−��j
�j� �− Dq2t��

= H1,2
1,1�Dq2t���− j,1�

�0,1� �− �j,��
��� . �B9�

To invert the Fourier transform we use the following re-
lation between the Mellin transform of a Fourier transformed
function and its Mellin transform in the case of an even
function f�x�

M�F�f�x���q���z� = 2��z�cos�z

2
�M�f�x���1 − z� .

�B10�

So to invert the Fourier transform ĥj�q , t� in Eq. �B9� we
need to first evaluate its Mellin transform to find the Mellin
transform of hj�x , t� using Eq. �B10�. The Mellin transform
then need only be inverted to find the Fourier inverse hj�x , t�.

Taking the Mellin transform of Eq. �B9� using the Mellin
transform of a Fox function �43�, the identity �44�

M���axp���z� =
1

p
a−z/pM���x�� z

p
�, p � 0, a � 0

�B11�

and Eq. �B10� we find

M�hj�x,t���z� =
1

2

1
�4�Dt� 1

�4Dt��−z � z

2
��1

2
+ j +

z

2
�

�1 −
�

2
+ �j +

�z

2
� .

�B12�

Inverting the Mellin transform Eq. �B12� and noting x= �x�
we find

hj�x,t� =
1

2

1
�4�Dt�

�H1,2
2,0� �x�

�4Dt���1 −
�

2
+ �j,

�

2
�

0,
1

2
� 1

2
+ j,

1

2
� ��� .

�B13�

Using the identity

Hp,q
m,n�x��ap,�p�

�bq,�q�
��� = cHp,q

m,n�xc��ap,c�p�
�bq,c�q�

��� �B14�

with c= 1
2 we arrive at the expression for hj�x , t�:

hj�x,t� =
1

�4�Dt�

�H1,2
2,0� x2

4Dt���1 −
�

2
+ �j,��

�0,1� 1

2
+ j,1� ��� .

�B15�

The infinite domain �Green’s solution� of Eq. �88� by Eqs.
�B7� and �B15�,

n�x,t� =
1

�4�Dt�	
j=0

�
�Kt�� j

j!

�H1,2
2,0� x2

4Dt���1 −
�

2
+ �j,��

�0,1� 1

2
+ j,1� ��� .

�B16�
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