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Complex earthquake networks: Hierarchical organization and assortative mixing
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To characterize the dynamical features of seismicity as a complex phenomenon, the seismic data are mapped
to a growing random graph, which is a small-world scale-free network. Here, hierarchical and mixing proper-
ties of such a network are studied. The clustering coefficient is found to exhibit asymptotic power-law decay
with respect to connectivity, showing hierarchical organization. This structure is supported by not only main
shocks but also small shocks, and may have its origin in the combined effect of vertex fitness and deactivation
by stress release at faults. The nearest-neighbor average connectivity and the Pearson correlation coefficient are
also calculated. It is found that the earthquake network has assortative mixing. This is a main difference of the
earthquake network from the Internet with disassortative mixing. Physical implications of these results are

discussed.
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Earthquake phenomenon has been attracting continuous
interest of physicists from the viewpoint of science of com-
plex systems. In particular, seismicity exhibits several re-
markable features, such as the scaling relation between fre-
quency and magnitude called the Gutenberg-Richter law [1],
and slow decay of the rate of aftershocks known as the
Omori law [2]. In the recent works [3,4], we have analyzed
the spatiotemporal properties of seismicity with the help of
nonextensive statistics [5], which is a generalization of
Boltzmann-Gibbs statistics and offers a consistent frame-
work for treating complex systems. We have found that both
the spatial distance and time interval between two successive
earthquakes are nicely described by the g-exponential distri-
butions, which are characteristics of nonextensive statistics
and maximize the Tsallis entropy [6] under appropriate con-
straints. More precisely, the spatial distance obeys the
g-exponential distribution with 0<<g<1 which has a finite
support [3], whereas the time interval has g >1 [4] which is
the asymptotically power-law distribution of the Zipf-
Mandelbrot type. In this respect, it is important to notice that,
until today, the one and only theory which can explain these
two kinds of distributions in a unified manner is nonexten-
sive statistics. The fact that two successive earthquakes obey
such definite statistical laws means that successive events are
strongly correlated, no matter how large their spatial distance
is. In fact, there is an investigation [7], which claims that an
earthquake can be triggered by a foregoing earthquake that is
more than 1000 km away. This implies that the seismic cor-
relation length is enormously large, exhibiting a similarity
between seismicity and phase transition phenomena. Thus, it
seems inappropriate to put spatial windows in analysis of
seismicity, in general.

In contemporary science, much attention is paid to statis-
tical mechanics of complex networks [8—10], which provides
a novel procedure for analysis of man-made as well as natu-
ral complex systems. In the network picture, vertices and
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edges represent elements and interrelation (i.e., interaction or
correlation) between them, respectively. A primary purpose
there is to understand the topological, statistical, and dy-
namical features of the networks.

In recent works [11,12], the concept of complex networks
has been introduced to seismology to reveal spatiotemporal
complexity of seismicity. A network associated with seismic-
ity is constructed as follows. The geographical region under
consideration is divided into small cubic cells with a certain
size, i.e., the scale of coarse graining, which is the one and
only parameter in the present discussion. (Since there are no
a priori principles to determine the size of the cell, it is
essential to examine the dependencies of the obtained results
on it.) If events with any values of magnitude occurred in a
cell, such a cell is identified with a vertex. As mentioned
above, two successive events are supposed to be highly cor-
related, irrespective of their spatial distance. Such correlation
is represented by an edge, here. Two vertices may coincide
with each other (i.e., successive events occurring in the same
cell), forming a loop. In this way, the seismic data are
mapped to a growing random graph, termed the earthquake
network. (Another method of constructing a network for
earthquakes, which is more complicated than the present one
introducing seven parameters including the spatial distance,
time interval, magnitude, and so on, is found in Refs.
[13,14].) The earthquake networks thus constructed for the
data taken in California and Japan have been analyzed in
Refs. [11,12]. There, it has been discovered that they are
small-world and scale-free networks. Emergence of scaling
characterized by the power-law nature of the connectivity
distribution (i.e., the probability of finding vertices having a
given number of edges) is due to the empirical fact that af-
tershocks associated with a main shock tend to return to the
locus of the main shock geographically. The stronger a shock
is, the larger the value of connectivity of the associated ver-
tex is. Indeed, loops and multiple edges play a vital role in
quantifying the strength of seismic activity of vertices.
Therefore, a role of a “hub” is played by a main shock, and
accordingly the preferential attachment rule may be satisfied,
leading to a scale-free network [9].

In this paper, we analyze in the undirected network pic-
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ture the hierarchical structure and mixing property of the
earthquake network. We show that the clustering coefficient
decays as a power law with respect to connectivity, manifest-
ing hierarchical organization. This fact combined with the
previous results obtained in Refs. [11,12] implies that there
exist striking similarities between the earthquake network
and the Internet. (In addition, also the Internet time series
associated with round-trip times of Ping signals obeys the
Gutenberg-Richter-like law and the Omori-like law. See Ref.
[15] for the details.) Then, we study the correlation property
of the earthquake network by calculating the nearest-
neighbor average connectivity and the Pearson correlation
coefficient. We shall see that the network has assortative
mixing. This point is of essential difference from the Internet
with disassortative mixing. We present physical interpreta-
tions for these results in view of seismology.

We have constructed the earthquake networks in Califor-
nia and Japan by employing two different cell sizes, 10 km
X10kmX10km and 5 kmX5 kmX5 km, which are
considered to be reasonable if the typical size of a small fault
and the resolution of measurement are taken into account.
Following the procedure mentioned above, we have mapped
to the growing random graphs two sets of the data
made available by the Southern California Earthquake
Data Center (http://www.data.scec.org/) covering the
region 28°36.00'N-38°59.76'N latitude and
112°42.00'W—-123°37.41'W longitude with the maximal
depth 175.99 km in the period between 00:25:8.58 on Janu-
ary 1, 1984 and 22:50:49.29 on December 31, 2004, and by
the National Research Institute for Earth Science and Disas-
ter Prevention (http://www.hinet.bosai.go.jp/) covering the
region in Japan 17°57.36N-47°59.88N latitude and
120°10.50E-154°29.64E longitude with the maximal depth
681.0 km in the period between 00:02:29.62 on June 3, 2002
and 23:55:26.98 on March 31, 2005. The total numbers of
the events are 379 728 and 382 639, respectively. (The rea-
son why we take these periods is due to reliability of the
data: the data in California in 1983 are not complete, and the
data before June 3, 2002 are not available in the Japanese
database.)

As shown in Refs. [11,12], these earthquake networks are
small-world and scale-free. To investigate their hierarchical
structure, first we analyze the clustering coefficient as a func-
tion of connectivity. It is given as follows. Consider [8] ¢;
=2e¢;/k,(k;—1), where e, is given by e;=(A%),; with the adja-
cency matrix [10] A=(a;;) of a simple graph [that is, a;;
=1(0) if the vertices i and j are connected (unconnected) and
a;=0] and k; is the value of connectivity of the ith vertex.
This quantity has the following meaning. Assume that the ith
vertex has k; neighboring vertices. At most, k;(k;—1)/2 edges
can exist between them. Then, c; is equal to the ratio of the
actual number of edges of the ith vertex and its neighbors to
the maximum value, k;(k;—1)/2. Then, the clustering coeffi-
cient &(k) is defined by (k)= (1/[NP(k))ZL,¢;6 4 where
P, (k) stands for the connectivity distribution of the simple
graph. This quantifies the tendency of two vertices connected
to a vertex with connectivity, k, being connected to each
other and gives information on the hierarchical organization
of the network. It is noted that, upon calculating the cluster-
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FIG. 1. The log-log plots of the clustering coefficient with re-
spect to connectivity (insets: the semi-g-log plots) of the networks
in California with the cell sizes (a) 10 km X 10 km X 10 km and (b)
5 km X5 km X5 km. The values of ¢ and « in the description in
Eq. (1) are (a) g=1.18, x=5.38X10? and (b) ¢=1.77, k=5.46
% 10%. All quantities are dimensionless.

ing coefficient, loops have to be removed and multiple edges
are to be replaced by simple edges in order to reduce the full
network to the corresponding simple graph.

In Figs. 1 and 2 the plots of ¢(k) are presented. In both
California and Japan, the clustering coefficient asymptoti-
cally decays as a power law. More precisely, it is nicely fitted
by the g-exponential function over the whole range:
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FIG. 2. The log-log plots of the clustering coefficient with re-
spect to connectivity (insets: the semi-g-log plots) of the networks
in Japan with the cell sizes (a) 10 kmX 10 km X 10 km and (b)
5 km X5 km X5 km. The values of ¢ and « in the description in
Eq. (1) are (a) g=1.89, k=3.45X10? and (b) g=1.98, x=3.85
X 10%. All quantities are dimensionless.

c(k) ~ e (= klk), (1)

where e, (x)=[1+(1 —q)x]i/(l_q) with [a],=max{0,a}, g and
Kk are positive constants, and, in particular, g>1 in the
present case. The inverse of the g-exponential function is the
g-logarithmic function, which is given by In,(x)=(x'"
—1)/(1-g). (In the limit ¢g—1, the g-exponential and
g-logarithmic functions converge to the ordinary exponential
and logarithmic functions, respectively. These functions play
central roles in nonextensive statistics [5].)
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TABLE I. Time evolution of the network in California with the
cell size 10 km X 10 km X 10 km: number of vertices (N), number
of edges (E), average clustering coefficient ({c)), and average path
length ({/)). Among these quantities, only (c) is calculated after
removing loops and replacing multiple edges by simple edges.

Year 1984 1984-86 1984-94 1984-2004
N 1200 1956 2999 3913
E 18090 53993 208915 379726
(k) 30.152 55.209 139.32 194.08
() 0.388 0.476 0.577 0.635
I 2.69 2.63 2.53 2.52

Dependence of the clustering coefficient on connectivity,
k, implies hierarchical organization of the network. In view
of seismicity, the decay of ¢(k) with respect to k [i.e., c(k)
~k~Ya=1) with ¢>1] is due to the fact that the vertices of
aftershocks tend not to be connected to each other directly:
they are connected through the vertices of the associated
main shocks.

The hierarchical structure thus found is of physical impor-
tance. The earthquake network has growth with preferential
attachment [11], as in the Barabdasi-Albert model [9]. It is
known [16], however, that the Barabdsi-Albert model does
not yield hierarchical organization. To mediate between
growth with preferential attachment and the hierarchical
structure, the authors of Ref. [17] have employed the concept
of vertex deactivation [ 18], that is, in the process of network
growth, some vertices deactivate and cannot acquire new
edges any more. This has a natural physical implication in
the case of the earthquake network. Each fault may be deac-
tivated through the process of stress release, in general. Fur-
thermore, it should also be mentioned that the fitness model
[19] can also generate hierarchical organization. This model
generalizes the preferential attachment rule in such a way
that not only connectivity but also “charm” of vertices are
taken into account. Seismologically, fitness is considered to
describe intrinsic properties of faults (e.g., geometric con-
figuration, stiffness, and so on). These two mechanisms pro-
vide origins of the complex hierarchical structure, by which
relatively new vertices have chances to become hubs of the
network. It is our opinion that, in reality, the hierarchical
structure of the earthquake network may be due to both de-
activation and fitness.

We have also examined the dependence of the clustering
coefficient on the threshold for the value of magnitude, M,
from O to 3, and have found that the g-exponential behavior
of ¢(k) disappears and no significant trends become observed
already at M, =2. This implies that the hierarchical organi-
zation is mainly supported by weak shocks.

The above discovery (together with the scale-free nature
realized by growth and preferential attachment reported in
Ref. [11]) indicates the existence of striking similarities be-
tween the earthquake network and the Internet. To examine
such similarities further, we present in Table I the time evo-
Iutions of some characteristic quantities of the earthquake
network in California with the cell size 10 kmX 10 km
X 10 km. These results should be compared with those of the
Internet [19-21].
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FIG. 3. The log-log plots of the nearest-neighbor average con-
nectivity of vertices with respect to connectivity of the networks in
California with the cell sizes (a) 10 kmX 10 km X 10 km and (b)
5 km X5 km X5 km. The solid lines show the trends depicted by
the exponentially increasing functions. All quantities are
dimensionless.

However, there actually exists an essential difference be-
tween the earthquake network and the Internet. It is con-
cerned with the mixing property. Therefore, finally we dis-
cuss the nearest-neighbor average connectivity in order to
clarify the mixing property of the earthquake network. This
quantity is given as follows. Consider the conditional prob-
ability P(k’ |k) that a vertex of connectivity k is linked to a
vertex of connectivity k'. Then, the nearest-neighbor average
connectivity of vertices with connectivity k is defined by
[19-21]: k,,(k)==,/k' P(k"|k). In contrast to the preceding
analysis of the clustering coefficient, here loops and multiple
edges should be taken into account in order to quantitatively
describe seismicity. In Figs. 3 and 4 the plots of this quantity
are presented for California and Japan, respectively. In both
cases, the feature of assortative mixing [21,22] is observed.
Vertices with large values of connectivity tend to be linked to
each other. That is, vertices containing stronger shocks tend
to be connected among themselves with higher probabilities.
It is also noted that the Barabdsi-Albert model has no mixing
[22]. Also, we have ascertained that, in contrast to the clus-
tering coefficient, this trend of the nearest-neighbor average
connectivity of vertices is robust against the threshold of
magnitude at least up to My,=3.

To quantify such a correlation, we have also calculated

PHYSICAL REVIEW E 74, 026113 (2006)

10000
< 1000 |
£
100
1 10 100 1000 10000
(a) k
10000
< 1000
[
100
1 10 100 1000 10000
(b) k

FIG. 4. The log-log plots of the nearest-neighbor average con-
nectivity of vertices with respect to connectivity of the networks in
Japan with the cell sizes (a) 10 kmX 10 kmX 10 km and (b)
5 km X5 km X5 km. The solid lines show the trends depicted by
the exponentially increasing functions. All quantities are
dimensionless.

the Pearson coefficient [22]. This quantity is defined as fol-
lows. Let ey(=¢;) be the joint probability distribution for an
edge to be with a vertex with connectivity k at one end and a
vertex with connectivity / at the other. Its marginal, g,
=2,e;;, obeys the normalization condition, 2;g;=1. Then, the
Pearson  correlation  coefficient is  given by
=(1/0) 2 kley—quq). where ;=3 kg —(kqy)? is the
variance of ¢,. re[-1,1], and r is positive (negative) for
assortative (disassortative) mixing.

The result is presented in Table II. Consistently with the
one obtained from the analysis of the nearest-neighbor aver-
age connectivity, the Pearson correlation coefficient is posi-
tive, confirming that the earthquake network has assortative
mixing. On the other hand, the Internet is of disassortative

TABLE II. The values of the Pearson correlation coefficient of
the network in California and Japan with two different cell sizes,
10 km X 10 km X 10 km and 5 km X 5 km X 5 km.

10 km X 10 km X 10 km 5 kmX5 kmX5 km

r=0.285
r=0.161

r=0.268
r=0.156

California
Japan
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mixing [19-22]. That is, the mixing properties of the earth-
quake network and the Internet are opposite to each other.
We have also ascertained that the presence of loops and mul-
tiple edges is essential for assortative mixing: the simple
graph obtained by reducing the full earthquake network turns
out to have disassortative mixing.

In conclusion, we have found that the earthquake network
exhibits hierarchical organization and therefore is not of the
Barabasi-Albert type. We have interpreted this fact in terms
of vertex fitness and deactivation by the process of stress
release at the faults. We have also found that the earthquake
network possesses the property of assortative mixing. This
point is an essential difference of the earthquake network
from the Internet with disassortative mixing. Thus, a corre-
lation between the betweenness and degree centralities [10]
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is particularly strong for large values of connectivity. This
may have an importance for a possible indirect prediction of
main shocks by identifying the betweenness centralities.
Note added. After submittal of this paper, Ref. [23] has
appeared in the e-print archive. In this work, the authors have
constructed a network using the Olami-Feder-Christensen
self-organized-criticality model and have shown that the net-
work has assortative mixing, as we have found here by using
the real data. Our attention was drawn to Ref. [24], in which
the decay of the clustering coefficient with respect to con-
nectivity is reported following the network construction
given in Refs. [13,14] that is different from the present one.
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