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Deterministic walks as an algorithm of pattern recognition
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New tools for automatically finding data clusters that share statistical properties in a heterogeneous data set
are imperative in pattern recognition research. Here we introduce a deterministic procedure as a tool for pattern
recognition in a hierarchical way. The algorithm finds attractors of mutually close points based on the neigh-
borhood ranking. A memory parameter u acts as a hierarchy parameter, in which the clusters are identified. The
final result of the method is a general tree that represents the nesting structure of the data in an invariant way

by scale transformation.
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I. INTRODUCTION

With recent technological advances, the amount of data
produced daily in research centers increases dramatically as a
function of time. Techniques for exploring this amount of
crude, frequently multidimensional data are essential [1-4].
The aim of these works is to identify correlations and pat-
terns in a data set.

In most cases there is no a priori knowledge about the
data set, thus being indispensable the use of unsupervised
methods of clustering. Such methods partition the data set
minimizing dissimilarities within and maximizing dissimi-
larities between the clusters, driven solely by the data. The
practical procedure to access this relational array of elements
is to set a convenient distance measure that converts the re-
lationships into numerical values.

Thus, grouping data frequently involves some implicit as-
sumptions about the data set structure to better fit the data in
the appropriate space. A common sense in data mining re-
search is that there is no optimal approach. Each problem
demands its own optimal solution and each technique gives
different results and carries different limitations. Therefore,
easy-to-implement, fast, and robust techniques are welcome.

Due to their easy implementation and intuitive visualiza-
tion, hierarchical methods are among the most popular
adopted approaches [5-7]. They organize data in a hierarchi-
cal structure according to a proximity matrix. Groups are
formed by a process of agglomeration or division driven by
the minimal pairwise distances. The result is usually a hier-
archical binary tree.

Although not as thoroughly studied as random walks
[8.9], the study of deterministic walks [10-12] has atttracted
the interest of researchers, and new applications are being
considered. Following a previous work on this subject, we
are interested in exploring a partially self-avoiding determin-
istic walk algorithm, known as the tourist walk (TW)
[13-16], for pattern recognition purposes.
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The tourist walk algorithm can be pictorially viewed as a
tourist subjected to visit N cities randomly distributed on a
map, following the deterministic rule of going to the nearest
city, that has not been visited in the past u time steps. The
tourist follows his route, passing by a transient trajectory
until he or she gets trapped in a cycle of period p. Although
easy to formulate, this algorithm presents complex behavior
according to the chosen memory window w. The determin-
istic nature just described suggests a property of finding
natural clusters in a given data set (here we may understand
a city as a point in a multidimensional space) based on local
interactions among the elements.

Here we propose the use of the deterministic tourist walk
algorithm to identify patterns in data sets in a hierarchical
way. In Sec. II we briefly review the hierarchical method
most commonly used (the single linkage hierarchical cluster-
ing) and present the tourist walk algorithm as a clustering
method, together with the procedure developed for
visualization—a general tree. In order to evaluate the perfor-
mance and to illustrate the method better, we have used two
artificial data sets and one set of real-world data. The de-
scription of these test sets is given in Sec. III. In Sec. IV we
present and discuss the results of the applied TW method,
outlining some of its features in contrast to the single linkage
hierarchical clustering results. In Sec. V we summarize and
present the final conclusions.

II. THE ALGORITHMS

Here we briefly review the traditional hierarchical method
and introduce one based on the deterministic tourist walk.

A. Hierarchical methods

Traditional hierarchical clustering can be classified into
two categories: the agglomerative methods and the divisive
methods, corresponding to bottom-up and top-down strate-
gies, respectively [3,4,7]. The agglomerative methods have
been used more frequently than the divisive ones and are
focused on here.

In agglomerative methods, each element is signed to its
own cluster and the distance matrix is computed (the metrics
used is up to the convenience of the problem). The essential
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feature of this algorithm is that the two closest clusters in this
symmetric matrix are merged, resulting in a single point. At
each iterative step the distance matrix must be updated and
the process continues until there is only one cluster, repre-
senting the whole data set.

The result of a hierarchical algorithm is a binary tree rep-
resenting nested grouping of patterns and similarity levels at
which groupings change. A hierarchical tree is a very useful
tool for abstractions on the structure of the data set, espe-
cially when hierarchical relations really exist in the data. The
ultimate clustering result can be obtained by cutting the
branches of the resulting tree at different levels of dissimi-
larity according to the problem.

The definition of “close” for a pair of clusters varies and
the application depends on the nature of the data set. One of
the most commonly used algorithms is the single linkage.
For a review of the main measurements of proximity be-
tween two groups of objects, see Refs. [3,4]. For the single
linkage method, the distance between two clusters is deter-
mined by the two closest objects in different clusters. Nev-
ertheless, all of the algorithms act in the same way, coalesc-
ing the pairs of clusters at each level of the hierarchy,
imposing a pairlike structure to the data.

B. Tourist walk

Let us now turn our attention to a different approach to
the clustering problem.

Consider a set of N elements in a space of d dimensions.
For illustrative reason, we call each element a city. Consider
a tourist beginning his route in a given city of this set.
The tourist moves according to the following rule: go to the
nearest city that has not been visited in the last u time steps
(it is worth mentioning that in [13] the memory window is
designated by 7, being 7=u—1).

For p=1, self-avoidance is limited to this memory win-
dow, and trajectories can intersect outside this range. The
tourist trajectory consists of a transient part of length ¢ and a
final cycle of period p, with u+1<p<N. For u=0 (the
tourist has no memory), the solution is trivial and every da-
tum point represents a singleton attractor. If =1 (remember
only the last visit—the actual city), the tourist goes to the
nearest city until two reciprocally nearest neighbors are
found, entering a two cycle. The full analysis of this situation
is given in Ref. [17]. With u=N-1, the trajectory is totally
self-avoiding and the whole set with N points covers an at-
tractor. This particular case is known as the nearest-neighbor
construction heuristic. Our interest is devoted to the interme-
diate cases (1 <u<<N-1), which present complex behavior.

The tourist movements are entirely performed based on
the neighborhood table, which neglects the distance among
the cities but keeps the neighborhood rank within the
memory windows. An example of the tourist walk in a bidi-
mensional random map is shown in Fig. 1.

In the context of clustering, one can consider each attrac-
tor at a given value of the parameter u as a cluster. Increas-
ing u leads to an increase in the self-avoidance and the clus-
ters tend to coalesce. Notice that clusters have at least
(u+1) elements contrasting to the pairwise interaction of the
traditional hierarchical models.
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FIG. 1. (Color online) A random map with N=500 and w=5.
Beginning at four different points, the tourist performs a transient
trajectory (thin line) until falling in an attractor (thick line). The
attractors can have different periods.

The visualization of the clustering process is a general
tree, similar to the ones used in hierarchical methods, al-
though it is not constrained to a binary or any N-ary struc-
ture. The levels in the hierarchy represent the window
memory instead of a dissimilarity measure.

The algorithm for building the hierarchical tree works as
illustrated in Fig. 2. Figure 2(a) shows a bidimensional map
with 20 points randomly (uniformly) distributed. In the con-
struction of the tree [Fig. 2(b)], points that belong to the
same attractor are considered as a cluster in the given hier-
archy level. For u=0, each point represents an attractor.
Therefore one has N singleton clusters as the leaves of the
tree. For pu=1, pairs of mutually nearest neighbors are the
new attractors. Notice that this is not equivalent to the single
linkage (SL) algorithm since the latter only considers the pair
with the smallest distance in each iteration. As the memory
values are further increased, the walk is performed and new
attractors are found. These attractors are formed indepen-
dently of the results obtained in the preceding steps. Each
new attractor can either contain a part of or a whole of pre-
ceding attractors. If overlap occurs, the clusters are merged.
This nesting process continues until the whole data set is
contained in only one cluster, which usually occurs for
memory values much lower than N—1 for organized data.

III. DATA SETS

For the numerical experiments, we have created two arti-
ficial data sets with the purpose of stressing the main features
of the algorithm. The real-world data utilized are the iris data
set [18]. The results are confronted with the single linkage
hierarchical clustering. The sets are described below.

The construction of the distance matrix (SL) and the
neighborhood tables (TW) has been based on the Euclidean
distance between the data vectors for the three data sets
tested. Ties are resolved arbitrarily,and the one that comes
first has priority.

(I) This data set consists of 33 elements in two-
dimensional space organized in four well-separated clusters
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FIG. 2. (Color online) Construction of the hierarchical tree with
tourist walk algorithm. (a) Twenty random points in a two-
dimensional space. The lines represent the attractors formed in each
memory step shown for u=[0,3] (solid light line: u=1; solid dark
line: u=2; dotted line: u=3). (b) The corresponding tree with the
corresponding colors for the drawn attractors.

and one element placed equidistantly from the four other
groups. The data are plotted in Fig. 3(a).

(I) This data set consists of 100 elements in two-
dimensional space displaced in two clusters. The two clusters
are equivalent but plotted in different scales. The larger one
is a magnification of ten times the other. The set is shown in
Fig. 3(b).

(III) The iris data set [18] is a real data set commonly
used as a benchmark for data mining purposes. It consists
of 150 samples of iris flowers with the respective measures
of length and width for petal and sepal. These flowers are
divided into three categories or subspecies (see Fig. 4).
A typical multivariate statistical analysis concerns the diago-
nalization of the measure covariance matrix. The eigenvalues
are the principal components and the eigenvectors form the
basis for independent measures. This procedure is called
the principal component analysis. For visualization pur-
poses, the data set is represented only with its two principal
components, which are plotted in Fig. 4.

IV. RESULTS

Both SL and TW algorithms have been applied to data
sets I to II1, resulting in the dendrograms shown in Figs. 5-7,
respectively.
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FIG. 3. (Color online) Points distributed in a plane where the
distances are in arbitrary units. (a) Data set I, a set of 33 elements
distributed in four distinct clusters and one point equidistant of
them. (b) Data set II, two equivalent sets of 50 elements each,
plotted in different scales.

Figure 5 shows a great similarity in the clustering struc-
ture obtained by both methods. However, as discussed above,
the linkage method imposes a binary hierarchical structure to
the clustering, while the TW is not constrained to any fixed
number between the structures, privileging the natural struc-
tures of the data. Both trees show the merging of the four
distinct groups and the middle point (labeled with the star) at
the same level of the hierarchy (at a level of 0.7 units of
distance for SL and at memory window 8 for the TW). No-
tice that in the SL this merging occurs in five different itera-
tion steps, while in the TW it happens at the same time. One

L} >
101 ™ L]
o L}
2 "3
£ %o
o 0 * .
2 e ..o'.'
© o® »
o *
© %% S
£ s »
= (]
o P
*
10}
.
° >
. »
-40 -20 0 20 40

Principal Component 1

FIG. 4. (Color online) Two principal components of the iris data
set. The symbols correspond to the three different categories.
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FIG. 5. (Color online) The resulting dendrogram of the SL pro-
cedure (a) and the TW procedure (b) over data set I. The abscissas
are, respectively, interelements distance, and memory parameter.

interesting feature is that the value u=8, achieved in the
complete merging [Fig. 5(b)], does not occur by chance. In-
deed each of the four groups merged at this step has exactly
eight elements and as we stressed earlier, the periods of the
attractors resulting from the walk are at least wu+1. Thus,
starting at a given point of the data set, the self-avoidance
imposes the walker to find an attractor of at least nine points.
As this procedure is running at the same time for all the N
points, the attractors are superimposed, creating a single
large group.
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FIG. 6. (Color online) The resulting dendrograms of the (a) SL
procedure and (b) TW procedure over data set II. The L-labeled
cluster corresponds to the larger group in Fig. 3(b) and the S-labeled
cluster to the smallest one. The abscissas are, respectively, interele-
ments distance and memory parameter.
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FIG. 7. (Color online) Dendrograms of the iris data set. (a) SL
algorithm; (b) TW algorithm. Symbols correspond to the symbols in
Fig. 4.

Figure 6 illustrates well the “local action” feature of the
TW algorithm. The data set II is constructed by two copies of
the same structure in different scales. In the SL dendrogram
[Fig. 6(a)], one can see two distinct clusters, yet with differ-
ent densities. The larger one in Fig. 3(b) gives rise to the
branch of the tree with larger internode distances. The small-
est one is represented in the denser branch. On the contrary,
the TW tree is exactly symmetrical, representing the equiva-
lent sets in an identical manner. This is an important feature
of the proposed algorithm. Although having information
about the whole system (on the neighborhood rank table), the
TW favors local information for merging the clusters. More-
over, the interelement distances are not considered, only
ranking relationships. These results suggest a possible ad-
vance in the use of automatic pattern recognition in different
scales.

The two principal components of the data vectors of the
iris flowers data set have been plotted and shown in Fig. 4,
where one can clearly distinguish two linearly separated
groups, the first labeled with the circles and the other encom-
passing the two other labels.

The latter labels are not linearly separable as can be con-
firmed in Figs. 7(a) and 7(b) for the SL result and for the TW
result, respectively. One can notice that both methods have
been able to distinguish clearly two groups. In turn, the
squares plus diamonds group can be divided into subgroups
according to the cutoff chosen, and the results are strongly
different for each method. The SL method, yet with some
misclassifications and many outliers, has been able to distin-
guish the squares and diamonds into two subgroups. This is
not observed in Fig. 7(b) for the TW method, which has been
able to separate both labels, although inside a large single
cluster. A similar result can be found in Ref. [19] for Ko-
honen maps. Kohonen maps and the TW method work on a
vicinity that are not essentially binary as it is for the SL
method. In fact, if one visually tries to recognize clusters in
Fig. 4 without the a priori knowledge of the labels and with
the Euclidean distance among the points as the only differ-
entiable parameter, one would be able to distinguish only
between two groups. This result is thus coherent, with the
method employed.
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V. SUMMARY AND CONCLUDING REMARKS

The rapid development of computer power has allowed
access to huge databases but has also brought the desire for
elaborated and diversified methods of analysis of such data.
In many of the emerging applications, it is clear that no
single approach for classification is optimal and often mul-
tiple methods have to be combined for the desired outcome
[20].

Here we present an algorithm for pattern recognition
based on a deterministic walk. The algorithm allows an au-
tomatic hierarchical representation of the implicit structure
on a given data set in an efficient manner.

Some advantages can be stressed on the use of the pro-
posed algorithm.

(1) One need not work with the distance matrix, but only
with a neighborhood rank table for each individual. It could
be of great use in problems where the relationships among
the objects are qualitative and the introduction of a distance
matrix would be arbitrary. Notice that it is not possible to
adapt the SL method building a distance matrix from a
neighborhood table, for instance, considering the nearest
neighbor having a distance of 1, the second one the distance
of 2, and so forth. This cannot be implemented since the
neighborhood table is a rank table and therefore not neces-
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sarily symmetric. Given two points A and B of the table, if
point A is the nth neighbor of B, B is not necessarily the nth
neighbor of A. The “distance” based on this rank is not sym-
metric, breaking up the formal definition of metrics impera-
tive to single linkage algorithm.

(2) The tourist walk favors local information for each
data point and makes no restriction for the tree structure.
Points are merged if they belong to the same attractor, where
an attractor is a group of points mutually next. In turn, two
attractors form a node in the tree if they are coalesced in a
given hierarchy level.

(3) Disregarding the distances among the elements allows
a representation of the data set that is invariant by scale
transformation.

At present we are studying if the stochastic version of the
tourist walk [21,22] can improve the performance of the
method. Applications to real-world data sets will be pre-
sented in a future work.
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