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We have applied a variational algorithm based on projected entangled pair states �PEPS� to a two dimen-
sional frustrated spin system, the spin-1/2 antiferromagnetic Heisenberg model on the Shastry-Sutherland
lattice. We use the class of PEPS with internal tensor dimension D=2, the first step beyond product states
�D=1 PEPS�. We have found that the D=2 variational PEPS algorithm is able to capture the physics in both
the valence-bond crystal and the Néel ordered state. Also the spin textures giving rise to the magnetization
plateaus seen in experiments on SrCu2�BO3�2 are well reproduced. This shows that PEPS with the smallest
nontrivial internal dimension, D=2, can provide valuable insights into frustrated spin systems.
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I. INTRODUCTION

Spins with antiferromagnetic interactions prefer opposite
alignment. However, in many materials the lattice structure
does not allow all antiferromagnetic bonds to be satisfied
simultaneously. These are known as frustrated antiferromag-
nets and display a variety of different phases ranging from
rather well-known Néel-ordered phases to much less under-
stood exotic phases such as valence bond crystals and spin
liquids. There is no general theory of frustrated antiferro-
magnets, thus the different lattice structures are usually stud-
ied as separate models. Especially difficult are two-
dimensional �2D� models. Finding the phase diagram of any
of these models is made difficult by the lack of effective
numerical tools that go beyond exact diagonalization of the
Hamiltonian.

It is an unfortunate fact that the most powerful numerical
methods such as the density matrix renormalization group
�DMRG� and quantum Monte Carlo �QMC� that are very
effective for studying general quantum magnets do not work
well when applied to frustrated 2D antiferromagnets. DMRG
is mainly restricted to 1D systems, and QMC suffers from
the sign problem. However, there are promising variational
methods �1–5� that perform energy minimization in a large
class of states known as tensor product states �TPSs�. Re-
cently Verstraete and Cirac suggested an alternative minimi-
zation strategy in this space of states, there termed projected
entangled pair states �PEPSs�, which promises to be very
efficient �6� and deserves further study. The PEPSs or TPSs
have a natural “refinement” parameter, the internal dimen-
sion D of the tensors. This parameter determines how well
the particular class of states covers the full Hilbert space.
The lowest level D=1 corresponds to product states, thus
yielding results on the level of mean field theory. The aim of
the present paper is to investigate how well the next level in
the hierarchy, D=2, can describe a 2D frustrated antiferro-
magnet of real physical interest.

An interesting frustrated antiferromagnet, which exhibits
both a Néel ordered phase and a valence bond crystal phase,
is the spin-1/2 Heisenberg antiferromagnet on the Shastry-
Sutherland lattice, see Fig. 1. This model was initially pro-
posed as a toy model possessing an exact dimerized eigen-
state known as a valence bond crystal �7�. However, the

interest in this model is more than academic as it is believed
that the material compound SrCu2�BO3�2 is reasonably well
described by this model for particular values of the antifer-
romagnetic couplings �8�. Although extensively studied, the
zero temperature phase diagram of the Shastry-Sutherland
antiferromagnet remains elusive. While two of the phases are
known, the possible existence of an intermediate phase and
its nature are still unresolved issues. In addition, experiments
on SrCu2�BO3�2 in a magnetic field show the appearance of
magnetization plateaus �9� with rather peculiar spin struc-
tures �10�. Several theoretical approaches based on the
Shastry-Sutherland model have attempted to explain these
steps �11–19�. The approaches used so far have ranged from
exact diagonalization �10,11,19� to perturbative analysis
�12–17� and mean field theory calculations �18�.

The PEPSs or TPSs are higher dimensional generaliza-
tions of matrix product states �MPSs� �20,21� which are
known to be particularly useful variational states in one di-
mension �22,23�. In contrast to the variational algorithm pro-
posed in Ref. �6� the variational calculations using TPSs car-
ried out in Refs. �1–5� build in translational invariance at the
outset of the minimization procedure by using site-
independent tensors or take into account the positional de-
pendence only partially �24�. While this reduces the number
of variational parameters it is often desirable not to assume
this when dealing with a spin system where the a priori

FIG. 1. Bond configuration for the Shastry-Sutherland model.
All bonds have antiferromagnetic couplings. Vertical and horizontal
bonds have coupling strength J1 and diagonal bonds J2.
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unknown magnetic unit cell can be bigger than the unit cell
of the lattice. There are also systems for which translational
symmetry is explicitly broken by, for instance, impurities or
boundaries. Thus it is desirable to have a method that is
capable of treating also these situations. As a relevant ex-
ample here, the NMR experiment on the 1/8 magnetization
plateau in SrCu2�BO3�2 showed that the results were best
explained in terms of a state that breaks translational sym-
metry �10�.

From the viewpoint of 1D variational calculations where
the MPSs have internal matrix dimensions D�32–128 �25�,
it would at first sight seem inadequate to restrict the 2D
calculations to D=2. However, as argued in Ref. �26� even
the D=2 class of states is very rich, a fact that is supported
by our findings. We find that the D=2 PEPSs capture most of
the known physics of the Shastry-Sutherland model such as
the valence bond crystal phase, the Néel-ordered phase, and
the magnetization steps.

The outline of this paper is as follows: in Sec. II we give
a detailed outline of the variational method and in Sec. III we
introduce the Shastry-Sutherland model and give a brief ac-
count of what is known about the ground state and the con-
nection to the experimental results on SrCu2�BO3�2. In Sec.
IV we comment on the application of variational PEPSs to
the Shastry-Sutherland model and in Sec. V and VI, we look
at the ground state in absence and in presence of an external
magnetic field respectively, examining the phase transition
and magnetization plateaus. Finally, in Sec. VII we address
the performance of the algorithm.

II. VARIATIONAL METHOD USING PEPS

Although the algorithm is described in Ref. �6� we reiter-
ate it here in detail for completeness. As any variational al-
gorithm, the aim is to minimize the expectation value of the
Hamiltonian within a given class of trial states. The class of
states used here are projected entangled pair states �PEPSs�
represented by an array of complex tensors Ai, each tensor
associated with a physical spin. To define a PEPS trial wave
function an auxiliary lattice, the computational lattice, is in-
troduced. While the sites on the computational lattice coin-
cide with the sites on the physical lattice the bonds need not.
However, it is important that the dimensionality of the com-
putational lattice is the same as the dimensionality of the
physical lattice. The bonds in the computational lattice deter-
mine the index structure of the tensors Ai. A tensor Ai will
have one index for each bond in the computational lattice
emanating out from site i. Note that different choices of the
underlying computational lattice lead to different classes of
variational PEPS-wave functions. As an example, consider
Fig. 2 where a computational lattice in the form of a simple
3�3 square lattice with open boundary conditions is shown.
With each lattice site i we then associate two tensors Ai

s,
s= ↑ ,↓ corresponding to spin up and spin down, respec-
tively. Each tensor has a rank determined by the number of
bonds in the computational lattice connecting the site and a
dimension D. Hence on site 5 in the lattice in Fig. 2 we have
two �s5= ↑ , ↓ � D-dimensional rank 4 tensors �A5

s5�l,r
d,u with

indices for the bonds going down, up, left and right, whereas

on site 6 we have two rank 3 tensors �A6
s5�l

d,u. While for
PEPSs one associates the tensor indices with the bonds in the
computational lattice one could alternatively associate them
with plaquettes as in the interaction-round-face TPSs
�4,27,28�.

For a system with M sites we have the following form of
the trial wave function:

��� = �
s1=↑,↓

¯ �
sM=↑,↓

Tr�A1
s1
¯ AM

sM��s1� ¯ �sM� .

The symbol Tr�·� means here that one should trace over all
indices �bonds� in the computational lattice. As an example,
for the 3�3 lattice in Fig. 2 this operation becomes

Tr�A1
s1A2

s2
¯ A9

s9� = �A1
s1�r1

u1�A2
s2�r1,r2

u2 �A3
s3�r2

u3

� �A4
s4�r4

u1u4�A5
s5�r4,r5

u2,u5�A6
s6�r5

u3,u6

� �A7
s7�r7

u4�A8
s8�r7,r8

u5 �A9
s9�r8

u6, �1�

where repeated indices should be summed over.
For D=1 the Ai

s’s are complex scalars and the trial wave
function is a simple product state ansatz similar to a mean
field,

��D=1� = 	
i=1

M

�
si=↑,↓

Ai
si�si� .

For D=2 each index takes on two values. Although we will
not make explicit use of it in the following, each Ai

si can for
D=2 be represented as a vertex with arrows, one for each
index, each pointing either in or out. The contraction of all
indices corresponds then to evaluating the partition function
of a particular vertex model where Ai

si represent the vertex
weights �29�.

To minimize the energy �or to even calculate it� we need
to evaluate


H� =

��H���

����

.

To see how this is done in practice we consider first the
normalization N= 
� ��� with our 3�3 example above
which explicitly gives

FIG. 2. Computational lattice and associated tensors. Shown
here is an example of a 3�3 computational lattice. Two tensors Ai

s,
s= ↑ ,↓ are associated with each site i. Each tensor has indices
u ,d , l ,r corresponding to bonds connecting the site i to neighboring
sites.
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���� = �
�si��

�
�si�


�s�����A1
s1��

r1�
u1��*��A2

s2��
r1�,r2�
u2� �*��A3

s3�
r2�
u3��*

� ��A4
s4��

r4�
u1�u4��*��A5

s5��
r4�,r5�
u2�,u5��*��A6

s6��
r5�
u3�,u6��*

� ��A7
s7��

r7�
u4��*��A8

s8��
r7�,r8�
u5� �*��A9

s9��
r8�
u6��*

� �A1
s1�r1

u1�A2
s2�r1,r2

u2 �A3
s3�r2

u3

� �A4
s4�r4

u1u4�A5
s5�r4,r5

u2,u5�A6
s6�r5

u3,u6

� �A7
s7�r7

u4�A8
s8�r7,r8

u5 �A9
s9�r8

u6��s�� . �2�

We now single out a specific site, say k=5, and construct the
D2 dimensional tensors Ei, i�5,

Ei = �
s

�Ai
s�*

� �Ai
s� .

Here the tensor product acts on all indices in the tensor, i.e.,
the tensors Ej have composite indices

�Ej�l̃,r̃

d̃,ũ
= �Ej��l�l�,�r�r�

�d�d�,�u�u�.

The normalization can now be written as


���� = �
s5

��A5
s5�

r4�,r5�
u2�,u5��*�E1��r1�r1�

�u1�u1��E2��r1�r1�,�r2�r2�
�u1�u2� �E3��r2�r2�

�u3�u3�

��E4��r4�r4�
�u1�u1�,�u4�u4��E6��r5�r5�

�u3�u3�,�u6�u6��E7��r7�r7�
�u4�u4��E8��r7�r7�,�r8�r8�

�u5�u5�

��E9��r8�r8�
�u6�u6��A5

s5�r4,r5

u2,u5.

Contracting all indices except those connecting site k=5 we
get


���� = �
s5,s5�

��A5
s5��

r4�,r5�
u2�,u5��*�s5�,s5

�N5��r4�r4�,�r5�r5�
�u2�u2�,�u5�u5��A5

s5�r4,r5

u2,u5.

�3�

By treating the 2D4 components of A5 as a 2D4 dimensional
vector A5 and the 4D8 components of �s5�,s5

N5 as a �2D4�
� �2D4� matrix N 5

eff Eq. �3� becomes


���� = A5
†N 5

effA5.

The evaluation of 
� �H ��� can be done in a similar fash-
ion if we treat each term in the Hamiltonian individually. For
a Hamiltonian H consisting of M terms we can always de-
compose H into individual terms H�n� as H=�n=1

M H�n�, where
each H�n� can be written as a product of on-site operators

H�n�=	 j=1
M Ôj

�n�. For a Hamiltonian with only nearest neighbor

interactions the majority of the onsite operators Ôj
�n� will be

the identity operators 1 j. Again we form D2 dimensional ten-
sors Ej

�n� from the D dimensional tensors Ai
si by

Ei
�n� = �

s,s�

�Ai
s��*

� �Ai
s�
s��Ôi

�n��s� .

For each term H�n� we can now again write this in vector
form if we single out a particular site k,


��H�n���� = Ak
†Hk

�n�Ak,

and sum the matrices Hk
�n� to obtain an effective Hamiltonian

matrix Hk
eff=�nHk

�n� for site k.
The overall structure of the optimization algorithm is now

the following. We pick a site k and calculate N k
eff and Hk

eff by
contracting all indices of the E tensors surrounding it. Then
we solve the generalized eigenvalue problem

Hk
effAk = �N k

effAk �4�

from which a new Ak
s with lower energy can be determined.

While it is in principle possible to chose this new Ak
s to be the

eigenvector corresponding to the smallest eigenvalue in Eq.
�4� this occasionally leads to problems with convergence.
Instead we only gradually project out the high energy eigen-
vectors from Ak in the optimization. We then continue in this
vein sweeping over all sites 1�k�M until no further reduc-
tion in energy can be achieved.

While it is no problem to obtain N k
eff and Hk

eff in the small
3�3 example above it becomes a problem as we move to
larger systems. For a general set of tensors Ei the trace
Tr�	iEi� is in its most general form, an NP-complete prob-
lem �26� and cannot be evaluated exactly for large systems
but approximate strategies have to be used. We have em-
ployed the strategy suggested in Ref. �6� doing this in a
row-wise fashion. To calculate either N k

eff or one of the con-
tributions Hk

�n� the three steps in Fig. 3 are performed. For a
site k located at row r and column c we first contract verti-
cally from the top down to row r+1 and upwards from the
bottom to row r−1. When only rows r and r±1 remain we
contract vertically to columns c±1 after which the effective
matrices can be obtained.

When contracting vertically the left-right dimension of
the E tensors will increase. For instance, contracting the D2

dimensional tensors �E2�l,r
u with �EN+2�l,r

d,u in Fig. 3 generates
a new tensor

FIG. 3. Steps in obtaining contribution to the effective operator
matrices N k

eff and Hk
eff in Eq. �4�. For a site k located at row r and

column c we first contract row-wise from the top down to row
r+1 and upwards from the bottom to row r−1 all the E tensors
contributing to the operator. After each row contraction the left-
right dimension of the tensors are reduced to a dimension Df before
the next row is contracted. When only rows r and r±1 remain we
contract vertically to columns c±1 after which the effective matri-
ces can be obtained.
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�F2��l�l�,�r�r�
u = �

x=1

D2

�E2�l�,r�
x �EN+2�l,r

xu �5�

with D4 dimensional left-right indices. This leads to an ex-
ponential growth of the left-right index dimensions with each
row contraction. To handle this we use the approximation
technique suggested for approximating an MPS with dimen-
sion Di with another MPS with a lower dimension Df �Di
described in Ref. �6�, which has also been successfully used
to simulate time evolution in 1D systems �30�. Below we
give an example of how this is done for the contraction of
row 1 with row 2 in Fig. 3.

Any row in Fig. 3 can be viewed as a matrix product
operator �MPO�. For the bottom row this corresponds for-
mally to a vector

U1 = �
�ui�

E1
u1E2

u2
¯ EN

uN�u1, . . . ,uN�

represented by a set of ND2 D2�D2 matrices Ei
u. One of the

middle rows, for instance the second one, can be formally
viewed as a matrix

U2 = �
�di�,�ui�

EN+1
d1,u1

¯ EN+N
dN,uN�u1, . . . ,uN�
d1, . . . ,dN� .

Contracting row 1 with row 2 is thus formally equivalent to
a vector-matrix multiplication giving rise to a new ND2 di-
mensional vector U21=U2U1 represented by ND2 D4�D4

matrices Fi
u �cf. Eq. �5��. We now seek a new vector

Ũ21 = �
�ui�

F̃1
u1
¯ F̃N

uN�u1, . . . ,uN� �6�

represented by ND2 Df �Df matrices �Df �D4� F̃i
ui such that

� = �U21 − Ũ21�2

is minimal. One does this in an iterative way starting with an

ansatz for the solution and then optimizes the matrices F̃i
ui

one by one until convergence is reached. In practice we do
this by first forming the Df

2�Df
2 matrices

Gi = �
u

�F̃i
u�*

� F̃i
u,

the DfD
4�DfD

4 matrices

Hi = �
u

�F̃i
u�*

� Fi
u,

and the D8�D8 matrices

Ji = �
u

�Fi
u�*

� Fi
u

in terms of which � can be written

� = 	
i

Gi − 2 Re	
i

Hi + 	
i

Ji.

For a given site 1�k�N along the row we can now get a

linear equation for F̃k
u that will locally minimize �. To see

this we differentiate with respect to ��F̃k�l�,r�
u �*,

��

���F̃k�l�,r�
u �*

= 
	
i�k

Gi�
l�l

�F̃k�l,r
u 
	

i�k

Gi�
r�r

− 
	
i�k

Hi�
l�l

�Fk�l,r
u 
	

i�k

Hi�
r�r

= 0,

and treat the left-right indices of Fk
u and F̃k

u as the indices of

vectors Fk
u and F̃k

u which leads to the system of equations

GF̃k
u = HFk

u.

Although the matrices Ji are not needed to actually do the
minimization we still calculate them to keep control of the

error. If the error, after the F̃k
u’s have converged is too large

we increase Df to obtain a better approximation.
For an N�N system we need to calculate of the order of

N2 contributions H�n� to the effective Hamiltonian Heff. For
each contribution the contractions and approximations of
MPO’s �cf. Fig. 3� need to be calculated. This is the most
computationally costly part of the algorithm and to avoid
unnecessary calculations we optimize the tensors Ai

s in the
computational lattice row-wise and store all calculated
MPOs which can be reused. This means that the memory
needed for storage of MPOs scales as N4D2Df

2.
Once the algorithm has converged it is straightforward to

use the obtained state to calculate other expectation values.
This is done in the same way as the calculation of the energy.
The operator one wishes to evaluate is divided into a sum of
terms, i.e., O=�n=1

M O�n�, where each term can be written as a

product of on-site operators, O�n�=	 j=1
M Ôj

�n�. One then
chooses a site k in the lattice and calculates effective matri-
ces Ok

�n� for each of the M terms from which an effective
matrix Ok

eff=�n=1
M Ok

�n� is obtained. The desired expectation
value is then evaluated as


O� =
Ak

†Ok
effAk

Ak
†N k

effAk

.

Finally we would like to point out that in this implemen-
tation we make no use whatsoever of any symmetries of the
Hamiltonian, either in algorithm or in the trial states. This
means that our program can treat very general Hamiltonians
with nonuniform ground states.

III. SHASTRY-SUTHERLAND MODEL

The Shastry-Sutherland model was originally introduced
as an example of a model with an exact dimerized ground
state �7�. The model is a frustrated spin-1/2 antiferromagnet
with a bond configuration shown in Fig. 1,

H = J1�

i,j�

Si · S j + J2 �

i, j��

Si · S j . �7�

Although the model was introduced for reasons of purely
theoretical nature, interest was renewed along with experi-
ments on SrCu2�BO3�2 �9�. In SrCu2�BO3�2 the crystal struc-
ture is layered with alternating planes of CuBO3 and Sr and
the magnetic properties stem from the CuBO3 layers. It has

A. ISACSSON AND OLAV F. SYLJUÅSEN PHYSICAL REVIEW E 74, 026701 �2006�

026701-4



been argued that these layers are well modeled by the
Shastry-Sutherland model �8�.

In the limit J2�J1 the ground state, which is separated
from the excited states by a gap, is a dimer state with local-
ized spin singlets on the diagonal bonds, the ground state
energy per spin being Edimer=−3/8J2 per diagonal bond. In
the other limit J1�J2 the model reverts to the ordinary an-
tiferromagnetic Heisenberg model with a Néel ordered
ground state and gapless spectrum. From high temperature
series expansion and exact diagonalization �11,31,32� a pos-
sible direct transition between the dimer phase to the Néel
phase has been estimated to lie at �J1 /J2�c=0.7±0.01.

Other works point to the existence of an intermediate
phase between the antiferromagnet and the dimer phase. A
sketch of the phase diagram is shown in Fig. 4. Most esti-
mates agree that below �J1 /J2�c1�0.6 the ground state is the
dimer state and above �J1 /J2�c2�0.9 the ground state is the
Néel state. The nature of this intermediate state has been
addressed in several publications. In Ref. �33� Albrecht and
Mila used Schwinger Boson mean field theory to argue in
favor of a first order transition between the dimer state into a
helical state and a second order transition to a Néel state.
Another possible intermediate state, the plaquette singlet
phase, was discussed by Koga and Kawakimi in Ref. �34�.
Both plaquette states and Helical states were considered in
Ref. �35�. Arguments against both plaquette and helical
phases was put forward in Ref. �36� based on extensive se-
ries expansions around both the helical and plaquette phases
and even columnar phases. This is in contrast to the findings
in Ref. �37� that lend support to either a plaquette phase or a
columnar phase. Other suggestions for the intermediate
phase are weakly incommensurate spin-density waves �WIS-
DWs� or fractionalized quantum paramagnet �FQPM� �38�.
Finally a resonant valence bond plaquette phase was sug-
gested as the intermediate state in Ref. �39�. Thus neither the
existence of an intermediate phase nor its exact nature are
presently known.

Experiments on SrCu2�BO3�2 in strong external fields
show the existence of magnetization plateaus �8,9�. While

the ground state in absence of an external field is believed to
be the dimer state, the magnetization steps were originally
thought to be formed by strongly localized triplets forming
periodic patterns which may spontaneously break the trans-
lational symmetry �12–17� �for an alternative explanation hy-
pothesis see Ref. �18��. Subsequent NMR experiments �10�
at the 1/8 plateau revealed a more complex structure, incon-
sistent with the simple triplet-singlet picture. By including
coupling to phonon degrees of freedom, with the sole pur-
pose of breaking the translational symmetry, exact diagonal-
ization studies of small systems �10,19� revealed more com-
plex spin textures. Again, at all steps �except the 1/2�
translational symmetry is broken and larger unit cells are
formed.

IV. APPLICATION OF VARIATIONAL PEPS TO THE
SHASTRY-SUTHERLAND MODEL

Applying variational PEPSs to the Shastry-Sutherland
model is straight forward. Two issues should be noted. First,
we stress again that the computational lattice does not need
to have the same bond configuration as the underlying
Hamiltonian. For the purpose of studying the Shastry-
Sutherland model it is sufficient to use an ordinary square
lattice as depicted in Fig. 2. It is easy to show that already
with a low tensor dimension D=2 it is possible to represent
exactly the dimerized ground state with singlets on all diag-
onal bonds.

The second issue regards boundary conditions. In imple-
menting the algorithm we have used a computational lattice
with open boundary conditions. The reason for this is two-
fold. First, using a computational lattice with periodic
boundary conditions severely reduces the performance of the
algorithm, the difference being that between matrix-vector
multiplications rather than matrix-matrix multiplications.
Second, our program suffers from stability problems arising
due to ill-conditioning and round-off errors in the case of
computational lattices with periodic boundary conditions.

Although the computational lattice does not have periodic
boundary conditions it is not necessary to adopt the same
boundary conditions to the Hamiltonian. In this study we
have used two different physical boundary conditions, open
and periodic. For the open BC we have adopted the geometry
shown in Fig. 5�a� while for the periodic the geometry in Fig.
5�b�. The interpretation of using periodic boundary condi-
tions �BCs� in the physical problem while using open BC in
the computational lattice is reminiscent of using a self-
consistent field on the boundary. The bonds across the
boundary have only a tensor dimension Dboundary=1 which in
the limit of large lattices implies that the contribution from
such a bond will approach the product form 
Si ·S j�
→ 
Si� · 
S� j for limited D.

We have mainly restricted ourselves to using a tensor di-
mension D=2 for which a usual work station with 1 GB of
internal memory suffices. Although our program can in prin-
ciple handle D�2 �see Sec. VII�, it is in its present incarna-
tion too slow and unstable for D�2. For the dimension of
effective MPOs when calculating effective operators we have
used a variable 16�Df �24 for all simulations except for

FIG. 4. Proposed phase diagrams for the Shastry-Sutherland
model. Two possible scenarios for the phase diagram have been
proposed. Either a direct transition between the dimer state and the
Néel state �a� or a transition via an intermediate phase as in �b�. The
nature of this intermediate phase has not been established.
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the largest �12�12� systems where the 1-GB memory limit
restricts us to 16�Df �18.

V. GROUND STATE IN ZERO FIELD

In Fig. 6 the lowest energies obtained by the algorithm for
D=2 are shown for system sizes of 6�6, 8�8, 10�10, and
12�12 with both open �main panel� and periodic boundary
conditions �inset�. The total energy has been scaled by the
number of internal diagonal bonds Ns and the coupling en-
ergy J2. As can be seen, for low J1 /J2 the ground state en-
ergy approaches −3/8J2 for the system with open boundary
conditions confirming the convergence to the dimerized
ground state. From the graph obtained using open boundary
conditions it can be seen that already for D=2 we find a
phase transition from the dimerized state, the transition point
being located at 0.69±0.02 which is in agreement with esti-
mates for the transition point of the direct dimer-Néel tran-

sition. Further, in the energy a clear finite size effect is seen
as the transition point is approached.

From the inset showing the energies obtained using peri-
odic boundary conditions the location and nature of the tran-
sition is less clear. Here we have again divided the total
energy by the number of internal diagonal bonds. Since the
diagonal bonds across the boundary are not counted this
gives rise to energies lower than −3/8J2. The transition is
revealed by looking at the strength of the diagonal singlets
and the staggered magnetization, as shown in Fig. 7. The
singlet mixing is calculated by projecting the diagonal bonds
on to the singlet state, i.e., 1 indicates a singlet while 0
indicates a triplet. The staggered magnetization displayed is
calculated as 2� ��iSi�−1�i�2�1/2. Note that for large J1 /J2

the staggered magnetization is higher than the value ex-
pected for a Heisenberg antiferromagnet. The reason for this
can be twofold. First, finite size effects explain a part of the
discrepancy as can be seen from the graph. Second, while
D=2 gives a good value for the energies involved, being
only a few percent off the exact values, observables may
differ by more �see Sec. VII�.

As stated in Sec. III, there are good reasons to believe that
an intermediate phase exists between the dimer phase and the
Néel phase. However, it is hardly surprising that we do not
see this intermediate phase in our D=2 variational calcula-
tion. First of all, with tensor dimension D=2 we typically
overshoot the true ground state energy by a few percent, thus
higher D is likely needed to capture any additional phase that
may differ by a percent or less in energy. Second, the influ-
ence of boundary conditions scales as 1 /N which implies
that boundary effects can have a big impact even for the

FIG. 5. Boundary conditions used in the simulations. �a� Open
boundary condition. �b� Periodic boundary condition.

FIG. 6. �Color online� Variational minimum energy as a function
of J1 /J2 for system sizes 6�6 �blue squares�, 8�8 �red circles�,
10�10 �green diamonds�, and 12�12 �black stars�. For open
boundary conditions �main figure� the transition from the dimer
state to the Néel state is clearly visible in the energy which has been
scaled to the number of diagonal bonds. The inset shows energies
for periodic boundary conditions using the same energy scaling.

FIG. 7. �Color online� Order parameters, singlet mixing on
diagonal bonds �solid lines�, and staggered magnetization �dashed
lines� for periodic boundary conditions for system sizes 6�6 �blue
squares�, 8�8 �red circles�, 10�10 �green diamonds�, and
12�12 �black stars�. Results obtained with internal tensor dimen-
sion D=2 suggest a direct first order transition from the dimer state
to the Néel state.
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largest systems �12�12� in cases where the energy splittings
between ground state candidates are small.

VI. MAGNETIZATION PLATEAUS

To study the magnetization curve we have deliberately
chosen a somewhat smaller coupling constant J1 /J2=0.6
rather than the experimental value �J1 /J2�SrCu2�BO3�2

=0.635.
This makes the dimer state more stable and the algorithm
converges faster but should not significantly affect the phys-
ics. In Fig. 8 we show the results for finite magnetic fields
for systems with periodic boundary conditions of sizes 8
�8 and 10�10 �D=2�. Although our square geometry and
�periodic� boundary conditions are inconsistent with the unit
cells proposed in Refs. �10� and �19�a clear steplike structure
is nevertheless visible in Fig. 8. A closer inspection reveals
that locally the spin configurations we have obtained match
those in Ref. �19� very well.

To study the spin configurations at the plateaus we have
visualized the wave functions by coloring the bonds accord-
ing to the amount of triplet or singlet mixing �see Fig. 8�.
Localized singlets are drawn in red whereas triplets are blue.
To determine the color of a bond we use the following cri-
terion:

�red 
��Si · S j��� � 0.1	triplet + 0.9	singlet

blue 
��Si · S j��� � 0.9	triplet + 0.1	singlet

black otherwise

. �8�

Furthermore, we have measured the spin component parallel
to the direction of the applied field �B=Bẑ� and visualized


Sz� by circles with radii proportional to �
Sz��. Spins aligned
�antialigned� with the field are drawn as filled �open� circles.

For small fields, B�1, we see a finite magnetization
where one would expect a spin gap. This is due to the inabil-
ity of our trial states to form singlets across the boundary. As
can be seen in the inset, for B�1 the interior of the system is
still in the dimer phase while only spins on the boundary
have aligned with the field. Thus by looking at when the
magnetization in the interior of the system becomes finite
we estimate the spin gap to be roughly B=1 corresponding
to 33 T where we have used coupling constants J=85 K,
g=2.28 �with J=71 K the corresponding number is 28 T�.

For B�1 three steps can be distinguished, 1/4, 1/3, and
1/2. While the spin texture at 1/2 matches that of earlier
predictions, half of the diagonal bonds being triplets while
the other half being singlets, the spin textures for other points
are more elaborate and only agree with earlier predictions
locally. An example is shown in the top left inset of Fig. 8.
Here, three of the 1/3 unit cells obtained by Miyahara et al.
�19� are reproduced in the interior of the 10�10 system.
Note that the total magnetization is larger than 1/3 at this
point due to the spin configurations on the boundary.

The spin textures obtained at the steps can only be found
when translational symmetry is broken. In the variational
method employed here translational symmetry is broken
partly because of our choice of computational lattice and
boundary conditions, and partly because a D=2 PEPS cannot
represent the coherent superposition of degenerate plateau
states connected by global symmetry transformations.

VII. ALGORITHM PERFORMANCE

So far we have only concerned ourselves with D=2 which
is the first step beyond a simple on-site factorizable wave
function. Restricting ourselves to D=2 and sizes up to
12�12 allows the program to run on an ordinary worksta-
tion with 1-GB internal memory without using any swapping
to disk.

Because the method is based on a sequence of approxi-
mations, i.e., for a 12�12 system there are over 700 contri-
butions to the effective Hamiltonian on any given site, each
contribution being obtained in a series of up to ten consecu-
tive approximations, one has to ask whether or not the pre-
cision is compromised. Another important factor to consider
is how much more accuracy �how much closer to the true
ground state energy we can come� can be obtained by in-
creasing D, and how the computational effort scales with
increasing D.

In Fig. 9 the energy as a function of number of optimiza-
tions is shown for a 10�10 system with J1=J2=1. While
smooth on a large scale, the errors accumulated in the suc-
cessive approximations are clearly visible in the inset which
shows a closeup of the final convergence. In this simulation
and others we have used a final dimension in the approxima-
tion of E tensors �see Sec. II� 16�Df �24 �for 12�12 we
have been restricted to 16�Df �18 due to the limited
memory �1 GB� of the workstation�. As can be seen, despite
the heavy reduction of the state space in the calculations, we
have a precision of the order of four digits. This can also be

FIG. 8. �Color online� Magnetization curve at J1 /J2=0.6 for
system sizes 8�8 �blue squares� and 10�10 �red circles�. A clear
steplike structure corresponding to fillings 1/4, 1 /3, and 1/2 is
seen. The insets show the distribution of singlets �red lines� and
triplets �blue lines�. The Sz component of the spin on each site is
illustrated by a circle with radius proportional to �
Sz��. Filled circles
are aligned with the field while open circles represent spins pointing
opposite to the field.
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seen by looking at the norm of the wave function. In Fig. 10
the deviation of the norm from the nominal value 1 is shown
for the simulation in Fig. 9.

To estimate the accuracy, i.e., how close to the true
ground state energy the variational PEPS algorithm can get
we have compared it to QMC on an ordinary Heisenberg
antiferromagnet �QMC being unable to handle the Shastry-
Sutherland �SS� model�, H=J�
i,j�Si ·S j with open boundary
conditions. The QMC was run at an inverse temperature of

=256/J and the results are shown in Fig. 11 where the
quantity 1−EPEPS/EQMC is shown for different system sizes

and tensor dimensions D. For the smallest system 4�4 sites
we find good agreement with the figures reported in Ref. �6�
obtained using imaginary time evolution. We further note
that as the system size is increased the relative error de-
creases slightly, and that a linear increase in D seems to give
an exponential increase in accuracy.

We want to point out that although the energies obtained
by PEPS are in good agreement with exact results, observ-
ables may deviate more. In the left inset of Fig. 11 the stag-
gered magnetization for the Heisenberg model is compared
with the staggered magnetization obtained using D=2 PEPS.
Compared to the accuracy in energy which is of the order 1%
�see main panel� the error in the staggered magnetization is
an order of magnitude larger.

Although the above comparison for the Heisenberg model
does not, in a strict sense, tell us anything about the accuracy
obtained for the SS model away from the limit J2 /J1�1 it
still serves as a good indication on the general behavior as
one varies N and D. For the SS model we have compared
with exact diagonalization results obtained using SPINPACK

�40,41� at J1=J2 using periodic boundary conditions. The
comparison is shown in the right inset of Fig. 11.

The internal tensor dimension D plays an important role
in how faithfully a PEPS can represent ground states. The
algorithm scales very badly with increasing D, the bottleneck
being the contraction of two rows �see Eq. �6��. To form an
MPO by contracting two rows requires of the order ND6Df

2

�Df �D2� operations and scaling with D is at best D10. This
then sets a limit to the maximum internal dimensions that

FIG. 9. Convergence of energy in a 10�10 system with peri-
odic boundary conditions for D=2. The energy is shown as a func-
tion of the number of diagonalizations of the generalized eigenvalue
problem in Eq. �4�. The inset shows a closeup of the final part of the
optimization where fluctuations due to the approximation strategy
used to calculate expectation values are visible.

FIG. 10. Deviation of the norm from unity during the optimiza-
tion of a 10�10 system with J1=J2.

FIG. 11. �Color online� Comparison between ground state ener-
gies obtained by variational PEPS and quantum Monte Carlo for a
Heisenberg antiferromagnet with open boundary conditions for sys-
tem sizes 4�4 to 12�12 and tensor dimensions ranging from
D=1 to D=3. Inset �a� shows a comparison between QMC and
D=2 PEPS for the staggered magnetization for the Heisenberg
model. Inset �b� shows a comparison between exact diagonalization
of the Shastry-Sutherland model with periodic boundary conditions
and PEPS D=1–D=3.
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can be practically used and the large values of D�102 used
in 1D variational MPSs cannot be reached. However, as we
have seen here �see also Ref. �26��, for 2D PEPSs we expect
small D�2–5 to be able capture the essential physics for
many problems with short range interactions. The scaling of
the algorithm with linear system size is N4 and is less severe.

All simulations were run on Linux workstations with a
2.0 GHz AMD Athlon processor and 1 GB of internal
memory. On such a machine the graph in Fig. 9 took 96 h to
produce.

Finally we comment on the stability of the algorithm. We
have found that the technique used to optimize tensors one
by one often becomes unstable and may not be the optimal
way to find the ground state. It may well be that using imagi-
nary time evolution is a more effective way.

VIII. CONCLUSIONS

We have applied a variational procedure based on pro-
jected entangled pair states �PEPSs� to study the ground state

properties of a frustrated spin system, the Shastry-Sutherland
model. Using the smallest nontrivial dimension on the ten-
sors D=2 a direct phase transition between the dimer state
and the Néel state can be observed, the location being well in
agreement with other theoretical estimates for a direct tran-
sition. Within D=2 we see no clear indication of an interme-
diate phase which may require higher D, larger systems, or
proper handling of periodic boundary conditions. We also
find that already with PEPS D=2, magnetization plateaus are
possible to reproduce, and that the nontrivial spin textures
associated with these plateaus can be seen.

Furthermore, we have examined the performance of the
algorithm and conclude that it degrades rather severely for
intermediate to large values of the internal dimension D.
However, this scaling of the performance degradation might
not be so restrictive as already the D=2 class of PEPSs is
well suited for studies of frustrated spin systems at a level
beyond mean field theory. The method can readily be ex-
tended to other 2D frustrated spin models.
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