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Decay of the Loschmidt echo in a time-dependent environment
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We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent
perturbation V(q,7) with typical strength #/7,. The perturbation represents the action of an uncontrolled
environment interacting with the system, and is characterized by a correlation length &, and a correlation time
7. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially

with a rate predicted by the Fermi “golden rule,” 1/7=7_/ 7%,, where 7.~min[7y,&/v] and v is the typical
particle velocity. Whenever the rate 1/7 is larger than the Lyapunov exponent of the system, a perturbation
independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping
the perturbation strength fixed) the fidelity decay becomes slower, and hence one can protect the system against

decoherence.
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I. INTRODUCTION

The time evolution of a quantum system is quite robust to
perturbations of the system initial conditions, regardless if its
underlying dynamics is integrable or chaotic [1]. This is in
deep contrast to classical evolution, particularly that of a
chaotic system. In a seminal paper, Peres [2] noticed that the
quantum time evolution is also sensitive to differences be-
tween chaotic and integrable dynamics, but in a peculiar
setup: One needs to examine the overlap of identically pre-
pared states evolving under slightly different Hamiltonians.
The modulus square of this overlap, called Loschmidt echo
(LE) or fidelity [3], measures the recovery obtained when a
wave packet evolves for a time ¢, followed by a backwards
evolution with a perturbed Hamiltonian for the same time
interval.

A considerable number of investigations have been de-
voted to study the phenomena related to the LE, in particular
the different regimes that arise depending on the perturbation
strength. For very weak perturbations, the LE is described by
standard perturbation schemes and a Gaussian decay is ob-
served. For stronger perturbations, where perturbation theory
breaks down, large phase fluctuations [3] lead to an exponen-
tial decay of the LE described by the Fermi “golden rule”
(FGR) [4,5]. For even stronger perturbations, but still weak
in the classical sense, a semiclassical analysis yields an ex-
ponential LE decay that does not depend on the perturbation
strength: The decay rate is determined by the Lyapunov ex-
ponent that characterizes the classical counterpart of the un-
perturbed system [3]. The latter two cases are called the FGR
and Lyapunov regimes, respectively. The LE decay rate is
the minimum between the width of the local density of states
(LDOS), as given by the FGR and the Lyapunov exponent
[3-5]. These findings were verified numerically in a number
of systems [4—8]. The theory is successful to the extend that,
by analyzing the LE decay, the quantum evolution of a sys-
tem can be used to quantitatively assess its classical
Lyapunov exponent [5,9].

The theory was later extended to classically integrable
systems [10], for which a power-law-like decay is predicted.
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This result is still somewhat controversial [11], since inte-
grable systems, as a rule, display nongeneric features [12]. In
any event, there are several indications that the LE decay is
very different whether the underlying classical system has a
chaotic [4-8], integrable [10-12], or mixed phase space [13].

Albeit this wealth of interesting results, so far the theory
of the LE nonperturbative regime has only dealt with time-
independent perturbations. The most probable motivation for
this restrictive choice can be traced back to the experiments
that triggered the research on the LE problem [14,15]: They
studied the time reversal of many-spin dynamics, where the
perturbation is simply a static part of the Hamiltonian.

Numerous physical situations call for an extension of the
LE theory that accounts for a time-dependent perturbation.
Let us mention a few. Experimentally, a subsystem selected
from a large spin system with many-body interactions can be
represented as immersed in an external fluctuating potential
[16]—the same approximation holds whenever the uncon-
trolled degrees of freedom are those of an environment with
complex dynamics [17]. Formally, the current analytical de-
scription contrasts with numerical results [18] observed in
periodically kicked one-dimensional models [4,8], where the
perturbation can be interpreted as time dependent. The LE
decay due to a time-dependent environment has also connec-
tions to the problem of decoherence in open systems
[19-21], in mesoscopic physics [22], and possibly in quan-
tum computation [23-25]. Indeed, the decay of the LE is
related to the decay of quantum correlations by an external
environment and the quantum-classical correspondence, as
can be shown using the Wigner function representation
[20,26-28].

In this work we use the semiclassical approximation to
derive the LE decay in the presence of a time-dependent
perturbation, generalizing the approach presented in Ref. [3].
We show that the existence of a LE perturbation-independent
regime is quite generic. For that purpose, instead of using a
particular model, we use a statistical approach. We obtain a
closed expression for the LE decay in the FGR regime using
simple assumptions about the perturbation autocorrelation
function. We conclude by discussing the different limits of
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our results and the seemingly strange feature that faster fluc-
tuations of the perturbation or stronger chaos in the system
lead to a slower decay of the Loschmidt echo.

II. LOSCHMIDT ECHO IN A TIME-DEPENDENT
ENVIRONMENT

The object of interest, the Loschmidt echo, is defined as

M (1) = (| U (10, ) Up(1,20) | o) . (1)

where |i;) is an arbitrary wave packet prepared at time f,.
For simplicity, and in line with Ref. [3], we choose the initial
state |¢,) as a Gaussian wave packet centered at an arbitrary
point r with dispersion ¢ and initial momentum p,. Numeri-
cal studies consider other kinds of localized states in phase
space [29,30], evolved states [10], and even eigenstates of H,
[4,27] and obtain results consistent with Ref. [3]. This obser-
vation can, in principle, be justified by using the dephasing
representation [31] which deals with any kind of initial state.
In Eq. (1), U, is the standard time evolution operator,
namely,

Uy(t,to) = Texp(— éj dt’HO(t’)), (2)

0

where T is the time ordering operator, while
_ i o
Ul(ty,1) =T exp| - %J di'H(t') |, (3)
1

with T the inverse time ordering operator. Equation (1) is
often viewed as the fidelity of two wave packets prepared at
the same initial state and evolving forward in time under
different Hamilton operators.

In general, time ordering makes the exact evaluation of
M(t) for a time-dependent Hamiltonian a daunting task. To
circumvent this difficulty we employ the semiclassical ap-
proximation, in which time ordering is trivially accounted for
by taking the time evolution of classical trajectories, as we
detail in the sequel.

We consider the Hamiltonian H defined as

H=Hy+ V(q.1), (4)

where H, is a time-independent Hamiltonian that displays
chaotic motion in the classical limit and V(q,z) is the time-
dependent perturbation potential or the system interaction
with a complex environment. We note that the time scales
that characterize the Loschmidt echo decay (the time scale
on which decoherence occurs) are assumed to be much
shorter than any relaxation-to-the-environment time scale.
Thus heating effects due to the driving of the perturbation
[32] are neglected.
The semiclassical propagator reads [33]

1 dr i
@'[U]e) = (ﬁ) 2 G
s(a’,q.0)

i i
><eXp<%Ss(q’,q,t) - 3%), (5)

where s is a classical path that spends a time t to travel from
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q to q', S, is the action (Hamilton principal function) along
trajectory s, given by S,(q’.q,1)=[(d7L(q,(7),q,(7).7), a,
is the number of conjugate points along s, and C,=|det %| is
the Jacobian of the phase-space transformation between the
initial momentum p(0) and the final position q;(r)—a den-
sity of classical paths [33].

It is only possible to proceed analytically if we restrict
ourselves to the regime of weak perturbations. Let us ap-
proximate the action along a given trajectory s by

8(2) ZS?(I)—f di' V(g,(t').1"), (6)
0

where S?(t) refers to the action corresponding to s obtained
from H, and q,(¢) gives the particle position along the un-
perturbed trajectory s as a function of time. Equation (6)
results from a classical perturbation theory analysis and
gives the lowest order correction to the action in “powers” of
V. It can be derived in different ways, like for instance, by
employing a phase-space variational principle [34]. Correc-
tions 8S,(7) accounting for the bending of s due to V are of
higher order in the action S,(¢). Albeit parametrically small in
V, for sufficiently large times we expect such terms to be-
come significant. Unfortunately, for chaotic systems a reli-
able estimate of the typical magnitude of 85,(r) is difficult.
Note, however, that since the actions in Eq. (5) are measured
in units of %, even a very weak classical perturbation can
cause large quantum variations. In addition, as we will see,
the time interval of interest ranges from the Ehrenfest time
(so that many orbits contribute) up to a time of the order of
the inverse Lyapunov exponent (that is classically small).
Hence it is quite plausible to find a comfortable parameter
range for V where Eq. (6) holds. Indeed, numerical investi-
gations show that the classical perturbation scheme works
surprisingly well [5,35] to the extent that no significant dis-
crepancies were ever observed [37]. These numerical find-
ings have been related to the structural stability of the mani-
fold of trajectories in phase space [38]: Even though
individual trajectories are exponentially sensitive to pertur-
bations, one can always find a “replacement” trajectory in the
manifold that joins the points of interest for a given time
interval [29].

Our calculation proceeds along the lines of Ref. [3],
which we now briefly sketch. We assume that the wave
packet (r| ) is well localized, £3> o> \g, where £ is a typi-
cal length of the perturbation (in Ref. [3] the width of Gauss-
ian impurities) and Ay is the de Broglie wavelength of the
particle. Neglecting terms with a rapidly oscillating phase,
one arrives at the semiclassical expression for the Loschmidt
echo,

Jdr > CSexp{éASs(t)]

s(r,rg.1)
2

; ()

0,2 d
M) =00 = (@)

o>
XeXp[— ﬁ(ﬁs - Po)z}

where AS, is the action difference between trajectories
evolved with H, and H, and pS:—&Sg/&ro. All trajectories s
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start at rj, the position where the Gaussian wave packet
(r| ) is centered at. For short times M(f) can only capture
the local instabilities of the classical dynamics, thus, it shows
large fluctuations [5]. By averaging over an ensemble of per-
turbations, one obtains (M()) that puts in evidence the ex-
ponential decay [26].

The Lyapunov and the FGR decay regimes are related to
the different ways of pairing the path summations in the
double sum of Eq. (7). This will become evident from the
analysis of (M(z)) written as

(M(1)) = (M"(1)) + (M“(0)), (8)

and define (M"(1))=[0()[> and (MU)=(O00)
—|{O(t))|*>. The first term, (M"(t)), contains an average of
the overlap O(r) and does not account for action correlations
between the trajectories s and s’ in the double sum of Eq.
(7). The second term, (M“(r)) corrects for correlations be-
tween trajectories, and is more subtle to compute. Reference
[3] offers a simple interpretation to both terms: (M"%(¢)) is
dominated by trajectories where s and s’ lie far apart in
phase space (nondiagonal in trajectories) so that the action
differences can be considered uncorrelated, whereas (M%(¢))
stems from terms where the action differences AS; and AS,,
are correlated (diagonal terms).

A. Nondiagonal contributions to (M(t))
Let us first calculate (M"4())=|(O(t))

<Mnd(t)>:<i)d fdr 2 Cs<exp{éASs(t)]>
s(r,ro,0)

7Tﬁ2
2

, )

2 that reads

0_2
XeXP[— ﬁ(ﬁv - po)z]

where (---) indicates that we average over an ensemble of
perturbations.

We assume, as is customary for chaotic systems, that the
actions for different paths are Gaussian distributed [29,39].
This leads to an enormous simplification, allowing us to

write
<exp[éAs‘Y(r)]> = exp{— #[Ass(z)ﬂ} (10)

We remain with the task of evaluating the action variance
t t
([As,(0P) = f dr' J di"(V(q,(1"),") V(gqy(1"),1")).
0 0
(11)

For that purpose we introduce an ensemble of perturbations
V to model the general features of the environment.

In order to keep our calculation as general as possible, we
assume very little knowledge of the perturbation, requiring
only that time and space correlations are independent, viz.

V(g.0V(g".1") = (V)Cslla—q'NCrlle =" (12)

The typical perturbation strength is (V*)2, and 7,
=#/{(V»? is its associated time scale. The dimensionless
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functions Cg and Cy quantify the spatial and time correla-
tions of the potential V(q, ). We further require that Cg or Cp
decay sufficiently fast, so that

f drr 1Cy(r) < and J drCq(t) < e, (13)
0 0

where d is the system dimension [36].

To guide the discussion, let us introduce the correlation
length &, and the correlation time 7, that characterize Cg and
Cr, respectively. To compare time and length scales we also
introduce v, the typical particle velocity in the system. To
simplify the discussion, we only consider here the case when
the decay of correlations is induced by the fluctuations of V.
However, we note that conditions (13) can also be justified
by the chaotic dynamics of H, [4,6—8,26]. Hence our results
are valid not only for random perturbations, but also for
static and periodic ones.

In the limit of 7> 1/\ the perturbation is quasistatic and
the results of Ref. [3] hold without further change. We are
interested in the regime where the typical times of the per-
turbation are comparable to those of the system, 7= 1/\.

After the ensemble average, Eq. (11) becomes

(AS (1% = <V2>f[d7fw drCd|q,(T - 7/2)
0 —o

—q,(T+ 72)|]C(7), (14)

where we considered times ¢ much larger than 7, and &,/v,
which allows us to take the integral in 7 from —o to +.
Equation (14) has two limiting regimes that are readily
solved. In the first one, the spatial disorder has a much
shorter scale than the temporal one: 7y>&,/v="7. In this
case we re-obtain the result of Ref. [3],

(AS (%) = (V) J ld? f ) d7Cy[|q,(7- 72)
0 —

_ t
- q,(T+ 72)|]= —h%, (15)
7
where C;(7) is assumed constant, and 7, is defined as

(16)

=
EWE

When 7, <7, we deal with the opposite regime, and
t o
t
(AS,(1)?) = <V2>f dt_f drCy(n=—#*,  (17)
0 —oo )

with

1
—=3 (18)
T Ty

The calculation of (M"(t)) is now straightforward: We
insert Eq. (15) or Eq. (17) into Eq. (9), use the Jacobian C, to
change variables, and perform a simple Gaussian integral to
obtain
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(M) = exp<— é), (19)
i

where i=1 if 7,> 7 or i=2 if 7,<< 7. The exponential decay
given by Eq. (19) is often called Fermi golden rule decay
[4,5]. In the situations discussed above, the FGR exponent
changes from being governed by the spatial to the temporal
correlations of V(q,r). The interesting “correlation crossover
regime”—where neither the temporal nor the spatial correla-
tion dominate—will be discussed shortly for a particular
form of Cg and Cy.

B. Diagonal contributions to (M(t))
The average diagonal (in trajectories) contribution to M(r)
is

(M 1)y =(lo®]*) - {0
. )dj J
~{—]| |ar]|ar X cC,
<7Th2 ’ ' s(r,rq,1)

s'(r' rg.0)

X Csf<e><p[ é[ASs(t) - ASy(t)]] >
s 2, (h 2
Xexp _ﬁ[(ps_l’o) +(py—po)]|. (20)

As before, (---) stands for the average over an ensemble of
perturbations V, whereas (AB).=(AB)—(A){B). The latter
picks only the correlations (or the connected parts) between
A and B. As a consequence, in Eq. (20) the sums over tra-
jectories s and s’ are effectively constrained and run only
over the pairs s and s’ that are correlated, i.e., that remain
close in phase space.

Let us calculate the average (:--). appearing in Eq. (20).
As in Eq. (10) we use the standard assumption that

<exp{ é[ASs(t) - Ass'(f)]}>

1
= exp) - ﬁ([ASS(I) ~AS (0P (- (21)

We also use Eq. (6) to write

AS (1) - AS (1) =f d'[V(q,(t'),1") = V(gu ('), 1)].
0

(22)

As the two trajectories s and s’ to remain close, we can
expand V(q,(7),?) to first order around s and obtain

1

AS(r) = AS,(1) = f dr" VV(q,(t'),t") - [q,(t") = qu(1")].
0

(23)

To calculate the action difference variance we turn our atten-
tion to the force correlation function, namely,
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1—1'))=(VV[q,1]- VV[q'./']). (24)

As before, we introduce an ensemble of perturbations, and
write

Cy(lq-q’

b}

1=1'))=(V)CH|t=1')(Vy- V¢)Cs(la—q')),
(25)

Cyv(q-q'

s

such that (V- V) Cs(|q—q’|) decays sufficiently fast, in the
sense defined by Eq. (13).

As time evolves, the separation between the coordinates
q,() and q,/(¢) grows as e, where \ is the largest Lyapunov
exponent of H,. As a result, after some algebra,

<exp[%[ASs(t) - ASSr(t)]}> = exp[- A(r —r')¥/42],

(26)
with
(1 _ e—2>\f)
A=(Vyry—— 27
(V) n (27)
when C; dominates the decay of Cy, and
1—e (" | 1-daC > C
A= <V2> € f dq|: S(Q) _ SEQ) ,
2N ), q oq dq
(28)

when Cy decays slowly.

Inserting Eq. (26) in Eq. (20) we can perform the Gauss-
ian integral over (r—r’), use one of the Jacobians C; to
change variables and replace the other one with a limiting
extrapolating form C;~ (%)dexp(—)\t) [3]. The final step is to
compute a Gaussian integral over momenta to obtain

(M*(1)) = A exp(— \1), (29)

where A=[mo/(A"?)]¢, and \ is the classical Lyapunov ex-
ponent of the system.

In summary, replacing Egs. (19) and (29) in Eq. (8), we
find that the main result of Ref. [3] holds, namely,

M(1) = A exp(— \1) + B exp(— 1/7), (30)

where 1/7is given by Eq. (14). The exponential decay of the
LE is dominated by the smallest between 1/7 and A, giving a
crossover from FGR to Lyapunov decay as the perturbation
strength increases.

C. Correlation crossover

In the regime where 7,~ 7;, one can only obtain further
insight by assuming a specific form of the correlation func-
tions. Although it is a less general result, one can still en-
compass a broad class of possible perturbations whose cor-
relator decay in a particular way. We will consider the case
where both Cg and C; have Gaussian shapes,
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1o <V2> -q') t_t,2
<V(q,f)V(q N )>: 7 exp(— %)exp<_ | 720 | )

31)
Under the assumption that 7 is large compared to 7, and 7,

we replace in Egs. (14) and (21), and obtain the decay rate
for the FGR regime,

=2

;
= /—Vi (32)

1
T N 7'(_)2 + ng

and the prefactor A of the Lyapunov regime:

= T - |-
e GV ANNED AN I 1

When the temporal or spatial correlation dominate, we re-
cover the previous limit

1 T,
— = — with 7,=min[ 7, 7]. (34)
7

Ty

As before, if the effective time scale 7, becomes too short,
the perturbation cancels itself out causing a very slow decay.
This result is consistent with studies of time-dependent er-
rors in a quantum computer [25], where the dynamical de-
coupling to the environment was interpreted as a manifesta-
tion of the quantum Zeno effect [16,40]. Notice that when T,
is dominated by the dynamics of H, the fluctuations become
faster for chaotic systems with a larger \ [26].

III. CONCLUSIONS

We have extended the semiclassical theory of the
Loschmidt echo to cope with time-dependent perturbations.
We expect our results to remain valid in more complex or
analytically difficult cases, suitable only for numerical stud-
ies. Our treatment is sufficiently general as to describe the
situations where the perturbation is the random effect of an
uncontrolled environment on the system. The fluctuations we
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considered could arise either from an explicit time depen-
dence of the perturbation potential, or from the ergodic na-
ture of H. In the last case, the underlying chaotic dynamics
mimics the randomness required for the decay of the corre-
lation functions. Thus our results should also apply to peri-
odic or very simple oscillating perturbations.

We showed that the Loschmidt echo Lyapunov regime is
barely affected by the time dependence of the perturbation,
except for prefactors: The decay is dominated by the sys-
tem’s intrinsic dynamics of stretching and folding. In the
FGR regime—when the nondiagonal terms dominate—the
spatial and time scales of the perturbation compete with each
other, and a simple behavior can be extracted when the rel-
evant scales are far apart. In the intermediate regime, where
the scales are comparable, using a simple (yet general) ex-
ample we compute the decay rate of M(z). The form of Eq.
(34) stresses how fast fluctuations lead to self-cancellation of
the interaction with the environment. In the case of the LE, a
vanishing FGR exponent prevents the appearance of the per-
turbation independent Lyapunov regime. Surprisingly, this
happens not only for rapidly fluctuating perturbations, but
also by increasing the Lyapunov exponent. The slowing
down of the FGR regime of decoherence—induced by fast
fluctuations—was recently experimentally measured in NMR
experiments [41], where a connection to the quantum Zeno
effect was observed. It is interesting to recall that dynamical
decoupling to the environment is what makes liquid NMR
quantum computers possible (albeit small). The fast random
movements of the molecules in the liquid average out the
more difficult to control dipolar interactions present, e.g., in
solids. Our work points to the importance of exploring dy-
namical alternatives to suppress quantum decoherence
[40,42].
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