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An Ising spin system under the critical temperature driven by a dichotomous Markov noise �magnetic field�
with a finite correlation time is studied both numerically and theoretically. The order parameter exhibits a
transition between two kinds of qualitatively different dynamics, symmetry-restoring and symmetry-breaking
motions, as the noise intensity is changed. There exist regions called channels where the order parameter stays
for a long time slightly above its critical noise intensity. Developing a phenomenological analysis of the
dynamics, we investigate the distribution of the passage time through the channels and the power spectrum of
the order parameter evolution. The results based on the phenomenological analysis turn out to be in quite good
agreement with those of the numerical simulation.
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I. INTRODUCTION

Over the last decade, the dynamics of ferromagnetic sys-
tems below their critical temperatures in a periodically oscil-
lating magnetic field have been studied both theoretically
�1–9� and experimentally �10�. The systems exhibit two
qualitatively different behaviors referred to as symmetry-
restoring oscillation �SRO� and symmetry-breaking oscilla-
tion �SBO�, depending on the frequency � and the amplitude
h of the applied magnetic field. It has been established that
there exists a sharp transition line between SRO and SBO on
the �� ,h� plane, which is called the dynamical phase tran-
sition �DPT�. The DPT was first observed numerically in the
deterministic mean-field system for a ferromagnet in a peri-
odically oscillating field �1�, and has subsequently been stud-
ied in numerous Monte Carlo simulations of the kinetic Ising
system below critical temperature �2–6�. It has also been
observed experimentally in an ultrathin Co film on Cu�100�
�10�.

Recently, we investigated the DPT by introducing the
model equation ṡ�t�= �Tc−T�s−s3+h cos �t �7�. This equa-
tion is a simplified model for the Ising spin system at the
temperature T below its critical value Tc in an external peri-
odic magnetic field. By appropriately scaling the magnetiza-
tion s, time t, and the applied field, this equation is written as

ṡ�t� = s − s3 + h cos �t . �1�

The SBO and SRO are observed in Eq. �1� and the transition
line between them on the �� ,h� plane is determined analyti-
cally �7,8�.

It is quite interesting to ask whether DPT is observed
under another kind of applied field, especially random field
with bounded amplitude. The fundamental aim of the present
paper is to study the dynamics of s�t� with a dichotomous
Markov noise �DMN� F�t� instead of periodically oscillating
external field h cos �t �see, e.g., Ref. �11��.

The equation of motion

ṡ = f�s� + F�t� �2�

with a nonlinear function f�s� and the DMN F�t� has been
extensively studied by many authors �12–15�. It is well
known that the master equation for the system can be de-
rived, and then transition phenomena of stationary probabil-
ity densities concerning the intensity of F�t�, for example,
are studied, which are referred to as the noise-induced phase
transition �12,16�. The asymptotic drift velocity �ṡ� in the
case of f�s� being periodic functions are also discussed as a
specific dynamic property �13�. Furthermore, the mean first-
passage time �MFPT� and transition rates are investigated as
another important dynamic property when f�s� is the force
associated with the bistable potential given by Eq. �2�
�14,15�. For a review of works on DMN system, see Bena
�17�.

The fundamental aim of the present paper is to propose a
phenomenological approach to the critical dynamics near the
transition point between the symmetry-restoring motion
�SRM� and the symmetry-breaking motion �SBM� observed
in Eq. �2� with f�s�=s−s3 �Sec. II� and to investigate the
distribution of passage times through channels, switching
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times between two different motions, and the power spec-
trum of the order parameter evolution. The present paper is
constructed as follows. In Sec. II, we discuss the dynamics of
symmetry-breaking motion and symmetry-restoring motion
of the model equation �2�. In Sec. III, the jumping process of
the magnetization through channels, which are defined in the
text, is investigated and the MFPT is obtained. In Sec. IV, a
phenomenological approach simplifying the dynamics of
passing through a channel in the SRM phase is introduced
and three statistical characteristics are analytically devel-
oped. The results are compared with numerical simulations.
Concluding remarks are given in Sec. V.

II. MODEL EQUATION AND SYMMETRY-BREAKING
TRANSITION

A. Model equation and noise-induced phase transition

We consider the equation of motion driven by the external
field F�t�,

ds�t�
dt

= f�s� + F�t� �f�s� = s − s3� , �3�

where F�t� is a symmetric DMN with taking the values ±H0.
Here the probability p��� that F�t� continues to take the iden-

tical value +H0 or −H0 longer than time � is given by

p��� = e−�/�f . �4�

This implies that the correlation time of F�t� is equal to � f /2.
Throughout this paper, numerical integrations of Eq. �3� are
carried out by using the Euler difference scheme with the
time increment �t=1/100.

Without DMN, s�t� eventually approaches either of the
stationary fixed points ±1, one of which is achieved accord-
ing to the initial condition s�0� as shown in Fig. 1. In the
presence of DMN, if H0�Hc, Hc being defined by

Hc � 2�1/3�3/2 = 0.3849 ¯ , �5�

then f�s�+H0=0�f�s�−H0=0� has three real roots sj+�sj−�
�j=1, 2, and 3�. Each value of sj± is graphically shown in
Fig. 1�a�. On the other hand, if H0�Hc, then f�s�+H0=0
�f�s�−H0=0� has only one real root s+ �s−� given by

s± = � 1
2 �±H0 + �H0

2 − Hc
2��1/3

+ � 1
2 �±H0 − �H0

2 − Hc
2��1/3

,

�6�

which are indicated in Fig. 1�b�.
Next let us consider the dynamics described by Eq. �3� for

H0�Hc and for H0�Hc, and discuss similarity and differ-
ence between the dynamics in the periodically oscillating
field case and those in the present DMN case. A part of our
results belongs to the context of the noise-induced phase
transition and MFPT in Refs. �12–16�. In the case of H0
�Hc, three motions numerically integrated are shown in
Figs. 2�a� and 2�b�. Two motions confined in the ranges s1−
�s�t��s1+ and s3−�s�t��s3+ are both stable. The long time
average �s�t�� of each motion does not vanish, and the mo-
tion is called SBM in relation to DPT in the oscillating ex-
ternal field case. On the other hand, the motion su�t� confined
in the range s2+�su�t��s2− is unstable. The long time aver-
age of su�t� vanishes, and in this sense the motion is called
SRM. It should be noted that this unstable SRM is located
between two stable SBM, which has a similar characteristic
to SBO of DPT �7�.

The motion of s�t� for H0�Hc is shown in Figs. 2�c� and
2�d�. One observes that there exists a stable SRM confined in

FIG. 1. The function f�s�=s−s3 is shown by solid lines. �a� Real
roots sj±, �j=1,2 ,3� for H0�Hc and �b� real roots s± for H0�Hc of
the algebraic equation s−s3±H0=0. The definition of Hc is graphi-
cally represented. Two bold lines drawn in �b� indicate the channel
regions defined in Sec. III.

FIG. 2. �a� and �b� show the motions obtained
by numerically integrating Eq. �3� for H0=0.38
��Hc� and � f =5, where two SBM’s �solid line�
and an unstable SRM �dashed line� are drawn.
The unstable SRM is evaluated by replacing t
→−t. On the other hand, �c� and �d� show the
motions for H0=0.5 ��Hc� and � f =10.
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the range s−�s�t��s+. For SRM, the time average of s�t�
vanishes, i.e., �s�t��=0. The comparison between Figs. 2�b�
and 2�d� suggests that the SRM for H0�Hc is generated via
the “attractor merging crisis” �18� of the two SBM’s and one
unstable SRM, i.e., the two SBM’s and one unstable SRM
disappear and then one stable SRM takes place at H0=Hc.
This situation is similar to that in the DPT case. However, in
contrast to the DPT case, as will be shown in Sec. II B, the
transition line on the �� f

−1 ,H0� plane is independent of the
correlation time � f of F�t� and the average �s�t�� depends
discontinuously on H0.

B. Stationary distribution functions and phase diagram

In this section, we discuss the stationary distribution func-
tions for SBM and SRM. To this aim, we first consider a
slightly general nonlinear Langevin equation of motion
driven by DMN,

ẋ�t� = f�x� + g�x�F�t� , �7�

where f�x� and g�x� are generally nonlinear functions of x
and F�t� is DMN �19�. The temporal evolution of the distri-
bution function P�x ,F , t� that x�t� and F�t�, respectively, take
the values x and F �=±H0� is determined by �12,16�

�

�t
P�x,t� = −

�

�x
�f�x�P�x,t� + H0g�x�q�x,t�� ,

�

�t
q�x,t� = −

2

� f
q�x,t� −

�

�x
�f�x�q�x,t� + H0g�x�P�x,t�� ,

�8�

where we set P�x , t�� P�x , +H0 , t�+ P�x ,−H0 , t� and q�x , t�
� P�x , +H0 , t�− P�x ,−H0 , t�. The stationary distribution
Pst�x�� P�x ,�� is solved to yield

Pst�x� = N
g�x�

H0
2g�x�2 − f�x�2 exp	−

1

� f

x

dx�

�� 1

f�x�� − H0g�x��
+

1

f�x�� + H0g�x��
� , �9�

provided that each of the equations

ẋ = f�x� + H0g�x�, ẋ = f�x� − H0g�x� �10�

has at least one stable fixed point, where N is the normaliza-
tion constant.

By substituting f�x�=x−x3 and g�x�=1 �Eq. �3��, into Eq.
�9�, the stationary distribution function PSBM

st �s� for SBM
�H0�Hc� for s3−�s�s3+ or s1−�s�s1+ is written as

PSBM
st �s� 	 �s2 − s1+

2 �−
1+�s2 − s1−
2 �−
1−�s2 − s2+

2 �−
2+, �11�


 j± = 1 − � f
−1��sj± − sk±��sj± − sl±�� , �12�

where �j ,k , l�= �1,2 ,3�, �2,3,1�, and �3,1,2�. On the other
hand, the stationary distribution function PSRM

st �s� for the
SRM �H0�Hc� for s−�s�s+ is obtained as

PSRM
st �s� 	 �s2 − s+

2���f
−1/�3s+

2−1��−1

���s2 + s+
2 − 1�2 − s+

2s2�−��f
−1/�3s+

2−1��−1

� exp� � f
−1s+

�s+
2 − 1/3��3s+

2 − 4
	arctan� 2s − s+

�3s+
2 − 4

�
− arctan� 2s + s+

�3s+
2 − 4

�� . �13�

The analytic solutions �11� and �13� are numerically con-
firmed in Fig. 3.

As H0 is increased, the form of the stationary distribution
function changes drastically from the forms in Eq. �11� to
Eq. �13� at H0=Hc. This phenomenon which is induced by
the disappearance of two pairs of stable and unstable fixed
points �13� is an example of the noise-induced phase transi-
tions �16�. It turns out that the transition line between SRM
and SBM on the �� f

−1 ,H0� plane is given by H0=Hc. The
phase diagram is given in Fig. 4. Furthermore, the long time
average of s�t�, �s�t��, depends discontinuously on H0 at
H0=Hc as shown in Fig. 5. These behaviors are quite differ-
ent from those of the DPT case driven by periodically oscil-
lating field, F�t�=h cos��t� �3,7�. The transition point hc for
a fixed � between SRO and SBO depends on the frequency
�, and �s�t�� is a continuous function of h.

III. MFPT THROUGH THE CHANNELS

We hereafter discuss the dynamics for H0 slightly above
Hc. Let us first consider the behavior obeying the equations

FIG. 3. Stationary distribution
functions obtained both analyti-
cally �solid line� and numerically
�symbols� for �a� H0=0.3 and � f

=5, and for �b� H0=0.39, 0.4, and
0.5 by keeping � f =10. �a� and �b�
correspond, respectively, to SBM
and SRM. The distribution only in
the range s1−�s�t��s1+ is drawn
in �a�. The analytical result is in
good agreement with that of the
numerical simulation.
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ṡ = s − s3 + �H0 �� = + or − � �14�

for H0�Hc, i.e., F�t� is fixed to be either +H0 or −H0. Equa-
tion �14� for H0�Hc is integrated to yield

t = −
1

2�3s�
2 − 1�

ln
�s − s��2

s2 + s�s + s�
2 − 1

�
s0

2 + s�s0 + s�
2 − 1

�s0 − s��2 +
6s�

2�3s�
2 − 1��3s�

2 − 4

�	arctan� 2s + s�

�3s�
2 − 4

� − arctan� 2s0 + s�

�3s�
2 − 4

� , �15�

where s0=s�0� and s� has been defined in Eq. �6�. Figure 6
displays three orbits given by Eq. �15� with s0=s− and �=+,
which shows that s�t� approaches s+ in the limit t→�. One
observes that s�t� stays for a long time in the vicinity of s

=−1/�3 for H0 slightly above Hc. The small region including
the position s=−1/�3 is called the channel. From the sym-
metry of the system, there also exists the channel near s
=1/�3 for F�t�=−H0, as shown in Fig. 1�b�. Let us express
the positions sch of the channels as

sch = �− 1/�3 if F�t� = + H0,

+ 1/�3 if F�t� = − H0.
� �16�

The characteristic time �ch is then defined as the time span
that the state point s�t� passes through one of the channels for
a constant F�t�, either +H0 or −H0. �ch can be estimated by
integrating Eq. �14� around s�sch as follows. First, consider
the case F�t�=−H0. By setting u�t�=s�t�−sch and assuming
�u��sch, Eq. �14� is approximated as

u̇ = − 3schu
2 − �H0 − Hc� . �17�

This can be integrated to give

u�t� = −�H0 − Hc

3sch
tan��3sch�H0 − Hc�t� �18�

with the initial condition u�0�=0. �ch is estimated by the
condition u��ch�=� and thus

�ch =
C

�H0 − Hc�1/2 , C =


2�3sch

. �19�

Let us next consider the process that the state point s�t�
passes through the channels under DMN. Figure 7 shows
temporal evolutions of s�t� numerically obtained for H0

=0.388 and 0.385. One finds that the time of passing through
channels increases as H0 approaches Hc. The MFPT �̄
through channels was calculated in Refs. �14,15� by analyz-
ing the master equation. In the present section, we will de-

FIG. 4. Phase diagram on the �� f
−1 ,H0� plane. Transition line is

independent of � f
−1 and is given by H0=Hc.

FIG. 5. �s� vs H0 for � f =5. One finds that �s� is discontinuous at
H0=Hc.

FIG. 6. Three orbits of the equation of motion �14� with �=+ for
H0�Hc. The values of H0 are set to be H0=0.386 �dotted line�, 0.4
�dashed line�, and 0.5 �solid line�, where all the initial conditions
are chosen as s0=s−.
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rive MFPT in terms of the time scales � f and �ch from a
phenomenological viewpoint without use of the analysis
made in Refs. �14,15�.

The condition for passing through a channel is that F�t�
continues to take the identical value either +H0 or −H0 for
time longer than �ch. For H0 satisfying � f ��ch, we obtain
p��ch�=e−�ch/�f �1, which implies that F�t� almost always
satisfies the condition for passing through the channel.
Therefore, �̄ in the case of � f ��ch is nearly equivalent to �ch,
i.e.,

�̄ �
C

�H0 − Hc�1/2 . �20�

In the case of � f ��ch, on the other hand, Eq. �4� gives
p��ch��1. This fact implies that the probability that F�t�
continues to take the identical value for time longer than �ch
is quite small and hence that �̄ is much longer than �ch be-
cause it needs a long time to satisfy the condition for the
state point to pass through the channel. �̄ in the case of � f
��ch is explicitly determined as follows. For a long �̄, let us
divide �̄ into subintervals each of which has the time span � f.
The divided individual time series are approximately inde-
pendent of each other. Therefore, � f / �̄ is the probability that
the state point passes through a channel once because �̄ is
MFPT through the channel. On the other hand, p��ch� is iden-
tical to the probability for s�t� to pass through the channel
once by definition of the probability. Therefore we get the
relation p��ch��� f / �̄, which leads to

�̄−1 � � f
−1e−�ch/�f = � f

−1 exp�−
C

� f�H0 − Hc�1/2� �21�

with the constant C defined in Eq. �19�. This expression
agrees with the result obtained in Refs. �14,15�. Equation
�21� reveals that MFPT through the channel depends on H0
−Hc in a stretched exponential form for � f ��ch, and is quite
different from the asymptotic form �20�. The above depen-
dence of �̄ on H0−Hc is confirmed in Fig. 8.

IV. PHENOMENOLOGICAL ANALYSIS

In order to discuss statistical characteristics of the dynam-
ics passing through the channels for � f ��ch, we here develop
a phenomenological approach. The behaviors of s�t� for
which we attempt to model are first summarized. The initial
condition of s�t� is set to be in the vicinity of s+. If a time
interval of F�t� satisfying the condition F�t�=−H0 becomes
longer than �ch for the first time, then s�t� passes through sch

and approaches s− in the time interval. See Fig. 9. The event
in which s�t� jumps from s+ to s− occurs only in this case. It
should be noted that the jumps from s�t��0 �s�t��0� to
s�t��0 �s�t��0� are approximately independent of subse-
quent jumps.

Let us discretize the time t in the form t=k�t, �k
=1,2 ,3 , . . . � as a simple approach to develop the phenom-
enological analysis according to the process noted above,
where �t is a certain small time step. Then, �ch is discretized

FIG. 7. Time series of s�t� for �a� H0=0.388 and �b� 0.385 by
keeping � f =200.

FIG. 8. The dependence of �̄ on H0−Hc determined numerically
for � f =5. �̄ for a given H0 is obtained by integrating Eq. �3� until a
time T and simultaneously by counting the number N of times pass-
ing through the position s=0. Then �̄ is evaluated as �̄=T /N. One
finds that ln �̄−1 linearly depends on �H0−Hc�−1/2 in the region of
0�H0−Hc�1, where the solid line is expressed as ln y=Ax+B
with fitting coefficients A and B.

FIG. 9. Time series of F�t� schematically indicating the time
that s�t� jumps from s+ to s−. s�t� jumps at the time t* in this case,
where F�t� takes the value −H0 longer than �ch for the first time in
the time series of F�t�.
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as �ch�nch�t with the corresponding integer nch. F�t� is as-
sumed to keep the same value for the interval �t, which is
denoted as Fk=F�k�t�. The conditional probability p that
Fj+1 takes the same value as Fj is given by

p = e−�t/�f , �22�

and the probability q that Fk+1 is different from Fk is there-
fore given by

q = 1 − p . �23�

The system is analyzed phenomenologically as follows:
�i� We introduce the variable sk at a discretized time k�t

which takes two values ±1.
�ii� sk and Fk are initially set to s0= +1 and F0= +H0,

respectively.
�iii� sk jumps from +1 �−1� to −1 �+1� only if Fk continues

to take the identical value −H0 �+H0� for a time interval
longer than nch�t.

�iv� sk does not jump from +1 �−1� to −1 �+1� even
though Fk continues to take +H0 �−H0� for any time interval
longer than nch�t.

A. MFPT �̄ through the channel

We first derive the exact expression for the MFPT �̄
through the channel with the phenomenological approach. In
considering the time series having Fk, �̄ is evaluated as

�̄ = ��
l

l�t �
0�k�l

gk,l
�nch�qkpl−k�

q=1−p

. �24�

Here gk,l
�nch� is the number of the time sequences �Fj� for 0

� j� l satisfying that Fj changed its value k times in each
�Fj� and sj jumps from +1 to −1 for the first time at t= l�t.

Equation �24� is, furthermore, rewritten as

�̄ = �T̂Qnch
�q,p��q=1−p �25�

with the differential operator T̂ and the quantity Qnch
�q , p�

defined by

T̂ � �t�q
�

�q
+ p

�

�p
� �26�

and

Qnch
�q,p� � �

l
�

0�k�l

gk,l
�nch�qkpl−k. �27�

One should note that the q and p dependences in Qnch
are

crucial and that q and p are considered to be independent in
Eq. �27�.

The explicit form of Qnch
�q , p� is then determined so as to

satisfy the following conditions:
�i� In considering any length of time series giving Fk,

there exists a time interval of length nch in the last of the time
series, where all the Fk take the same value −H0, i.e., the
condition that sk jumps from +1 to −1 is satisfied.

�ii� The condition for sk to jump from +1 to −1 is not
satisfied before the last time interval.

One should note that the equality Qn�1− p , p�=1 holds for
any n, because the time interval described above always ex-
ists somewhere in a long time series. Particularly, for n
=nch, Qnch

�1− p , p� is obviously equal to the probability that
sj changes its sign, which must be unity for H0�Hc.

As shown in Appendix A, the explicit form of Qn�q , p� is
given by

Qn�q,p� =
�1 − p�qpn−1

�1 − p�2 − q2�1 − pn−1�
, �28�

where the condition Qn�1− p , p�=1 is easily confined. Apply-
ing the operator �26� to the explicit form �28� with n=nch
yields the relation

�̄ = �T̂Qnch
�q,p��q=1−p = �t

2 − pnch−1

�1 − p�pnch−1

= �t
2 − e�t/�fe−�ch/�f

�1 − e−�t/�f�e�t/�fe−�ch/�f
, �29�

where the last equality is obtained by using Eqs. �22� and
�23� with the relation �ch=nch�t. The exact expression of �̄ is
finally given by

�̄ = � f�2e�ch/�f − 1� �30�

in the limit of �t→0 by keeping �ch constant. Equation �30�
qualitatively agrees for �ch/� f �1 with the result �21�.

B. Distribution function P„�… for the passage time �

The distribution function P��� for the passage time �
through the channel sch is determined by solving the equation

P��� = ���� − T̂�Qnch
�q,p��q=1−p, �31�

where ��x� is the delta function. The Laplace transform
L�P��z� should be calculated in order to solve Eq. �31�. By
using the series expansion of Qnch

�q , p� given by Eq. �27�,
the Laplace transform of P��� is obtained as

L�P��z� � 

0

�

e−�zP���d� = �e−zT̂Qnch
�q,p��q=1−p

=��
l

�
0�k�l

gk,l
�nch��e−z�tq�k�e−z�tp�l−k�

q=1−p

.

�32�

Equation �32� implies that L�P��z� can be obtained by re-
placing q and p by e−z�tq and e−z�tp in Qnch

�q , p�, respec-
tively, i.e.,

L�P�����z� = �Qnch
�e−z�tq,e−z�tp��q=1−p. �33�

Substituting the explicit form �28� for n=nch into Eq. �33�
yields the equation

L�P�����z� =
�� fz + 1�e−�z+�f

−1��ch

� f
2z2 + 2� fz + e−�z+�f

−1��ch
�34�

in the limit of �t→0 by keeping �ch constant. By applying
the inverse Laplace transform to Eq. �34�, the distribution
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function P��� is analytically evaluated in the series expan-
sion as

P��� = � f
−1e−�/�f�

k=0

�

��tk+1�� �− x�k

k!

dk

dxk cosh �x�
x=�tk+1�2

= � f
−1e−�/�f���t1�cosh�t1� − ��t2�

t2 sinh�t2�
2

+ ��t3�
t3
2 cosh�t3� − t3 sinh�t3�

8

− ��t4�
t4
3 sinh�t4� − 3t4

2 cosh�t4� + 3t4 sinh�t4�
48

+ ¯ � ,

�35�

where tk������−k�ch� /� f and ��t� is the Heaviside function
defined by

��t� = �1 for t � 0,

0 for t � 0.
� �36�

For details of the derivation of Eq. �35�, see Appendix B.
Let us suppose to truncate the expansion �35� at k=kc for

an arbitrary kc. It should be noted that Eq. �35� gives the
exact distribution for 0���kc�ch even though the truncation
is executed, since all the terms individually include ��tk� and
so the terms for k�kc do not contribute to P��� for �
�kc�ch. The analytical result �35� is compared with the nu-
merically evaluated distribution in Fig. 10. One observes that
the phenomenological analysis quantitatively explains the
statistical property of passing through the channels. The
characteristics obtained from the figure are summarized as
follows.

�i� There exists a region where P���=0 for ���ch, which
presents the minimal time of passing through the channels.

�ii� P��� decreases exponentially for ���ch, P���	e−��

with a constant �.
�iii� The rate � increases as � f is increased. This tendency

is consistent with the fact that the probability of passing
through channels increases as � f is increased since DMN will
often continue to take an identical value longer than �ch.

On the other hand, the expansion �35� disagrees with the
correct value in an exponential way for ��kc�ch. Let us try
to obtain the asymptotic solution of P��� for ���ch. Equa-
tion �B2� is approximated as

�e−z��−�ch�� �
1

1 + ��̄ − �ch�z
for �z� � �ch

−1, �37�

where �̄ is MFPT given in Eq. �30�. The inverse Laplace
transform of Eq. �37� is straightforwardly calculated to give

P��� �
1

�̄ − �ch

exp�−
� − �ch

�̄ − �ch
� , �38�

which reveals that P��� decreases exponentially with the
damping rate �= ��̄−�ch�−1 for ���ch.

C. Fourier spectrum determined by the phenomenological
analysis

We derive the Fourier spectrum of a time series s�t� by the
phenomenological analysis to focus on the dynamical char-
acteristics in the SRM phase. The Fourier spectrum Ix��� is
defined by

Ix��� = lim
T→�

1

T��
0

T

x�t�e−i�tdt�2� , �39�

i.e., the ensemble average of the Fourier transform of a time
series x�t�.

Let us first consider s0�t��sgn�s�t��. Then the time series
s0�t� is expressed as

FIG. 10. Distribution function P��� of time passing through
channels. The theoretical results �solid lines� are compared with the
numerically evaluated distributions �symbols� for �a� � f =130 and
�b� � f =50. The strength of DMN is set to be H0=0.3852 in both of
the numerical simulations. �ch corresponding to the applied DMN is
estimated to be �ch�134 via the condition P����0 for ���ch,
where both �a� and �b� give the identical value of �ch. The expansion
in Eq. �35� is summed over for k�60, i.e., kc=60.
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s0�t� = �− 1�n−1 for tn−1 � t � tn �40�

with n�1, where tn denotes the nth time to cross zero for
s�t�. Hereafter, t0 is set to be zero without loss of generality.
By identifying that �n� tn− tn−1 is independently distributed
according to Eq. �35�, one obtains the Fourier spectrum of
s0�t� by the phenomenological analysis shown in Appendix
C, in the form

Is0
��� =

4

�̄�2 Re�1 − �e−i��n�
1 + �e−i��n�� =

4

�̄�2

1 − ��e−i��n��2

�1 + �e−i��n��2
,

�41�

where Re�X� represents the real part of X, and limN→�
tN

N
= ��n�= �̄ is used.

Substituting the explicit form of �e−i��n� given in Eq. �34�
with z= i� into Eq. �41� yields

Is0
��� = �4� f

�̄�
��3� f

3 + �4 − e−2�ch/�f��� f − 2e−�ch/�f��� f cos ��ch + 2 sin ��ch�
�4 + �2� f

2���2� f
2 − 2�� fe

−�ch/�f sin ��ch + e−2�ch/�f�
. �42�

The above result is confirmed by comparing with the numeri-
cally evaluated Fourier spectrum for the normalized time se-
ries s0�t� in Fig. 11.

Let us finally modify the phenomenological analysis
which is compatible with the numerically evaluated spectrum
of the original time series s�t� without normalization. Instead
of Eq. �40�, let us define

s̃�t� = �− 1�n−1�1 − a�t − tn−1�� for tn−1 � t � tn �43�

with n�1, where a��t� incorporates the wave form of the
time series passing through the channel and is assumed to be
a��t�=0 for �t��ch. Note that by setting a��t�=0 also for
�t��ch the result of original phenomenological analysis is
recovered. As shown in Appendix C, the Fourier spectrum
Is̃��� for s̃�t� as a modification to Is0

��� is obtained in the
form

Is̃��� = Is0
���

1 + �â����2 + 2 Re�â����
4

, �44�

where

â��� � 1 − i�

0

�ch

a�t�e−i�tdt . �45�

By approximating as a��t�=1+ �sch� for 0��t��ch, Eq. �44�
reduces to

Is̃��� = Is0
����1 + sch

2

2
+

1 − sch
2

2
cos ��ch� . �46�

Equation �46� is confirmed by comparing with the numeri-
cally evaluated Fourier spectrum in Fig. 12.

FIG. 11. Fourier spectrum of s0�t� obtained theoretically �solid
line� and numerically �dashed line�. � f =130 is set for both numeri-
cal and theoretical results, and the strength of DMN is set to be
H0=0.3852 in the numerical simulation. �ch=134 estimated in Fig.
10 is used for Eq. �42�.

FIG. 12. Theoretically obtained Fourier spectrum �46� �solid
line� with �sch�=1/�3 is compared with the numerical result �dashed
line�. � f =130 is set for both numerical and theoretical results, and
the strength of DMN is set to be H0=0.3852 in the numerical simu-
lation. �ch=134 is used for Eq. �42� which was estimated in Fig. 10.
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V. CONCLUDING REMARKS

In this paper, we used the model equation �3� under the
dichotomous Markov noise �DMN� F�t� with a finite corre-
lation time in order to investigate the dynamics of the mag-
netization s�t� of the ferromagnet system driven by the mag-
netic field applied in one direction, where its strength is
constant and only the direction temporally changes. It was
found that the dynamics of s�t� show two kinds of motion,
i.e., the symmetry-restoring motion �SRM� and the
symmetry-breaking motion �SBM�, which are, respectively,
observed when H0 is above and below the critical value Hc.
The transition line between SRM and SBM was determined
only by the strength of the applied DMN and is independent
of the correlation time � f of DMN. By observing the distri-
bution functions of s�t� for SRM and SBM, the ensemble
average of s�t� discontinuously changes at H0=Hc. These
results are quite different from those in the system driven by
a periodically oscillating field �7�.

We then discussed the mean first passage time �MFPT�
slightly above Hc and found that it depends on H0−Hc and � f
as

�̄ � � f exp� C

� f�H0 − Hc�1/2� . �47�

This anomalous characteristics has a form similar to that of
the average duration between neighboring phase slips of the
phase difference in the phase synchronization observed in
coupled chaotic systems �20�. Furthermore, a phenomeno-
logical approach was proposed to analytically discuss the
statistical characteristics for H0�Hc. By obtaining the prob-
ability Qn�q , p� of s�t� passing through the channel, the
MFPT �̄, the distribution function P��� of the passage time �
and the Fourier spectrum I��� of the time series were ob-
tained by using the phenomenological analysis. The statistics
obtained by the phenomenological analysis were found to be
not only in qualitative but also in quantitative agreement
with the numerically obtained results.

In closing the paper, it is worth noting that the effect of
DMN on nonlinear dynamical systems is generally quite dif-
ferent from that of Gaussian noise and DMN produces a new
dynamical response of the systems. It is highly desired to
examine the statistical characteristics obtained in this paper
in laboratory experiments, and also in other numerical simu-
lations, e.g., Monte Carlo simulations.
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APPENDIX A: EXPLICIT FORM OF Qn„q ,p…

First of all, notice that each sample path of Fk �k
=0,1 ,2 , . . . � corresponds to a symbol sequence of ��, ��.

Let w be a symbol sequence of ��, ��, which is referred to
as a string. For given sets A and B of strings, let AB be the
set of all strings expressed as ab for a�A and b�B, where
ab denotes the concatenated string of a followed by b. In the
following, the set composed of only one string w will be
simply expressed as w. Furthermore, let �A�n be the set of all
strings expressed as

a1a2 ¯ ak �A1�

with ai�A and 0�k�n, where k=0 means the zero length
string, including the case ai=aj for i� j. Then, with this
notation, every possible sequence starting with plus signs
and terminating with successive minus signs of length n �n
�2�, which first appears in that string, can be expressed as

�A2�

For a given set S of strings, let us define its “probability”
as a function of p and q by

P�q,p;S� � �
w�S

Pw�p,q� , �A3�

where Pw�p ,q�� pk�w�ql�w� denotes the probability for a
string w, and k�w� and l�w� denote the numbers of pairs of
identical symbols ���, ��� and different symbols ���,
��� appearing in w, respectively. For given strings w1 and
w2, obviously, the identity

Pw1w2
�q,p� = Pw1��q,p�Pw2

�q,p� �A4�

holds with � being the first symbol in w2, and we call w1�
and w2 a decomposition of the string w�w1w2. By noting
that

Qn�q,p� = P�q,p;Sn� �A5�

and considering decompositions of each element in Sn,
Qn�q , p� can be expressed as

Qn�q,p� = P�q,p;Sn��P�q,p;R�pn−1, �A6�

where

Sn� � „+ �+ �� − �− �n−2…�+ �A7�

and

R � + �+ �� − . �A8�

Since each element of Sn� can be uniquely decomposed into a
multiple of elements in

Sn� � + �+ �� − �− �n−2+ �A9�

and inversely every multiple of elements in Sn� uniquely cor-
responds to an element in Sn� as its decomposition, we obtain

P�q,p;Sn�� = �
j=0

�

�P�q,p;Sn���
j �A10�
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=
1

1 − P�q,p;Sn��
. �A11�

Finally, P�q , p ;R� and P�q , p ;Sn�� are calculated as

P�q,p;R� = q�
j=0

�

pj =
q

1 − p
�A12�

and

P�q,p;Sn�� = �
j=0

�

pjq�
i=0

n−2

piq = q21 − pn−1

�1 − p�2 , �A13�

which yield Eq. �28� together with �A6� and �A11�.

APPENDIX B: DERIVATION OF THE PROBABILITY
DISTRIBUTION FUNCTION P„�…

Let us evaluate the inverse Laplace transform of Eq. �34�
in order to derive the explicit form of P���. For simplicity,
the time is rescaled as � f =1. Then Eq. �34� is rewritten as

�e−z�� =
�1 + z�e−�1+z��ch

�1 + z�2 − �1 − e−�1+z��ch�
, �B1�

which reads

L�P�� + �ch�� = �e−z��−�ch�� =
e−�ch

1 + z −
1 − e−�1+z��ch

1 + z

= e−�ch�
n=0

�
�1 − e−�1+z��ch�n

�1 + z�2n+1 . �B2�

Repeatedly applying the formula

L−1�e−�1+z��ch f̂�z�� = e−�chf�� − �ch�

= e−�che−�ch�d/d��f���

= e−�che−�ch�d/d��L−1� f̂�z�� �B3�

with f����L−1� f̂�z��, one obtains

L−1� �1 − e−�1+z��ch�n

�1 + z�2n+1 � = �1 − e−�che−�ch�d/d���nL−1� 1

�1 + z�2n+1�
= �1 − e−�che−�ch�d/d���n �2n

�2n�!
e−����� ,

�B4�

where ���� denotes the Heaviside function Eq. �36�, and the
formula

L−1� 1

�1 + z�m� =
�m−1

�m − 1�!
e−����� �B5�

for any positive integer m was used. Thus, the inverse
Laplace transform of Eq. �B2� reads

P�� + �ch� = e−�ch�
n=0

�

�1 − e−�che−�ch�d/d���n �2n

�2n�!
e−�����

= e−��+�ch��
n=0

�

�1 − e−�ch�d/d���n �2n

�2n�!
���� , �B6�

where the identity

e−�che−�ch�d/d��e−� = e−�e−�ch�d/d�� �B7�

was applied. By noting the identity

�1 − e−�ch�d/d���n = �
k=0

n
�− e−�ch�d/d���k

k!
�dkxn

dxk �
x=1

= ��
k=0

�
e−k�ch�d/d���− 1�k

k!
� d

dx
�k

xn�
x=1

,

�B8�

Eq. �B6� is further simplified as

P�� + �ch� = �e−��+�ch��
n=0

�

�
k=0

�

e−k�ch�d/d�� �− 1�k

k!
� d

dx
�k

xn �2n

�2n�!
�����

x=1

= �e−��+�ch��
k=0

�

e−k�ch�d/d�� �− 1�k

k!
� d

dx
�k

cosh��x�������
x=1

= �e−��+�ch��
k=0

�

e−k�ch�d/d������
�− �2�k

k!
� d

dx
�k

cosh �x�
x=�2

= �e−��+�ch��
k=0

�

��tk�
�− x�k

k!

dk

dxk cosh �x�
x=tk

2

, �B9�

where tk�����−k�ch and the formula �n=0
� xn

�2n�! =cosh �x was

used. After the replacement �→�−�ch and the rescaling of
time as �→� /� f and �ch→�ch/� f, Eq. �B9� reduces to Eq.
�35�.

APPENDIX C: DERIVATION OF THE FOURIER
SPECTRUM I„�…

In this appendix, we derive the Fourier spectrum of the
time series of the magnetization s�t� for the phenomenologi-
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cal analysis. Let �1 ,�2 ,�3 , . . . be a sequence of mutually in-
dependent random variables having the probability density
P��� obeying the condition P���=0 for ���ch, i.e., �k��ch.
We introduce the variable

s̃�t� = �− 1�n�1 − a�t − tn−1�� for tn−1 � t � tn, �C1�

where tn��k=1
N �k and a��t� is a function satisfying a��t�

=0 for �t��ch. We assume that the time series of the mag-
netization s�t� is approximately expressed by s̃�t� with an
appropriate form of a�t�. The Fourier transform of s̃�t� fol-
lows



0

tN

s̃�t�e−i�tdt = �
n=1

N

�− 1�n−1

tn−1

tn

�1 − a�t − tn−1��e−i�tdt

= �
n=1

N

�− 1�n−1e−i�tn−1

��

0

�n

e−i�tdt − 

0

�ch

a�t�e−i�tdt�
= �

n=1

N

�− 1�ne−i�tn−1
e−i��n − â���

i�
, �C2�

where

â��� � 1 − i�

0

�ch

a�t�e−i�tdt . �C3�

Considering the absolute square of Eq. �C2� and then taking
the ensemble average, we obtain

�2�

0

tN

s̃�t�e−i�tdt�2

= �
n=1

N

�e−i��n − â����2

+ 2 Re� �
1�m�n�N

�− 1�n−m

�e−i��k=m+1
n−1 �k�e−i��n − â����

��1 − e−i��mâ*����� �C4�

and

�2

N ��
0

tN

s̃�t�e−i�tdt�2�
= 1 + �â����2 − 2 Re��e−i��n�â*����

+ 2N−1 Re� �
1�m�n�N

�− 1�n−m�e−i��k�n−m−1

���e−i��k� − â�����1 − �e−i��k�â*����� . �C5�

Since ��e−i��n� � �1, in the limit of N→�, the last term in Eq.
�C5� reads

− 2 Re��
k=0

�

�− 1�k�e−i��n�k��e−i��n� − â����

��1 − �e−i��n�â*�����
= − 2 Re� �e−i��n��1 + �â����2� − â��� − �e−i��n�2â*���

1 + �e−i��n�
� ,

�C6�

which leads to

lim
N→�

1

N��
0

tN

s̃�t�e−i�tdt�2�
= �−2 Re�1 − �e−i��n�

1 + �e−i��n���1 + �â����2 + 2 Re�â����� .

�C7�

Noting that limN→�
tN

N = ��n�= �̄, we obtain

Is̃��� = Is0
���

1 + �â����2 + 2 Re�â����
4

, �C8�

where

Is0
��� �

4

�2�̄
Re�1 − �e−i��n�

1 + �e−i��n�� �C9�

corresponds to the case that a��t�=0 for all �t�0 and thus
s0�t�= �−1�n for tn−1� t� tn.
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