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By means of singularity analysis, the integrability of a system of generalized coupled Hirota equations with
parameter coefficients is tested. It is proven that the system passes the Painlevé test for integrability only in two
distinct cases.
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Many powerful methods to solve integrable models, such
as the inverse scattering transformation �IST�, Bäcklund and
Darboux transformation, symmetry reduction, the bilinear
approach, and Painlevé analysis, have been established by
many famous mathematical physicists. The usual real physi-
cal nonlinear systems can be treated as perturbations of
the related integrable models �1�. So to find as many as pos-
sible completely integrable models plays an important role in
nonlinear science �2�.

When one says that a model is integrable, one should
point out under what special meaning�s� this is true. For
instance, we say a model is P integrable �Painlevé integrable�
if it possesses the Painlevé property and a model is Lax or
IST integrable if it has a Lax pair and then can be solved by
the IST approach.

In recent years, the Painlevé analysis has been identified
as a powerful tool in the search for new integrable systems
�3,4�. The remarkable feature of this analysis, particularly for
soliton equations, is that a natural connection exists in rela-
tion to the Lax pair, Bäcklund transformation, and Hirota
bilinear forms. Therefore, investigating the underlying inte-
grable models of a general form of soliton equations by
means of this analysis is quite interesting �5–8�.

We consider a generalized coupled Hirota �GCH� system
in the form �11,12�

iq1t + c1q1zz + 2���q1�2 + ��q2�2�q1 − i��q1zzz + �2�1�q1�2

+ �1�q2�2�q1z + �1q1q2
�q2z� = 0,

iq2t + c2q2zz + 2���q1�2 + ��q2�2�q2 − i��q2zzz + ��2�q1�2

+ 2�2�q2�2�q2z + �2q1q2
�q1z� = 0, �1�

which explains the simultaneous propagation of two fields in
a nonlinear optical fiber with the inclusion of higher-order
linear and self-steepening effects. In �1�, qj is the complex
amplitude of the pulse envelope and z and t represent the
spatial and temporal coordinates. c1, c2, �, �, �, �, �1, �2,
�1, and �2 are real parameters.

Integrable cases of the GCH system attract both theoreti-
cal and experimental interest because they support a variety
of exact solutions and the initial-value problem is solvable.
The system �1� is solvable via the IST method for the
conditions c1=c2=�=�=�, �1=�1=�2=�2=3 �9�. The bi-
linear integrability condition of �1� has been studied in Ref.
�10�. The Painlevé analysis of the GCH system, which has

been carried out by Bindu et al. �11� and Porsezian �12�,
indicates that the system �1� is integrable only in the follow-
ing three cases:

c1 = c2, � = � = �, �1 = �1 = �2 = �2 = 3, �2�

c1 = c2 = − 1, � = � = �, �1 = �1 = �2 = �2 = − 3, �3�

c1 = − c2, � = − � = �, �1 = − �2 = − �1 = �2 = 3. �4�

In this Brief Report, we analyze the GCH system again,
and find that �1� is not P integrable for the conditions �2�–�4�.
In addition, we obtain two new sets of P-integrable paramet-
ric conditions for the GCH system. In order to apply the
Painlevé analysis, we define q1= p, q1

*=q, q2=r, q2
*=s, and

rewrite �1� and its complex conjugate as

ipt + c1pzz + 2��pq + �rs�p

− i��pzzz + �2�1pq + �1rs�pz + �1psrz� = 0,

− iqt + c1qzz + 2��pq + �rs�q

+ i��qzzz + �2�1pq + �1rs�qz + �1qrsz� = 0,

irt + c2rzz + 2��pq + �rs�r

− i��rzzz + ��2pq + 2�2rs�rz + �2qrpz� = 0,

− ist + c2szz + 2��pq + �rs�s

+ i��szzz + ��2pq + 2�2rs�sz + �2psqz� = 0. �5�

Though it is rather tedious to figure out the P-integrable
models from the general model �5�, to check the Painlevé
property of �5� under parametric conditions �2�–�4� is quite
easy by using some existing algebraic programs such as the
MAPLE package WKPTEST developed by us �13,14�. Utilizing
our package, the leading order and coefficients can be easily
obtained; the resonances for the cases �2�–�4� appear at −1,
0, 0, 0, 1, 2, 2, 3, 4, 4, 4, and 5.

For the case �2�, there are three arbitrary functions corre-
sponding to the resonances at j=0,0 ,0. However, the reso-
nance condition at j=1 is satisfied provided that c2=�. Un-
der the new parametric constraints c1=c2=�=�=�,
�1=�1=�2=�2=3, the system �5� admits sufficient number
of arbitrary functions and so it is P integrable.

For the case �3�, the resonances conditions hold at
j=0,0 ,0, but the resonance condition at j=1 is satisfied
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constraints c1=c2=−1, �=�=�=1, �1=�1=�2=�2=−3, the
system �5� admits sufficient number of arbitrary functions
and so it is P integrable too.

For the case �4�, the resonances conditions hold at
j=0,0 ,0, but the resonance condition at j=1 is satisfied only
if c2=−�. Under the constraints c1=−c2=�=−�=�,
�1=−�2=−�1=�2=3, the resonance condition at j=2 is sat-
isfied only if �=0. For the conditions c1=c2=�=�=�=0
and �1=−�2=−�1=�2=3, it is proved that the system �5� is
P integrable. In Ref. �12�, the author established the Painlevé
property for the conditions c1=−c2=�=−�=�=1, �1=−�2
=−�1=�2=3, in fact, �5� fails the Painlevé test in verifying
the resonance condition at j=2.

The above analysis shows that cases �2�–�4� become P
integrable only if replaced by

c1 = c2 = � = � = �, �1 = �1 = �2 = �2 = 3, �6�

c1 = c2 = − 1, � = � = � = 1, �1 = �1 = �2 = �2 = − 3, �7�

c1 = c2 = � = � = � = 0, �1 = − �2 = − �1 = �2 = 3. �8�

The natural and important question is under what con-
straints on the parameters �� ,� ,� ,c1 ,c2 ,� ,�1 ,�2 ,�1 ,�2� is
the GCH system P-integrable. To answer this, we try to make
a Painlevé classification for the system �5�.

Now we describe how to obtain the possible Painlevé sub-
cases for the GCH system. Following the standard Weiss-
Tabor-Carnevale �WTC� approach �3�, the system �5� is said
to be P integrable if its solutions are “single valued” about
arbitrary noncharacteristic, movable singularity manifolds. In
other words, all solutions of �5� can be expressed as Laurent
series,

p�z,t� = �
j=0

�

pj��z,t��j+�1�, q�z,t� = �
j=0

�

qj��z,t��j+�2�,

r�z,t� = �
j=0

�

rj��z,t��j+�3�, s�z,t� = �
j=0

�

sj��z,t��j+�4� �9�

with a sufficient number of arbitrary functions among
pj ,qj ,rj ,sj in addition to �. Moreover, �1 ,�2 ,�3 ,�4 should
be negative integers. In order to simplify the calculations, we
make use of the Kruskal ansatz ��z , t�=z−	�t�, where 	 is
an arbitrary function of t. Then the coefficient functions
pj ,qj ,rj ,sj in Eqs. �9� will be functions of t alone.

First, find the leading order and coefficients. To reach this
aim, we substitute

p�z,t� = p0��1, q�z,t� = q0��2, r�z,t� = r0��3,

s�z,t� = s0��4

into �5�. Upon balancing the dominant terms, we obtain

�1 = �2 = �3 = �4 = − 1, r0 =
3��2 − �1�

��1�2 − �1�2�s0
, �10�

p0 =
3��1 − �2�

��1�2 − �1�2�q0
,

where s0 and q0 are arbitrary functions.
Next, in order to find the resonances that are the powers at

which the arbitrary coefficients enter into the Laurent series
�9�, we substitute

p�z,t� = p0�−1 + pj�
j−1, q�z,t� = q0�−1 + qj�

j−1,

r�z,t� = r0�−1 + rj�
j−1, s�z,t� = s0�−1 + sj�

j−1

into �5�. Detailed calculations give the following resonance
equation for the exponent j:

�4q0
4s0

4��1�2 − �1�2�4j2�j + 1��j − 1��j − 3��j − 5��j − 4�4


���1�2 − �1�2�j2 − 6��1�2 − �1�2�j + 3��1�1 + �2�2�

+ 5�1�2 − 11�1�2����1�2 − �1�2�j2

− 2��1�2 − �1�2�j − 3��1�2 + �1�2� + 3��1�1 + �2�2��

= 0. �11�

Due to �11�, eight resonances lie in the positions
j=−1,0 ,0 ,1 ,3 ,4 ,4 ,5, and the other four resonances are de-
noted as j1, j2, j3, j4. From �11�, we have the following three
possibilities �the case �=0 is not considered here�:

�2 = 0, �1 = �2 −
�2j4

2

3
+

2�2j4

3
,

j2 = 4 − j4, j1 = 2 + j4, j3 = 2 − j4, �12a�

�1 =
�2�3�1 − 3�2 + �1j4

2 − 2�1j4�
3�1 − 3�2 + �2j4

2 − 2�2j4
,

j2 = 4 − j4, j1 = 2 + j4, j3 = 2 − j4, �12b�

�1 = �2, j1 = 2, j2 = 4, j3 = 0, j4 = 2. �12c�

We require that the considered branch be generic,
i.e., 11 resonances lie in non-negative integer positions.
Taking into account the admissible multiplicity of reso-
nances, we find from �12� that the considered branch is
generic only for the five specific choices of parameters
shown in Table I.

For the parameter choices listed in Table I, the Painlevé
test should be performed again from the first step. That is to
say, the leading-order analysis, the resonance determination,

TABLE I. Parameter sets leading to a generic branch.

Case Parameter choices Resonances �j�

I �2=0, �1=
4�2

3
−1, 0, 0, 1, 1, 1, 3, 3, 3, 4, 4, 5

II �2=0, �1=�2 −1, 0, 0, 0, 1, 2, 2, 3, 4, 4, 4, 5

III �1=
�2�2�1−3�2�

3�1−4�2

−1, 0, 0, 1, 1, 1, 3, 3, 3, 4, 4, 5

IV �1=�2 −1, 0, 0, 0, 1, 2, 2, 3, 4, 4, 4, 5

V �1=�2 −1, 0, 0, 0, 1, 2, 2, 3, 4, 4, 4, 5
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and the test of resonance conditions are required.
Considering case I, the leading-order analysis is also

given by �10�, there is only one generic branch, and the reso-
nances are located at −1,0 ,0 ,1 ,1 ,1 ,3 ,3 ,3 ,4 ,4 ,5. Further
analysis shows that the resonance conditions at j=1,1 ,1
reduce to

p1 = „i�27��1
2q0 − 3�2

2�1c1q0 − 3�2
2�q0 − 9�2�1

2c2q0

+ 2i��1�2
3s0q0r1 − 3i��1�2

2q1�…/�3��1
2�2

2q0
2� ,

s1 =
�2s0

2r1

3
, � =

�1�3� − �2c2�
�2

.

It is obvious that there are only two arbitrary functions,
r1 ,q1, so the system �5� is not P integrable in this case.

Considering case II, we have to set �1=0 such that three
coefficients among r0, s0, p0, q0 are arbitrary. Along with the
additional parametric constraint �1=0, the resonance condi-

tion turns out to be inconsistent at j=1, as in the previous
case; thus the system �5� is not P integrable in this case.

Considering case III, the leading-order analysis and the
resonance determination provide two possible generic
branches.

Branch (i): �i=−1 �i=1, . . . ,4�, r0=−1/ ���1−�2�s0�,
q0=−�3�1−4�2� / ��2��1−�2�p0�, and the resonances occur at
j=−1,0 ,0 ,1 ,1 ,1 ,3 ,3 ,3 ,4 ,4 ,5.

Branch (ii): �i=−1 �i=1, . . . ,4�, r0=−�3+�2p0q0� / ��2s0�,
�1=�2, and the resonances occur at
j=−1,0 ,0 ,0 ,1 ,2 ,2 ,3 ,4 ,4 ,4 ,5.

In the case of branch �i�, there are two arbitrary functions
p0 ,s0 corresponding to the resonances j=0,0. However, the
resonance conditions turn out to be inconsistent at j=1,1 ,1;
thus this branch should be ignored. In the case of branch �ii�,
p0 ,q0 ,s0 are arbitrary and correspond to the resonances
j=0,0 ,0. At resonance j=1, p1 is an arbitrary function; the
remaining expansion coefficients q1 ,r1 ,s1 are

q1 = −
q0p1

p0
,

s1 =
− is0�2c2�2 − 2�p0q0�2 − i��2p1q0�2 + 2�p0q0�2 − 6��

��2p0q0�2
,

r1 =
− i�2c2�2 − 2�p0q0�2 − i��2p1q0�2 + 2�p0q0�2 − 6���p0q0�2 + 3�

s0��2p0q0�2
2 ,

where

c1 = ���2��2 − �2
2� − ��2�2 + ��2

2�q0
2p0

2 + �3��2 − 6��2

+ �2c2�2 + 3��2�q0p0 + 3c2�2 − 9��/��2�2p0q0� .

�13�

p0 and q0 are arbitrary functions, so we find from �13� that

� =
c1�2

3
, � =

�2c2

3
, � =

�2�2�c1 + c2�
3��2 + �2�

. �14�

Together with the parameter choice �14� in addition to
�1=�2�2�1−3�2� / �3�1−4�2�, �1=�2, we perform the
Painlevé test of �5� again, and know that there is only
one branch: the leading orders for p ,q ,r ,s are −1,
p0=−�3+�2r0s0� / ��2q0�, and r0 ,s0 ,q0 are arbitrary func-
tions. The resonances occur at j=−1,0 ,0 ,0 ,1 ,2 ,2 ,3 ,4 ,4 ,
4 ,5. Now substituting the expansion �9� into �5� and collect-
ing the coefficients of ��−3 ,�−3 ,�−3 ,�−3�, the determining
equations of the coefficients p1 ,q1 ,r1 ,s1 are obtained. Solv-
ing them we get

p1 =
�3 + �2r0s0�q1

�2q0
2 ,

r1 = −
r0�3�q1�2 + 3�q1�2 + 2ic2q0�2 − 2i�2c1q0�

3�q0��2 + �2�
,

s1 =
s0�3�q1�2 + 3�q1�2 + 2ic2q0�2 − 2i�2c1q0�

3�q0��2 + �2�
,

where q1 is an arbitrary function corresponding to the reso-
nance j=1.

In a similar manner, collecting the coefficients of
��−2 ,�−2 ,�−2 ,�−2�, the determining equations of the coeffi-
cients p2 ,q2 ,r2 ,s2 are obtained. From the obtained equations
we see that two coefficients among r2 ,s2 , p2 ,q2 cannot be-
come arbitrary. However, we have the following three
possibilities for specific choices of c1, c2, �2, �2.

Case IIIa: when c1=c2 ,�2=�2,

s2 = �− i�i�2
2r0s0�2q1

2� − 3i�2
2q1

2� − 2q1�2q0c2�2

+ 2i�q2�2
3r0s0q0 − i	tq0

2�2
2 − 3i�q1

2�2
2 + 6i�q2q0�2

2

− ir0s0q1
2��2

3��/�2��2
3r0q0

2� ,

p2 = �− i�i�2
2r0s0�2q1

2� − 3i�2
2q1

2� − 2q1�2q0c2�2 − 3i�q1
2�2

2

− 2i��2
3q0

2r2s0 − i	tq0
2�2

2 − ir0s0q1
2��2

3��/�2��2q0
3�2

2� ,

where r2 ,q2 are arbitrary functions.
Case IIIb: when c1=−c2 ,�2�0,
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p2 = �i�18i�2�2q0
2r2s0 + 4i�2r0s0c2

2q0
2 + 12�2r0s0�q1c2q0

+ 9i	tq0
2� − 18c2q1�q0

+ 54i�2q1
2��/�18q0

3�2�2� ,

s2 = �− i�18i�2q2�2r0s0q0 − 12�2r0s0�q1c2q0 − 54i�2q1
2

+ 54i�2q2q0 − 4i�2r0s0c2
2q0

2

− 9i	tq0
2� + 18c2q1�q0��/�18q0

2�2�2r0� ,

where r2 ,q2 are arbitrary functions.
Case IIIc: when c1=−c2 ,�2=0,

r2 =
	tr0

2 + 6�r1
2 + 2ic2r1r0

6�r0
, s2 =

i�i	tr0
2 − 2c2r1r0 + 6i�r1

2�
2��2r0

3 ,

where p2 ,q2 are arbitrary functions.
In this way by proceeding further and collecting the

coefficients of ��−1 ,�−1 ,�−1 ,�−1�, ��0 ,�0 ,�0 ,�0� and
��1 ,�1 ,�1 ,�1�, we establish the required number of arbi-
trary functions corresponding to j=3, j=4,4 ,4, and j=5
without any additional restrictions on the parameters. Thus
we conclude that in case III the Laurent expansions of �5�
contain a sufficient number of arbitrary functions for the
three parametric restrictions:

� = � = � =
c2�2

3
, c1 = c2, �1 = �2 = �1 = �2, �15�

� = −
c2�2

3
, � = 0, � =

c2�2

3
, c1 = − c2,

�1 = �2, �1 = �2, �16�

� = � = 0, � =
�2c2

3
, �1 = �2 = 0, �1 = �2, c1 = − c2.

�17�

It is obvious that Eqs. �15� and �16� are more general than
the conditions �6�–�8�. When �2=3, the case �15� becomes
the condition �6�, when �2=−3 and c2=−1, the case �15�

becomes the condition �7�, and when c2=0, �2=3, �2=−3,
the case �16� becomes the condition �8�.

In case III, we arrive at three P-integrable subcases of
Eqs. �5�. The first one is

iq1t + c2q1zz +
2c2�2

3
��q1�2 + �q2�2�q1

− i��q1zzz + �2�2�q1�2 + �q2�2�q1z + �2q1q2
�q2z� = 0,

iq2t + c2q2zz +
2c2�2

3
��q1�2 + �q2�2�q2

− i��q2zzz + �2��q1�2 + 2�q2�2�q2z + �2q1q2
�q1z� = 0,

�18�

where c2 ,�2 ,� are arbitrary constants, and the second one is

iq1t − c2q1zz −
2c2�2

3
�q1�2q1

− i��q1zzz + �2�2�q1�2 + �2�q2�2�q1z + �2q1q2
�q2z� = 0,

iq2t + c2q2zz +
2c2�2

3
�q2�2q2 − i��q2zzz

+ ��2�q1�2 + 2�2�q2�2�q2z + �2q1q2
�q1z� = 0, �19�

where c2 ,�2 ,�2 ,� are arbitrary constants. The models �18�
and �19� are, as far as we know, two types of subcase of
P-integrable models of �1� first reported here.

From the parametric restriction �17�, we get the third
P-integrable model. However, the obtained model becomes
decoupled and so it is omitted here.

After finishing a similar analysis for cases IV and V, we
obtain a new parametric restriction in addition to �15�–�17�,

� = −
c2�2

3
, � = � = 0, �2 = �1 = 0, �1 = �2, c1 = − c2,

�20�

under the above parametric constraints, the system �1� be-
comes decoupled and so it is also omitted here.
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