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Real collective density variables C�k� �cf. Eq. �1.3�� in many-particle systems arise from nonlinear trans-
formations of particle positions, and determine the structure factor S�k�, where k denotes the wave vector. Our
objective is to prescribe C�k� and then to find many-particle configurations that correspond to such a target
C�k� using a numerical optimization technique. Numerical results reported here extend earlier one- and two-
dimensional studies to include three dimensions. In addition, they demonstrate the capacity to control S�k� in
the neighborhood of �k�=0. The optimization method employed generates multiparticle configurations for
which S�k�� �k��, �k��K, and �=1, 2, 4, 6, 8, and 10. The case �=1 is relevant for the Harrison-Zeldovich
model of the early universe, for superfluid 4He, and for jammed amorphous sphere packings. The analysis also
provides specific examples of interaction potentials whose classical ground states are configurationally degen-
erate and disordered.
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I. INTRODUCTION

Spatial arrangements of particles in many-body systems
exhibit wide diversity that arises from the interactions that
are present, and from the prior history of those systems. One
of the available analytical tools that has proved useful for
describing those spatial arrangements, whether for individual
cases or for ensemble averages, is the set of collective den-
sity variables. These are conventionally defined for N iden-
tical particles in the following way:

��k� = �
j=1

N

exp�ik · r j� , �1.1�

where r j denotes the location of particle j, and k are the
wave vectors appropriate for the container volume and
boundary conditions.

Collective density variables have played an important role
in a variety of problems in condensed-matter physics. Spe-
cifically, they have been used in illustrating that large-scale
density variations in superfluid 4He are in fact long-
wavelength phonons �1�. Introduction of the appropriate col-
lective coordinates is natural in describing independent
plasma oscillations brought about by the long-range Cou-
lomb interactions between electrons in metals �2�. Further-
more, application of these variables has aided in the deriva-
tion of self-consistent integral equations for pair-correlation
functions in classical fluids �3�, in obtaining corrections to
the random-phase approximation for the electron gas �4�, and
in generating classical ground states for particle systems
�5–7�. But in spite of the fact that collective-density variables
appear widely in the literature �1–10�, the nonlinearity of the
transformation in Eq. �1.1� from particle positions to collec-
tive variables entails nontrivial mathematical properties that
are still incompletely understood �5,6�. The present paper is
devoted to clarifying some of the remaining issues.

Many physical applications of collective-density variables
focus on the structure factor S�k� for the many-particle sys-
tem involved;

S�k� =
���k��2

N
= 1 +

2

N
C�k� , �1.2�

where the real quantities C�k� are the following:

C�k� = �
j=1

N−1

�
l=j+1

N

cos�k · �r j − rl�� . �1.3�

In view of the fact that the phase angles of the ��k� are
irrelevant for most applications, it suffices to focus attention
on the C�k�s.

A considerable challenge involves determining what sets
of C�k� values correspond to attainable particle configura-
tions and how to generate and describe those special configu-
rations, including ground-state structures. In particular, it is
important to understand the extent to which these real col-
lective variables at small wave vectors k are controllable.
Although we begin by considering the general situation,
much of the attention in the following will involve the ex-
amination of “hyperuniform” systems �11,12�, namely, those
in the infinite system limit for which

lim
k→0

S�k� = 0. �1.4�

This defining characteristic of hyperuniformity states that the
usual mean-square particle-number fluctuations increases
less rapidly than Rd, where R denotes the linear size of an
observation window and d is the space dimension �11�. Con-
sidering the fact that various hyperuniform physical systems
exhibit characteristic k dependence of their structure factors
near the origin �e.g., the ground state of liquid 4He �13–15�
as well as random, jammed hard-sphere packings �16� and
the early Universe �17��, it becomes important to understand
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what N-particle configurational implications stem from these
specific S�k� forms. This has guided the analysis detailed
below.

Because our objective is to prescribe C�k� �or, equiva-
lently, S�k�� and then to find many-particle configurations
that may correspond to such a target structure function, this
problem can be regarded to be an inverse problem. The
analogous inverse problem in real space in which the pair
correlation function is prescribed has received considerable
attention in the last several years �18–22�. This class of in-
verse problems has come to be called construction problems
�18–21�. A priori, a prescribed-pair structural function is not
necessarily realizable by a many-particle configuration. A so-
lution to the construction problem therefore provides numeri-
cal evidence for realizabilty of a target-pair structural func-
tion. Thus, the present investigation has important
implications for the realizability problem of statistical me-
chanics, which seeks to determine the necessary conditions
that a prescribed pair correlation �or its equivalent Fourier
representation, S�k�� must possess in order for it to corre-
spond to a many-particle system �19,22,23�.

The present paper extends our earlier one-dimenisonal �5�
and two-dimensional �6� studies of collective-coordinate
control-of-density distributions. Our focus in these two stud-
ies was to consider continuous and bounded pair potentials
and to constrain the corresponding collective parameters
C�k�, with wave vector k magnitudes at or below a chosen
cutoff, to their absolute minimum values. In other words,
density fluctuations for those k’s were completely sup-
pressed. In our two-dimensional investigation �6�, we were
able to distinguish between three different ground-state
structural regimes as the number of constrained wave vectors
was increased—disordered, wavy crystalline, and crystalline
regimes. Evidence for a disordered or irregular ground state,
a counterintuitive notion, had heretofore not been provided.
In the present work, we extend these results not only to
three-dimensional ground-state problems but to more general
two- and three-dimensional hyperuniform many-particle sys-
tems.

The next section provides some of the mathematical struc-
ture needed to understand how fixing values of sets of the
real collective variables C�k� exerts control over the allowed
many-particle configurations. A description of our numerical
methods for analyzing this problem follows in Sec. III. Re-
sults of the numerical study cover both two- and three-
dimensional systems, and are presented respectively in Secs.
IV and V. Among other results, we provide specific examples
of interaction potentials whose classical ground states are
configurationally degenerate and disordered. Our conclu-
sions and discussion of some remaining issues appear in
Sec. VI.

II. GENERAL RELATIONS

Suppose that the N point particles reside in a one-,
two-, or three-dimensional container that is an Lx interval, an
Lx�Ly rectangle, or an Lx�Ly �Lz rectangular solid. Fur-
thermore, suppose that periodic boundary conditions apply.
The applicable wave vectors have components

k� =
2�n�

L�

�n� = 0, ± 1, ± 2, . . . � , �2.1�

where �=x ,y ,z as needed. It is easy to see that the C�k�
must obey the following properties:

C�0� = 1
2N�N − 1� ,

C�k� = C�− k� . �2.2�

Furthermore, these collective variables are necessarily con-
fined to the range

− 1
2N � C�k� �

1
2N�N − 1� �k � 0� , �2.3�

and as they vary over this range they measure the magnitude
of density inhomogeneity at wave vector k in the N-particle
system.

Although the number of collective variables is infinite, the
N-particle system possesses only dN configurational degrees
of freedom, where d is the Euclidean space dimension �d
=1,2 ,3�. Consequently, it is unreasonable to suppose �bar-
ring special circumstances� that generally all C�k�’s could be
independently controlled. However, it is possible, as ex-
amples in Refs. �5,6� and in subsequent sections below will
illustrate, to specify simultaneously a number of the collec-
tive variables equal to a significant fraction of dN. In particu-
lar, let Q be a finite set of the k’s meeting this criterion, and
let C0�k� be the target value to which C�k� is to be con-
strained. Of course, each C0�k� must lie in the range speci-
fied by inequalities �2.3� above. Then consider the following
non-negative objective function:

��r1 . . . rN� = �
k�Q

V�k��C�k� − C0�k��2,

V�k� = V�− k� 	 0. �2.4�

This continuous and differentiable function of the particle
coordinates attains its absolute minimum value zero if and
only if the C�k� for all k�Q equal their target values.

By inserting the definitions �1.3� for the collective vari-
ables into Eq. �2.4�, one trivially has the following:

��r1 ¯ rN� = �
k�Q

V�k���
j
l

N

�
m
n

N

cos�k · �r j − rl��

�cos�k · �rm − rn�� − 2C0�k�

��
j
l

N

cos�k · �r j − rl�� + C0
2�k�� . �2.5�

The right member of this last equation can be resolved into
symmetric combinations of four-, three-, and two-particle
contributions, plus an additive constant
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��r1 ¯ rN� = �
j
l
m
n

N

v4�r j,rl,rm,rn� + �
j
l
m

N

v3�r j,rl,rm�

+ �
j
l

N

v2�r j,rl� + �0. �2.6�

The specific forms of these contributions are as follows:

v4�r j,rl,rm,rn� = 2 �
k�Q

V�k�	cos�k · �r j − rl��

�cos�k · �rm − rn�� + cos�k · �r j − rm��

�cos�k · �rl − rn�� + cos�k · �r j − rn��

�cos�k · �rl − rm��
 ,

v3�r j,rl,rm� = 2 �
k�Q

V�k�	cos�k · �r j − rl��cos�k · �r j − rm��

+ cos�k · �rl − r j��cos�k · �rl − rm��

+ cos�k · �rm − r j��cos�k · �rm − rl��
 ,

v2�r j,rl� = �
k�Q

V�k�	cos2�k · �r j − rl�� − 2C0

�cos�k · �r j − rl��
 ,

�0 = �
k�Q

V�k�C0
2�k� . �2.7�

If � is interpreted as a potential energy of interaction for the
N-point particles, then Eqs. �2.6� and �2.7� specify four-,
three-, and two-particle interaction potentials operating in the
system. If classical ground-state configurations for the N par-
ticles subject to that potential exist for which �=0, then
those configurations necessarily attain the desired target val-
ues of the collective variables.

The remainder of our analysis will be restricted to cases
for which the wave-vector set Q consists of all those k lying
within a given distance from the origin

Q: 0 
 �k� � K . �2.8�

In addition, we shall also confine attention to the following
specific family of forms for C0�k�:

C0�k� = − N/2 + D�k��, �2.9�

where the multiplicative constant D and the exponent � are
both non-negative. This choice focuses on the behavior of
the particle system in the hyperuniform regime.

Previous work �5,6� only considered the situation where
D=0, i.e., each of the constrained collective variables was
required to be at its minimum value −N /2. In that event, it is
possible to utilize a simpler potential-energy �objective�
function �̃ that reduces to a sum of just two-particle inter-
actions

�̃�r1 ¯ rN� = �−1 �
k�Q

Ṽ�k�C�k� . �2.10�

In this expression � is the system length �Lx�, area �LxLy�, or
volume �LxLyLz�, and

Ṽ�k� = Ṽ�− k� 	 0. �2.11�

It is easy to show �5,6� that Eq. �2.10� is equivalent to

�̃�r1 . . . rN� = �
j
l

N

ṽ2�r j,rl� ,

ṽ2�r j,rl� = �−1 �
k�Q

Ṽ�k�exp�ik · �r j − rl�� . �2.12�

On account of the positivity condition �2.11� on Ṽ�k�, the

absolute minimum of �̃ will have the value

min
r1¯rN

��̃� = − N/2 �
k�Q

Ṽ�k� �2.13�

if and only if there exist particle configurations satisfying all
of the collective-variable constraints. Of course the more
elaborate �and more general� formulation defined by Eqs.
�2.4�–�2.7� is also applicable to this D=0 case.

Suppose that system configurations have been found
which succeed in producing the desired target values for col-
lective variables over the wave-vector set Q. Then these con-
figurations obviously satisfy the same target values over the
smaller wave-vector set Q��Q. But in view of the fact that
Q� entails fewer configurational constraints, one can expect
that a more inclusive set of N-particle configurations satisfies
those constraints. Indeed that is exactly what has been found
in our previous one- and two-dimensional studies �5,6�, and
further two- and three-dimensional examples will be reported

in this paper. With respect to the objective functions � and �̃
whose minimization indicates a solution to the constraint
problem, the corresponding potential-energy interpretations
demonstrate the presence of configurationally degenerate
classical ground states for the N particles, including disor-
dered or highly irregular ground-state structures. This
ground-state degeneracy phenomenon has been the subject of
a recent theoretical study �7� that proceeds in a rather differ-
ent direction than from the collective coordinate perspective
presented here. The key idea used by Sütó to prove a theo-
rem about ground states is that the Fourier transform of the
pair potential V�k� be non-negative with compact support,
which was first employed in Ref. �5�; see also Ref. �6�.

III. COMPUTATIONAL METHODS

In all calculations reported below, we assume that the sys-
tem region � is constrained to a unit square in two dimen-
sions or a unit cube in three dimensions, to which periodic
boundary conditions are applied. Special attention is devoted
to the choice of the system population N for both two and
three dimensions. In two dimensions, N has been chosen
such that all particles could be arranged in the square simu-
lation box in an aligned and nearly undeformed version of
the triangular lattice. For this purpose, the system occupancy
N is required to be the product of integers 2pq where the
rational number p /q is a close approximation to the irrational
number 31/2. The corresponding configuration consists of 2q
rows of p particles. The same approach was used in selecting
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the system size in our earlier two-dimensional study �6�. In
three dimensions, N is selected such that all particles can be
assembled as an aligned face-centered-cubic lattice. Thus,
the system occupancy is N=4s3 particles where s is a posi-
tive integer.

For any given choice of the independent parameters N, K,
D, and �, the majority of our numerical studies utilized a
random-number generator to create an initial configuration of
the particles inside the simulation space �. In general, these
random initial configurations sufficed but for high � values
in three-dimensional simulations, it proved necessary to use
randomly perturbed regular arrays of point particles. As one
would expect, this starting point typically produces a large
positive value of the objective function of interest. We con-
sider the specific case of Eq. �2.4� where V�k� is unity for the
set Q under consideration. Introduction of the original con-
figuration to the numerical optimization tool MINOP �24,25�
results in a search for a particle pattern at the absolute mini-
mum of the objective function. Our earlier two-dimensional
study �6� involved the use of the conjugate gradient method
�26,27� as our numerical tool of choice. The greater utility of
the MINOP optimization technique for the present investiga-
tion has been an important advantage that merits brief dis-
cussion.

The three plots in Fig. 1 display the tracked potential
energy � during the course of a minimization for both con-
jugate gradient �CG� and MINOP optimizations. Here, we
have applied the algorithms to � minimization for a one-
dimensional system with the parameters N=200, K=10�,
�=6, and DK6=0.01. The final values of the objective func-
tion � are typical for several cases examined and clearly
indicate that the MINOP strategy is better suited to finding a
numerically precise solution to the problem than is the con-
jugate gradient approach. This significant disparity can be
attributed to the details of the multidimensional � “land-
scape” and to the innate differences between the two algo-
rithms. In CG optimization, minimization proceeds in a di-
rection conjugate to the old gradient, i.e., that the change in
the function gradient be perpendicular to the most recent
previous direction of minimization. In contrast, the MINOP
�24� �“dogleg”� strategy is as follows.

Step 0. Let 
i be a preset step bound, pi be the Cauchy
step, and ni be the Newton step, i.e.,

pi = ��gi�2/gi
TGigi�gi, ni = − Higi,

where gi, Gi, and Hi are the gradient, the Hessian approxi-
mation, and its inverse at the ith iteration respectively.

Step 1. Compute ni and �ni�. If �ni��
i, we take 
xi=ni.
If �ni�	
i, we compute �tni�, where t is defined in Ref. �24�.
If �tni��
i, we take xi= �
i / �ni��ni.

Step 2. If �tni�	
i, we then compute the Cauchy step; and
if �pi��
i, we take 
xi=−�
i / �gi��gi.

Step 3. If �pi�

i, we take 
xi= �1−�i�pi+�itni, where �i

is chosen such that 0
�i
1 and �
xi�=
i.
The MINOP algorithm minimizes a real-valued function

of any number of variables based on user-provided first de-
rivative and function information. In general, it applies a

dogleg strategy which uses a gradient direction when one is
far, a quasi-Newton direction when one is close, and a linear
combination of the two when at intermediate distances from
a solution.

FIG. 1. �Color online� Tracking of the potential energy for con-
jugate gradient and MINOP algorithms. Top panel: Early steps.
Middle panel: Intermediate steps. Bottom panel: Late steps. It
should be noted that both algorithms were applied to the same d
=1 minimization problem and initial-particle configuration. The rel-
evant parameters for the minimization problem are N=200, K
=10�, �=6, and DK6=0.01.
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IV. RESULTS—TWO DIMENSIONS

We have performed numerical simulations on a variety of
system sizes, random initial configurations, numbers of con-
strained vectors �i.e., K cutoff�, and choices for the indepen-
dent parameters D and �. Calculations have proceeded to
attain high precision for the absolute minimum of the objec-

tive function of interest, � or �̃. Note that some initial con-
figurations have not yielded the global minimum of the
objective-function hypersurface. In such cases, it can be in-
ferred that there exist some relative minima along the objec-
tive function’s hypersurface landscape. However, all cases
that are reported below in our analysis involve the absolute
minimum of the objective function.

In order to simplify the presentation of our results, we
introduce the following parameter:

� =
M�K�

dN
, �4.1�

where M�K� is defined as the number of independently con-
strained collective coordinates and d indicates the system
dimension. The parameter � is the ratio of the number of
constrained degrees of freedom to the total number of de-
grees of freedom in the investigated system and has proved
to be a fundamental descriptor in the prior one- and two-
dimensional studies �5,6�.

In the following two sections, we present the results pro-
duced by application of the MINOP algorithm to minimiza-
tion of the objective function � for two-dimensional particle
systems. In Sec. IV A, we demonstrate the ability to tailor
the small-�k� portion of the structure factor associated with
point-particle systems. In Sec. IV B, we study the effect of
manipulating the structure factor S�k� within the distinctive
“wavy crystalline” regime reported previously in Ref. �6�.

A. Tailoring the structure factor—Two dimensions

This section describes our successful attempts to manipu-
late the structure factor S�k� of two-dimensional point-
particle systems. We subjected the objective function � with
a randomly generated initial configuration to the MINOP al-
gorithm in order to evolve the C�k�’s toward their target
values. Our numerical simulations have involved the use of
168- and 418-particle systems. Note that these system sizes
are the same as those studied in Ref. �6�. In addition, we vary
the k-space range parameter K �2��K�40�� and the mul-
tiplicative parameter D �0.01�DK��150�. We have varied
�, a key parameter determining the nature of the tailored
structure factor. In particular, we have generated solutions
for the Harrison-Zeldovich �17� spectrum ��=1� as well as
for the �=4, 6, 8, and 10 minimization problems. We de-
voted much of our study to the �=1 and 6 minimization
problems with less detailed attention to the �=4, 8, and 10
minimization cases. As discussed below, our results demon-
strate wide latitude in the capacity to control the structure
factor for two-dimensional point-particle systems.

Plots of the system structure factor that have been tailored
to fit the linear Harrison-Zeldovich and �k�6 spectra are
shown in Fig. 2. Here, the structure factor is derived from

final configurations via Eq. �1.2� and averaged over 50 inde-
pendent realizations. For the purposes of graphical represen-
tation, the structure factor is binned over the reported range
of k space. Note that by construction, the contributions to
S�k� below the cutoff K for a specific set of parameters �fixed
N, K, D, and �� are identical for each realization. Outside the
cutoff, the S�k� contributions from each realization deviate
irregularly from one another, but their average for �k�	K
shows a weak maximum followed by quick decay to unity as
�k� increases. From these structure-factor plots, it is evidently
possible to tailor the structure factor to either spectrum. In
particular, the respective linear and sextic nature of the plots
at low k are visually clear.

Figure 3 displays sample two-dimensional final configu-
rations generated by the � minimization problem for the
linear Harrison-Zeldovich and �k�6 spectra. The lack of any
visible long-range regularity is apparent in the pictured con-
figurations for both cases. However, some random point
clustering appears to be present in the accompanying con-
figuration for the Harrison-Zeldovich spectrum. This differs
from the �k�6 spectrum configuration in which an effective

FIG. 2. �Color online� Averaged structure factor plots for the
two-dimensional minimization problem. The relevant parameters
are N=168, K=20�, DK�=75, �=0.470 238. Top panel: Harrison-
Zeldovich linear spectrum for small k. Bottom panel: �k�6 spectrum.
Each structure factor is averaged over 50 realizations.
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repelling particle core appears to be present. Finally, we
mention that the corresponding analysis of the �k�4, �k�8, and
�k�10 spectra-minimization problems yield results consistent
with the above observations, providing systematic pattern se-
quences in both r and k spaces as illustrated in Figs. 2 and 3.

B. Effect of �k�6 spectrum imposition
on the wavy crystalline regime

One of the qualitatively distinct regimes that was isolated
in our earlier two-dimensional collective coordinates study
�6� was the “wavy crystalline” regime. This regime is distin-
guished by patterns consisting of particle columns that dis-
play a meandering displacement away from linearity. For N
=418, we have found the patterns to occur when 0.58��
�0.78 �6�. An example of such a pattern is displayed in the
top panel of Fig. 4. The result of applying the �k�6 spectrum

FIG. 3. Typical two-dimensional final configurations for the in-
vestigated spectra. The relevant parameters are N=168, K=20�,
DK�=75, and �=0.470 238. Top panel: Harrison-Zeldovich linear
spectrum. Bottom panel: �k�6 spectrum.

FIG. 4. Real-space particle patterns for a system of 418 point
particles. The C�k� quantities for the wave vectors consistent with
�=0.581 339 have been constrained. Top panel: Particle pattern in
the wavy crystalline regime �D=0�. Middle panel: Particle pattern
on which the �k�6 spectrum has been imposed with DK6=0.01. Bot-
tom panel: Particle pattern on which the �k�6 spectrum has been
imposed with DK6=10.
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minimization to this � interval is our focus in this section. As
above, we subjected randomly generated particle systems to
the MINOP �24� algorithm to find the absolute minimum of
the objective function �. Our k-space parameter K is deter-
mined by the � range over which the wavy crystalline regime
prevails. While focusing on the �k�6 spectrum-minimization
problem, we have varied the independent coefficient D.

The middle and bottom panels of Fig. 4 display 418-
particle configurations that result from imposing the �k�6
spectrum on particle systems that at D=0 lie in the wavy
crystalline regime. The multiplicative parameter D used in
generating the configurations in the middle and bottom pan-
els is low �DK6=0.01� and high �DK6=10�, respectively, and
the cutoff K is near the lower limit of the wavy regime of
interest. It is important to note that all three particle patterns
in Fig. 4 were formed from a common initial configuration.
A comparison of the three figures reveals distortion and dis-
ruption of the meandering nature of the reference �D=0�
configuration that intensifies as D increases. Evidently, the
previously documented �6� tendency at D=0 for increasing �
to herd particles toward a crystalline arrangement is sabo-
taged by allowing D to increase.

V. RESULTS—THREE DIMENSIONS

In this section, we discuss the results for three-
dimensional configurations that have been subjected to the
computational algorithm MINOP �24� requiring absolute

minimization of � and �̃. First, we extend our two-
dimensional analysis to the tailoring of the structure factor of
three-dimensional particle systems. Second, we return to an
examination of the configurational patterns associated with
constrained collective-density variables in three dimensions.
This latter aspect extends our earlier work in one �5� and two
�6� dimensions. Note that all calculations presented in this
section have been carried out to the same high precision as
for the two-dimensional samples discussed in Sec. IV.

A. Tailoring the structure factor S„k…—Three dimensions

Our numerical calculations minimizing � have involved
256- and 500-particle systems. Note that these system sizes
conform to the guideline discussed in Sec. III. We vary the
k-space range parameter K �2��K�40��, the multiplica-
tive parameter D �0.01�DK��180�, and investigate both
the �=1 Harrison-Zeldovich spectrum and the �=6 minimi-
zation problem.

As before, structure factors are derived from final con-
figurations averaged over several realizations. The linear
Harrison-Zeldovich and �k�6 cases are displayed in Fig. 5.
Similar to the two-dimensional study, the tailored structure
factor deviates irregularly for �k�	K prior to averaging over
a set of realizations. Once again the averaged S�k� exhibits a
peak just beyond �k�=K, now an even stronger feature than
in the two-dimensional cases shown earlier in Fig. 2. An
examination of the plotted structure factors clearly reveals
the linear and sextic nature of the two curves near the origin.
Figure 6 displays representative three-dimensional final
configurations for the � minimization problem for both the

linear Harrison-Zeldovich and �k�6 spectra. The high degree
of disorder is evident in both sample configurations.

A system-size scaling study was performed as part of our
investigation. This is relevant to the approach to the thermo-
dynamic limit. Specifically, we compared the simulation
times for two different system sizes of fixed � �appropriately
scaled independent parameters N, K, and D� for the
Harrison-Zeldovich spectrum. We find that doubling the sys-
tem size increases the computation time by approximately a
factor of 10.

B. Minimizing collective-density variables
C„k…—Three dimensions

Our numerical studies for D=0 concentrated on two sys-
tem sizes �N=108 and 500�, a wide range of k-space con-
straints, i.e., low through high K, and a variety of initial
configurations �both random and lattice-based�. For the wide
range of k space traversed, the odds of hitting relative

minima of the total-energy function �̃ was increased for

large K. However, trajectories converged to the absolute �̃

FIG. 5. �Color online� Averaged structure-factor plots for the
three-dimensional minimization problem. The relevant parameters
are N=256, K=10�, DK�=20, and �=0.334 635. Top panel:
Harrison-Zeldovich spectrum. Bottom panel: �k�6 spectrum. Each
structure factor is averaged over six realizations.
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minimum for all cases that were included in our final analy-
sis. Our findings remain substantially consistent between the
two investigated system sizes.

In the course of our investigation, we observed two dis-
tinct regimes of the final configurations as � �see Eq. �4.1��
was varied: disordered and crystalline. Table I presents the
relevant range in � for the two investigated systems and
distinguishable regimes. The table indicates disorder for low
values of � and crystallinity for high values of �. This is
expected by analogy with the reported results of the one- �5�
and two-dimensional �6� articles on collective-density vari-
ables. However, our three-dimensional analysis indicates an
abrupt transition from disordered to crystalline regimes re-

vealing the lack of an intermediate “wavy crystalline” re-
gime as observed in two dimensions. For the 500-particle
system and ��0.516 666, we have verified that the crystal
structure is a face-centered-cubic lattice, which for the den-
sity of the system is consistent with the predictions of Sütó
�7�.

Particle patterns, respectively, within the disordered �top
panel� and crystalline �bottom panel� regimes for N=500 are
displayed in Fig. 7. The examples shown are typical for the
two regimes and are vividly distinct. Further insight into the
generated point patterns follows from examination of the as-
sociated pair-correlation functions �18� �see Fig. 8�. The
emergence of an effective repulsive core for increasing val-
ues of � is apparent, reminiscent of a similar effect observed
in Ref. �6� in the two-dimensional case.

FIG. 6. �Color online� Snapshots of three-dimensional final con-
figurations for investigated spectra. The relevant parameters are N
=256, K=10�, DK�=20, and �=0.334 635. Top panel: Harrison-
Zeldovich spectrum. Bottom panel: �k�6 spectrum.

TABLE I. Classification of investigated cases associated with
each of the regimes. Note that the multiplicative parameter D=0 for

this objective function �̃ minimization problem.

N Disordered regime Crystalline regime

108 ��0.469 136 ��0.524 691

500 ��0.500 666 ��0.516 666

FIG. 7. �Color online� Real-space particle patterns for the two
distinct regimes for systems of 500-point particles. Top panel: Par-
ticle pattern in the disordered regime. The C�k� quantities consis-
tent with parameter �=0.171 333 have been constrained to their
minimum values −N /2. Bottom panel: Particle pattern in the crys-
talline regime. The C�k� quantities consistent with parameter
�=0.702 666 have been constrained to their minimum values −N /2.
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VI. CONCLUSIONS AND DISCUSSION

The former studies of collective-coordinate properties
presented in Refs. �5,6� were restricted to one- and two-
dimensional point patterns, and documented the effect of
forcing sets of the collective variables for �k��K to their
individual absolute minima. The present investigation ex-
tends that analysis in two distinct directions, by considering
point patterns in three dimensions, and by examining the
effect of constraining the collective variables around the
k-space origin to chosen increments above their absolute
minima. Specific assignments of the increments that have
been considered have the form D�k��, where D	0, and
�=1, 4, 6, 8, and 10. Point-particle configurations satisfying
these various collective-variable constraints have been ob-
tained to high numerical precision starting from both random
and from distorted-crystal initial conditions, followed by
minimization of appropriate objective functions �� and

�̃, Eqs. �2.4� and �2.10��. Although previous attempts have

produced configurations for which the associated structure
factor S�k��k� with ��4 �17,28�, our analysis also yields
specific configurations that exhibit S�k��k� with ��6. In
addition to the specific cases reported in this paper, our stud-
ies reveal that a considerably wider range of constrained
C�k� patterns can be imposed on many-particle systems. For
example, forcing C�k� to equal 0 instead of its absolute mini-
mum −N /2 reveals a tendency to produce a high degree of
disorder in the generated particle systems.

When D=0, increasing the fraction � of system degrees
of freedom subject to collective-variable constraints was
found in one and two dimensions to drive the point-particle
configurations more and more toward crystalline periodicity.
The present extension, not surprisingly, shows that the same
qualitative trend applies to three dimensions as well. How-
ever the “wavy crystalline” regime reported in Ref. �6� to
separate the two-dimensional low-� disordered regime from
the high-� crystalline regime appears to have no three-
dimensional analog. As � increases for D=0 cases in three

dimensions, the relevant �̃ landscape on which numerical
absolute minimization needs to be carried out develops an
increasing density of relative minima, thereby inhibiting �but
not necessarily preventing� the search for qualifying particle
configurations. For the few cases considered, increasing D
above zero at constant � has the effect of disrupting the
tendency toward crystalline order.

A characteristic feature of the various cases examined,
provided that the fraction � is below its maximum value to
yield valid solutions, is degeneracy of the final particle con-
figurations. This is obvious when several independent initial
configurations for a case considered are individually sub-
jected to the same minimization operation, and then produce
geometrically distinct final patterns. The minimized objec-

tive functions � and �̃, for D	0 and D=0 cases, respec-
tively, indicate that these configuration sets are degenerate
classical ground states, including disordered ones, for spe-
cific potential-energy functions. When � is used, that poten-
tial function consists of four-, three-, and two-body compo-

nents, while for �̃ only two-body components arise. This
offers a specific constructive method to achieve degenerate-
ground-state potentials, a subject recently discussed by Sütó
�7�.

The present collective-variable approach may also supply
some insight into the existence of potentials whose classical
ground states are amorphous, or at least highly irregular.
Start with a small-� constraint case, satisfied with an irregu-
lar point-particle configuration. This specific configuration
will display specific C�k� values for the unconstrained range
�k�	K. Next, formally expand the constraint radius K to the
point where �=1, regarding the already-obtained collective-
variable values as constraint targets. The irregular configura-
tion in hand becomes automatically and trivially a proper
solution for this extended problem. The resulting potential

energy specified by � or �̃ then possesses that irregular
configuration as its unique classical ground state �aside from
overall translations�.

FIG. 8. Radial-distribution functions for systems of 108-point
particles. Top panel: The C�k� quantities consistent with parameter
�=0.123 457 have been constrained to their minimum values −N /2.
Bottom panel: The C�k� quantities consistent with parameter �
=0.262 346 have been constrained to their minimum values −N /2.
Each radial distribution function is averaged over 10 realizations.
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