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In this paper a topic regarding the synchronization of chaotic systems is dealt with: the case of separation
and synchronization of many chaotic signals generated by different chaotic circuits and combined together is
examined. In particular, an observer based strategy has been adopted, and an approach for the simultaneous
stabilization of many Luenberger observers has been investigated to face the problem of separation and
synchronization. The design strategy is based on linear matrix inequalities (LMIs). Indeed, the LMI problem is
referred to have a solution if a dual optimization problem admits a solution. In our case the feasibility
condition, if it does exist, allows us to establish that the separation and synchronization problem for the chosen
circuit admits a solution. Some numerical simulations are reported. Further results refer to an experimental
circuit showing the suitability of the approach. Furthermore, the use of the proposed scheme to transmit two or
more information masked into two or more multiplexed chaotic signals and the design of suitable parameters

through the introduced technique based on LMIs are discussed.
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I. INTRODUCTION

Chaotic signals are aperiodic signals generated by deter-
ministic nonlinear systems which have a strong dependence
on their initial conditions. Despite this characteristic, it is
well known that two chaotic systems (and thus the signals
they generate) can be synchronized [1]. The synchronization
introduced by Pecora and Carroll [1] is complete and
asymptotic, in the sense that asymptotically the two systems
evolve identically. This concept of synchronization has been
generalized in other works: generalized synchronization,
phase synchronization and lag synchronization have been in-
troduced [2]. In the following, complete synchronization will
be considered.

Synchronization of chaotic systems has an important ap-
plication in the field of secure communications [3,4]. In par-
ticular, the role of synchronization in chaos-based communi-
cation schemes has been studied in Ref. [3], where the
advantages of using a chaotic carrier instead of a sinusoidal
carrier in a digital communication system are discussed. In
fact, in the case of digital communication, sinusoidal carriers
have an optimal bandwidth efficiency and a relative ease of
reconstruction of the original signal, but have an often high
power spectral density which causes a high level of interfer-
ence and enhances the probability of interception by other
receivers, whereas chaotic carriers can solve these draw-
backs.

Many schemes for complete synchronization have been
proposed since the seminal work of Pecora and Carroll [1]:
negative feedback [5], sporadic driving [6], active-passive
decomposition [7,8], diffusive coupling and some other hy-
brid methods [9]. Moreover, both bidirectional and unidirec-
tional couplings have been considered [2]. In the case of
unidirectional coupling, the evolution of one of the coupled
systems is unaltered by the other system. In this case, the two
chaotic systems are called master and slave or drive and
response systems.
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In the negative feedback scheme [5], starting from the
difference of two corresponding state variables (which are
assumed measurable), an error signal is built and fed back
into the slave system. In this paper the simultaneous syn-
chronization of two groups of n chaotic systems instead of
two chaotic systems is investigated by using a negative feed-
back scheme. In our case, thus, the master system is formed
by n independent chaotic systems (i.e., n different systems
which do not interact with each other). In general, the syn-
chronization of two groups of such chaotic systems requires
n independent feedback signals. In our case, instead, it is
investigated if and under which conditions synchronization
can be achieved by using only one feedback signal which
depends on the chaotic systems of the master (i.e., it is for
instance a linear combination of the state variables of the
master chaotic systems). This problem is referred to as sepa-
ration and synchronization of chaotic signals. A similar topic,
referred as multiplexing of chaotic signals using synchroni-
zation, was investigated in Refs. [10,11]. In particular, Tsim-
ring and Sushchik [10] investigate the simultaneous synchro-
nization of chaotic maps, while Carroll and Pecora [11]
discuss how to combine two chaotic systems with the multi-
plexing technique to make a communication system. How-
ever, in neither case is the synchronization of continuous-
time flows shown. In our paper this is achieved with a
technique and experimentally demonstrated with a circuit
implementation of one of the examples shown. Moreover, a
way to transmit different information on the different chaotic
systems is introduced.

In this paper the problem of separation and synchroniza-
tion for a class of chaotic systems, namely those with piece-
wise linear (PWL) nonlinearities, is approached with linear
matrix inequalities (LMI) [12]. The proposed strategy allows
us both to establish if separation and synchronization are
possible with the considered chaotic systems and to design
the master-slave circuit. A theoretical approach for master-
slave systems made of n chaotic subsystems is discussed
and, for the case of n=2, two numerical examples showing
the separation of the two chaotic signals and the synchroni-
zation of the two pairs of chaotic systems are reported.
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Moreover, experimental results are discussed: they confirm
the suitability of the approach even in the real case, when
nonidentical systems are necessarily considered.

The solution to the problem of separation and synchroni-
zation, proposed in this paper, can be adopted in chaotic
communication systems to mask two or more different infor-
mation in two or more different chaotic signals. For instance,
in order to increase the information carried on one channel it
might be possible to use two different chaotic carriers trans-
mitting two different information at the same time. In this
case, the two chaotic systems of the slave must be synchro-
nized to the two chaotic systems of the master, starting from
only one signal containing the carriers and the data mapped
on them. This can be achieved by applying the proposed
separation and synchronization scheme.

The paper is organized as follows: in Sec. II the proposed
negative feedback scheme for the synchronization of PWL
chaotic circuits is introduced; in Sec. III the investigated
cases are described and the results of numerical simulations
are reported. In Sec. IV a physical implementation of the
proposed scheme is reported by using field programmable
analog arrays. Section V shows the use of the separation and
synchronization scheme for communication. Section VI
draws the conclusions of the paper.

II. SEPARATION AND SYNCHRONIZATION OF PWL
CHAOTIC SYSTEMS

The synchronization scheme proposed to solve the sepa-
ration and synchronization problem is based on negative
feedback and, in particular, on the design of a nonlinear ob-
server. The master system contains n different and uncoupled
chaotic systems, and the slave is a copy of the master. In our
approach the error signal used to synchronize the slave is
obtained by comparing a linear combination of the master
state variables with the same combination of the correspon-
dent variables of the slave system. This error signal,
weighted by suitable gains, is added to each state variable of
the slave as in the negative feedback scheme for two chaotic
systems [5]. Therefore, assuming that the equations of the
master are

X = f(Xpm), (1)

the slave equations will be

X, = f(X,) + Ke, )

where K is the gains vector and e is the (scalar) error signal.
Assuming that the master is composed by n systems of order
my,ms, ...,m,, then X, € R” with m=m;+m,+---+m,, X,
e R™ and K € R”. This scheme is summarized in Fig. 1. In
order to synchronize the master and slave systems, the error
must asymptotically converge to zero. The slave system can
be thus considered as an observer of the master system, so
that the problem of separation and synchronization is equiva-
lent to the design of an asymptotic observer in which gains
must be calculated in order to ensure the stability of the error
system.

As stated in the introduction, chaotic systems character-
ized by PWL nonlinearities are considered. In each region of
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FIG. 1. Separation and synchronization scheme. 1-1’, 2-2’, and
n-n' are identical systems starting from different initial conditions;
the error is the difference between a linear combination of the state
variables of the master system and those of the slave system.

the PWL, the systems of this class assume a different linear
behavior switching through the PWL regions. Therefore, a
PWL system is characterized by the set of its possible linear-
izations. Since, in each region, each linear system can be
observed using the classical linear control techniques, our
idea is to design an observer which simultaneously guaran-
tees asymptotically stable error dynamics in each of these
regions. Therefore, to solve the problem of separation and
synchronization, the observer should be designed by solving
a simultaneous stability problem. Before entering in the de-
tails of the proposed method, the LMI formulation of the
asymptotic observer for linear systems is briefly recalled.

A. LMI-based design of an asymptotic observer for linear
systems

For a linear system an asymptotic observer can be de-
signed by taking into account the following considerations.
Let us assume that the system state equations are

X = AX, (3)

The observer is a dynamical system with the following
equations:

A

X = AX + Ke, (4)

where K is the vector of observer gains and e=CX— CX with
(A,C) the state matrices of the system. Figure 2 shows the
block scheme of an asymptotic linear observer. The vector K
of gain coefficients must be chosen in order to ensure the
stability of the error system. This can be done by verifying
the equation of the first Lyapunov criterion:

ALP+PA,=-0, (5)

with P and Q positive definite matrices and A,=A—KC the
state matrix of the error system.

This problem can be reformulated in terms of a system of
two linear matrix inequalities (LMI) [12]:
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FIG. 2. Block scheme of a generic asymptotic linear observer.
(A,B,C) are the system state matrices, K is the observer gains
vector.

ALP+PA,<0,

P>0, (6)

where P>0 (P<0) indicates a positive (negative) definite
matrix. It is possible to design the observer problem in terms
of LMIs by substituting in (6) the state matrix of the error
system

(A-KC)'P+P(A-KC)<0 (7)
and thus defining Q=PK,
ATP-CTQ"+ PA-QC <0,

P>0. (8)

With the values of P and Q obtained by solving the prob-
lem in (8), it is possible to calculate the gains vector as K
=P~'Q. This problem is feasible if system (A,C) is observ-
able.

B. LMI-based design of the observer for PWL systems

In this section, the design of the observer for PWL sys-
tems is considered. To design the observer, one must repeat
the considerations above for each of the possible regions in
which the observed system and the observer may work. The
advantages of the LMI approach is that other inequalities
may be added to the problem so that a set of LMIs must be
solved to find the gains able to simultaneously stabilize more
than one system.

Let us define as eX=X—)A( the state estimation error. In
general, the equation that describes the error system dynam-
ics is

éx=AX-AX-KC(X-X), 9)

where A; and A;, respectively, represent the linearization of
the observed system and of the observer in ith or jth region
of the PWL nonlinearity. The two matrices A; and A; are
different when the two systems work in different regions of
the PWL nonlinearity. Otherwise (i.e., when the observer
works in the same region of the observed system), the ma-
trices A; and A; are equal and the error system dynamic re-
duces to

éX=(Ai—KC)ex. (10)
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In this situation the observer can be designed to be stable
by solving the following LMI problem:

ATP-CTQT+ PA,-QC<0, i=1,....,q,

P>0, (11)

where ¢ is the number of regions of the considered PWL
nonlinearity. This means that all the LMIs described in each
region of the nonlinearity for A;=A; must be solved. If the
overall LMI problem is feasible, its solution leads to a gain
vector K able to stabilize all the possible error dynamics.

This procedure permits the design of the observer able to
reconstruct the dynamics of the observed system. Actually, a
necessary condition to the stability of the error dynamics is
imposed. In fact the error system is imposed to be stable only
if the observed system and the observer are in the same PWL
region. Otherwise, when the two systems are in different
regions, the error dynamics are given by Egs. (9).

Numerical simulations and experimental results, reported
in the following sections, show that, provided that the eigen-
values of the error system (i.e., the eigenvalues of (A,—KC)
for i=1,...,q) as designed by solving the stability problem
are sufficiently fast, the necessary condition is sufficient for
synchronization.

C. Formulation of the LMI for the separation and
synchronization problem

The proposed approach is now applied to the problem of
separation and synchronization. The slave system is designed
as an observer for the master system. Let us consider the
linearization of the master system described by the following
equations:

X, =A}1X1,

X, =Af2X2,

X, =A"X,, (12)

where X1, ..., X, are the state vectors of the chaotic systems
forming the master (i.e., X=[X; X, X, 1) and Afr is
the linearization of the rth chaotic subunit in the i,th region
of the PWL nonlinearity. Therefore, the state matrix of the
overall system is a block matrix: the diagonal blocks are the
state matrices of each linearized chaotic subsystem, the other
blocks are zeros, as follows:

A0 0
0 AI-Z2 e 0

A(il,i2,...,in) il . .
0o 0 .. Al

n

In the case of the separation and synchronization problem,
one must write a linear matrix inequality, as in Eq. (11), for
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each of the possible matrices A iy...i,)- Each possible com-
bination of the matrices that could form the overall system,
corresponding to each region of the PWL, has thus to be
considered. The separation and synchronization problem
may have a solution if the LMI problem (11) with A;
=A(i1»"zv~-~vin) is feasible.

For example, in the case of n=2 and g,;=¢,=2, four LMIs
must be considered in the LMI problem (11): in fact, each
system has two possible linearizations and thus there are four
possible combinations of them.

If the two subsystems of the master circuit are identical,
the condition on the observability of the whole system is not
respected, and this leads to an unfeasible LMI problem. The
same conclusion, i.e., that synchronization is possible only in
nonidentical multiplexed chaotic systems, was reached in
Ref. [11] by considering the variational equation for the case
of identical subsystems.

III. NUMERICAL RESULTS

In this section two numerical examples with n=2 are con-
sidered. Our procedure has been tested on several pairs of
chaotic systems: here the numerical results obtained simulat-
ing two different pairs of chaotic systems for which the cor-
responding LMI problems are feasible are reported.

A. Separation and synchronization of a pair of Kennedy’s
oscillators

In the first example, the double-scroll-like chaotic oscilla-
tor described in Ref. [13], called in the following Kennedy’s
oscillator, is used. This chaotic system is characterized by a
PWL nonlinearity that does not affect the linearization ma-
trices as can be noticed from the state equations (i.e., g;

=gq,=1),

i=—alx+y+z—sgn(x)]. (13)

In all the cases investigated, the error signal has been
chosen as the sum of all the state variables: this means to
choose C=[1 1 1 1 1 1]inEq. (11).

The first case consists of a pair of Kennedy’s oscillators
with two different values of the parameter a as follows:

Xim=Y1im»
YVim=Z1m>»

Z.lm == al[xlm +Vim* Zm— Sgn(xlm)]7

x2m =Yom>
y2m =2m>
Z.2m == aZ[XZm + Yom + Zom — Sgn(me)] . (14)
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The slave dynamics are designed as described in the pre-
ceding section,

xls =Vist kle’
).}1s=113+k2e,

L= = ag[xy itz sgnlag )] + kse,
XZS =y2s+ k4€,
)}25 =25t k5€’

o= = ol Xp + Yo + 2o — sgN(x,) ] + kee, (15)

where e= C(Xm_Xs) =Xt Y1t 2mtXomtYomtom— (xls
+ Y15+ 21X+ Yo+ 20,) and a;=0.8, a,=0.6.

In this case, there is only one linearized system, charac-
terized by the state matrix

Apy
0 1 0 0 0 0
0 0 1 0 0 0
—a —a, —a, 0 0 0
| o 0 0 0 1 0
0 0 0 0 0 1
0 0 0 —a, —-a, —-a,
Solving the LMI problem for the simultaneous

stability leads to the gains vector K
=[-1.5710 -0.4173 1.0232 1.6569 1.6126 -0.73227"
which stabilizes the error system.

Figure 3 shows the temporal evolution of the six state
variables of the master compared with the corresponding
variables of the slave. In Fig. 3 the x,,, vs x;, and x,,, VS Xy
plots are also shown. The logarithmic error for the state vari-
ables x; and x, is shown in Fig. 4.

The results obtained lead to the synchronization notwith-
standing the condition imposed is only necessary. This is
connected to the fast convergence characteristics of the ob-
server system, which can be correlated to the unique set of
eigenvalues (in this case, in fact, there is only one set of
eigenvalues, i.e., those of the matrix A,,,—KC). When the
two systems are in the same region at the same time, the fast
eigenvalues which drive the dynamics of the error system
lead to a rapid convergence of the trajectories and imply that
the two systems follow similar dynamics and enter the same
PWL region at quite the same time.

This  consideration is enforced by computer
simulations: the eigenvalues of the error system (placed
at A »=-0.0527£0.9283i, N3 4=-0.6977+0.7317i,
Ns56=—0.7357+0.1836i) were moved towards the imaginary
axis with the aim of reducing the speed of the error dynam-
ics. In fact, it can be observed that, if eigenvalues with real
part 10 times smaller are chosen, although the error system is
still stable, the two systems do not synchronize anymore. In
Fig. 5 the logarithmic absolute errors for the x; state variable
in the two cases are shown.

026212-4



SEPARATION AND SYNCHRONIZATION OF PIECEWISE...

PHYSICAL REVIEW E 74, 026212

(2006)

12

101

— X, +6

- =Xy +6

-2 i
—z,. -6
—4r -n2z, =6
N 1s
Lt I
-6
A1 v
)
-8 i . \ ) ‘ 10 ‘ . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
(a) Time (ms) (b) Time (ms)
3 3
2r ot
1r 1
><'(£ Or x& 0
= -1
-2r -2r
__3 Il L 1 _ L I I I I
-3 -2 -1 0 1 2 3 —33 -2 -1 0 1 2 3
(© Xim (d) Xom

FIG. 3. Separation and synchronization of two Kennedy’s oscillators. (a) Trend of x;,,+6, y;,, and z;,,—6 (continuous lines) compared to
X15+6, yi, and z;,—6 (dotted lines), (b) trend of x,,,+6, y,,, and z,,,—6 (continuous lines) compared to x,,+6, y,, and z,,—6 (dotted lines),
(c) synchronization plot xy,, Vs xi,, (d) synchronization plot x,,, Vs x,,. The time scale of numerical results has been normalized to match the

circuit time scale.

B. Separation and synchronization of a pair of a Chua’s
circuit and a Kennedy’s oscillator

In order to test our scheme on other configurations the
Chua’s circuits family was investigated. Two sets of param-
eters applied to the generalized Chua’s circuit equations
[14,15], paired with the Kennedy’s oscillator lead to a fea-
sible LMI problem. In the following, one of those cases is
reported.

The master consists of a Chua’s circuit described by the
equations

X =kaly—x-h(x)],
y=k(x-y+z),

i=k(= By -2 (16)

with  7(x)=m;x+0.5(my—m,)(|x+1|-|]x=1|) and of a
Kennedy’s oscillator. Therefore, the master equations are

xlm = ka[ylm —Xim~— h(xlm)]’

ylmzk(xlm_ylm"'zlm)’

Z.lm = k(_ Bylm - yzlm)s

x2m =Yom>
y2m =Z22m»
Z.2m == a2[x2m + Yomt Zom— Sgn(XZm)] . (] 7)

The slave is designed, like in the previous case, identical
to the master except for the contribution of the error signal.

The chosen parameters are C=[1 1 1 1 1 1]; a
=0.6, a=-1.5591, B=0.0156, y=0.1575, my=0.2439, m,
=0.0425, k=-1. The two overall state matrices are
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—ka(l +m,) ka

k —k
0 Y
A= 0 0
0 0
0 0
—ka(l +myg) ka
k —k
0 kB
A, =
2 0 0
0 0
0 0

The LMI problem can be formulated as in Eq. (11) with
q1=2 and ¢,=1. Numerical results prove that the problem is
feasible and the calculated vector is K
=[-1.2581 -0.0877 0.7821 1.2478 1.1465 -0.51017",
which stabilizes the error system.

Figure 6 shows the temporal evolution of the six state
variables of the master compared with the corresponding
variables of the slave. In Fig. 6 the x;,, vs x;, and x,,, Vs Xy
plots are also shown. The logarithmic error for the state vari-
ables x; and x, is shown in Fig. 7. As it can be noticed the
two systems are perfectly synchronized.

IV. EXPERIMENTAL RESULTS: SEPARATION
AND SYNCHRONIZATION OF TWO PAIRS
OF CHAOTIC CIRCUITS

The results obtained by simulating the proposed synchro-
nization scheme encouraged us to realize a physical imple-
mentation of the system. Field programmable analog array
(FPAA) boards have been used for the realization of the four
chaotic systems and the circuitry needed to calculate the er-
ror signal. FPAA, in fact, are an efficient approach to the
realization of programmable analog nonlinear dynamics. In
Ref. [16] the use of FPAA boards to implement chaotic cir-
cuits is described. In particular, the AN221E04 Anadigm
board has been used.

This FPAA provides the user with a possibility of pro-
gramming four configurable analog blocks (CABs), each of
which has a limited number of resources. Since the technol-
ogy is based on switched-capacitors, operational amplifiers,
and several capacitors constitute the resources available in
each CAB. These blocks can be programmed in a very ef-
fective way, by drawing circuital connections among the
CABs and downloading the designed circuit through a serial
connection between PC and FPAA boards. Moreover, at the
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software level, configurable analog modules (CAMs) can be
used. These CAMs allow the FPAA to be programmed with a
high-level design based on the use of standard circuital
blocks, such as summing blocks based on operational ampli-
fiers, multipliers, gains, comparators, integrators and so on.

Following the guidelines described in Ref. [16], the
boards can be suitably programmed to obtain the dynamics
of the systems described in the preceding section, i.e., the
Chua’s circuit and the Kennedy’s oscillator. The experimen-
tal chaotic attractors match the simulated ones.

Two FPAA based systems have been implemented and
connected to experimentally investigate the problem of sepa-
ration and synchronization. In particular, the first case de-
scribed in the preceding section is discussed. The experimen-
tal results obtained agree with the numerical simulations
carried out, showing the real possibility of separating and
synchronizing two pairs of chaotic circuits through a unique
feedback signal.

Figure 8 reports the oscilloscope traces showing the two
synchronization plots x;,, vs x;; and x,,, VS Xx,,. In particular,
in Fig. 8(a) the error signal is not fed back to the slave
system and the two systems are not synchronized; switching
on the error feedback, as shown in Fig. 8(b), the slave system
follows the master dynamics. The synchronization is further-
more stressed in Fig. 9 where the trends of x,,, and x,, are
reported. The mismatches visible in Fig. 9 are due to the fact
that a real case with circuits which necessarily have slightly
different parameters is considered.

V. THE SEPARATION AND SYNCHRONIZATION
SCHEME TO TRANSMIT
TWO DIFFERENT INFORMATION
ON TWO DIFFERENT CHAOTIC SIGNALS

In this section it is shown how to use the principle of
separation and synchronization to transmit different informa-
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FIG. 4. Separation and synchronization of two Kennedy’s
oscillators. Semilogarithmic plot of the absolute error for (a) x;
and (b) x,.

tion on the different multiplexed chaotic signals. Although
the scheme is general, the case with a pair of chaotic systems
will be referred to.

Since the possibility of separating and synchronizing two
circuits constituted by a pair of chaotic oscillators was ex-
perimentally demonstrated as shown in the preceding sec-
tion, the idea underlying chaotic switching [17] can be ap-
plied to implement a communication scheme based on
separation and synchronization. This technique allows the
transmission of a digital information. The master is switched
into two chaotic attractors depending on the bit to be trans-
mitted. The slave consists of two copies of the master circuit.
Each of these circuits is able to synchronize with only one of
the two master attractors. The bit transmitted is therefore
identified on the basis of the synchronization error. The slave
system with parameters such as those of the actual transmit-
ted master attractor synchronizes, while the other slave sys-
tem has a larger synchronization error.

The scheme proposed in this paper is shown in Fig. 10.
The master consists of four chaotic systems: two Chua’s
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FIG. 5. Separation and synchronization of two Kennedy’s oscil-
lators: semilogarithmic plot of the absolute error for x; with respect
to different values of the error system eigenvalues. In case 1 the
eigenvalues are A ,=-0.0527x0.9283i, \;,=-0.6977+0.7317i,
A56=—0.7357£0.1836i as designed by solving the LMI problem.
When the eigenvalues are fixed at \;,=-0.0053+0.9283i,
N34=—0.0698+0.7317i, N5 s=—0.0736+0.1836i (case 2), the error
does not converge to zero (the eigenvalues are moved towards the
imaginary axis).

circuits and two Kennedy’s oscillators with different param-
eters. In particular, the first Chua’s circuits, labelled in Fig.
10 as Chual, is characterized by the following set of param-
eters: a;=-1.5591, ,=0.0156, y,=0.1575, my;=0.2439,
my;=0.0425, k;=—1. The parameters of the second Chua’s
circuit (Chua2) are: a,=-1.4246, (3,=0.0294, ,=0.3227,
my,=—0.0715, m;,=-0.1817, k,=1. The two Kennedy’s os-
cillators differ from the value of the parameter a: a=a,
=0.8 for the first circuit and a=a,=0.6 for the second circuit.
These circuits are selected on the basis of two digital infor-
mation to be transmitted. As shown in Fig. 10 the two digital
information control two switches which select the circuits to
be used to form the transmitted chaotic signal. Thus, the
master has four possible configurations and the transmitted
signal is given by the linear combination of the state vari-
ables of two circuits selected by the bits to be transmitted.

The slave system consists of four circuits, each one given
by a pair of chaotic circuits (a Chua’s circuit and a
Kennedy’s oscillator with the same parameters of the master
systems). Each of these four systems refers to the separation
and synchronization scheme shown in Fig. 1 and discussed
above. In each of these systems an error signal is built and a
set of gains K is designed by following the LMI approach
discussed in Sec. IT and in particular by applying Egs. (11)
for each of the four circuits C;, C,, C3, and C,. The error
scalar signal is obtained as the linear combination of all the
state variables of the two chaotic subsystems. The param-
eters K have been found, as already outlined, by applying the
LMI approach which allows suitable parameters for each of
the four circuits to be obtained. The following values have
been obtained:
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FIG. 6. Separation and synchronization of a pair composed by a Chua’s circuit and a Kennedy’s oscillator. (a) Trend of x;,,+20, y;,, and
Z1m—20 (continuous lines) compared to x;,+20, y;, and z;,—20 (dotted lines), (b) trend of x,,,+6, y,, and z,,,—6 (continuous lines)
compared to x,,+6, yo, and z,,—6 (dotted lines), (c) synchronization plot x;,, vs xj, (d) synchronization plot x,,, VS X

K,=[5.1786 8.9838 —2.9223 —3.1920 -4.0420 1.9599]"

for the circuit indicated as C; (the circuit is made by a Kennedy’s oscillator with a;=0.8 and the Chua’s circuit Chual);

K,=[12.8282 6.1083 —0.7062 —8.6651 —7.2247 5.3598]"

for circuit Cy;

Ky=[-1.2581 -0.0877 0.7821 1.2478 1.1465 -0.5101]"

for circuit Cy;

K,=[42636 13301 —0.2469 -1.6775 —1.3117 1.3809]"

for circuit Cy.

Each of these four systems synchronizes with only one of
the four possible master configurations. Let us suppose for
instance that the sequences S,=00--- and S,,=01--- should
be transmitted. First the two bits S;,=0 and S,,=0 are trans-
mitted. The circuit C; designed with parameters K; found by

the LMI technique synchronizes. In fact, this is the circuit
which corresponds to the bits 00 as shown in Fig. 10. The
other circuits C,, C3, and C4 do not synchronize. Then, the
second pair of bits is transmitted (S,,=0 and S,,=1). In this
case, the circuit C; does not synchronize, but C, (which cor-
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FIG. 7. Separation and synchronization of a pair composed by a
Chua’s circuit and a Kennedy’s oscillator. Semilogarithmic plot of
the absolute error for (a) x; and (b) x,.

responds to bits 01) does. Circuits C; and C, do not
synchronize.

The synchronization error easily allows the detection of
the two transmitted bits. In particular, a very simple mecha-
nism has been used: at each time step the circuit with mini-
mum synchronization error (i.e., the scalar signal e in Fig. 1)
is selected.

Figure 11 shows an example of the use of this communi-
cation scheme. The transmitted and detected bits are shown
in Fig. 11(a). The detection system has good performance,
and bit errors occur only at the switching of the attractors.
The synchronization errors at each of the four slave systems
are shown in Fig. 11(b), where the circuits have been num-
bered according to their order in Fig. 10. As it can be no-
ticed, for instance in correspondence of the first two trans-
mitted bits (S;,=0 and S,,=0), e, is the smallest value in
almost the whole period 0 =¢<<500 ms. The same occurs for
the other transmitted bits. Moreover, as it can be noticed in
Fig. 11(a) bit errors, occur only when the attractors are
switched.

PHYSICAL REVIEW E 74, 026212 (2006)

(b)

FIG. 8. (Color online) Separation and synchronization of a pair
of Kennedy’s oscillators. Synchronization plot, xi,, vs x;, on the
upper oscilloscope, x,,, Vs x,, on the lower oscilloscope. (a) With-
out feedback, there is no synchronization. (b) With feedback, sepa-
ration and synchronization are achieved.

The performance of the proposed communication scheme
when subject to noise have been characterized by calculating
the bit error rate (BER) as a function of the signal-to-noise
ratio (SNR). Gaussian noise has been added to the transmit-
ted signal, and the variance of the noise has been changed to
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FIG. 9. (Color online) Trends of x,,, Vs x,, when the feedback is
on. The two systems are synchronized except for some mismatches
due to circuital parameter tolerances.

vary the SNR. BER has been evaluated by simulating the
transmission of 1000 bits (i.e., 500 pairs of bits) for each
value of the SNR. The received bit is calculated by taking
into account the average of the signals ey, e,, e3, and e, in the
last 300 ms of the received signal (where the bit period has
been fixed to T=1 s). An error occurs when the received bit
does not match the transmitted one. It should be taken into
account that, as shown in Ref. [18], under particular hypoth-
eses, chaotic modulation schemes based on chaos shift key-
ing can theoretically achieve the noise performance of binary
phase-shift keying (BPSK). This requires the adoption of a
coherent correlation receiver [19]. To take into account that a
nonoptimal detection system has been adopted, SNR has
been evaluated by considering the average power of the syn-
chronization error. The probability of bit error is shown in
Fig. 12, where the case of bipolar baseband signal with
matched filter is also shown for comparison.

VI. CONCLUSIONS

In this paper, starting from the scheme of negative feed-
back [5], a synchronization scheme for chaotic systems is
investigated, in which master and slave systems are consti-

PHYSICAL REVIEW E 74, 026212 (2006)
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FIG. 11. (a) Sy, and S5, are the transmitted information masked
in the two different chaotic signals, while S;, and S,, are the de-
tected signals using the separation and synchronization transmission
scheme shown in Fig. 10. (b) e}, e,, e3, and e4 are the synchroni-
zation errors of the four slave systems Cy, C,, C3, and Cy.

tuted by n independent PWL chaotic systems and a unique
scalar variable is transmitted. An approach based on the de-
sign of an asymptotic observer through the solution of an
LMI problem has been introduced to find suitable values of

— S1r

FIG. 10. Communication scheme based on the
idea of separation and synchronization of chaotic

signals.
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FIG. 12. Probability of bit error (BER) as a function of the
signal-to-noise ratio (SNR) for the proposed communication
scheme. For comparison the case of a bipolar baseband signal
(with matched filter) is shown (solid line).

the feedback gains. In this way a necessary condition is im-
posed assuming that the two systems must converge if they
are in the same PWL region. Computer simulations demon-
strate that for the investigated cases our assumption ensures
the synchronization.

Two different numerical examples are reported, one using
a pair of Kennedy’s oscillators with different parameters and

PHYSICAL REVIEW E 74, 026212 (2006)

the other using a pair formed by a Chua’s circuit and a
Kennedy’s oscillator. In both cases, solving the correspon-
dent LMI problem leads to correctly separate and synchro-
nize the two different dynamics.

Experimental results are also shown. A physical imple-
mentation of the proposed scheme using FPAA boards con-
firming the possibility to correctly separate the information
and to synchronize the slave dynamics to the master one has
been provided.

This result opens the way to chaos-based communication
systems, in which the transmission of two or more multi-
plexed chaotic signals on the same channel is possible, thus
increasing the information transmitted in the communication
channel, maintaining the security properties of chaotic com-
munication.

The suitability of the LMI-based technique for separation
and synchronization of chaotic signals is further remarked by
the use of this approach for chaotic communication. The pro-
posed technique allows the design of suitable parameters to
implement a scheme in which two or more information can
be masked into two or more multiplexed chaotic signals.
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