
Relevance of dynamic wetting in viscous fingering patterns

E. Álvarez-Lacalle,1 J. Ortín,2 and J. Casademunt2
1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

2Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Av. Diagonal 647, E-08028-Barcelona, Spain
�Received 26 July 2005; revised manuscript received 3 February 2006; published 29 August 2006�

We demonstrate that wetting effects at moving contact lines have a strong impact in viscous fingering
patterns. Experiments in a rotating Hele-Shaw �HS� cell, dry or prewetted, show consistent morphological
differences. When the wetting fluid invades a dry region, contact angle dynamics yield a kinetic contribution to
the interface pressure drop that scales with capillary number as Ca2/3 but is significantly larger than the
Park-Homsy kinetic correction. Numerical results are in very good agreement with experiments and show that
standard HS equations work best for prewetted cells.
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I. INTRODUCTION

Contact line dynamics and wetting properties �1� in the
presence of a morphological instability have been shown to
have an important influence on pattern formation �2–6�. In
this paper we focus on the effects of dynamic wetting in
viscous fingering in a Hele-Shaw �HS� cell �7–9�, a problem
often regarded as a paradigm of interfacial pattern formation.
In this case, the confinement of the fluids between the two
close plates of the cell reduces the usual problem of a contact
line plus a free surface, to a simpler one consisting of two
contact lines tied together by a meniscus �10�.

The influence of wetting on the steady-state selection
problem in viscous fingering has been studied in detail �see,
for instance, �10,11��. These studies have dealt with the in-
fluence of the coating layers that form when a nonwetting
fluid displaces a wetting fluid. In the reverse situation when a
wetting fluid displaces a nonwetting fluid, however, we show
that the presence of moving contact lines plays a crucial role
in the resulting pattern morphologies. This scenario is en-
countered typically in fingering instabilities driven by den-
sity contrast �by either gravity or centrifugal force�.

II. EXPERIMENTAL RESULTS

We have performed two series of experiments in a rotat-
ing HS cell. The experimental setup and protocol are de-
scribed in detail in Refs. �12–14�. The first series is per-
formed in a dry cell, as in Ref. �12�. A circular drop of
silicone oil is injected at the cell center, surrounded by air,
and set to rotate without further injection, making the initial
circular interface unstable. In the second series of experi-
ments, the glass plates are initially coated with a thin layer of
silicone oil, following the prewetting procedure described in
Ref. �13�.

We use silicone oils Rhodorsil 47V 500 and 47V 50, of
dynamic viscosities �=0.55 and 0.052 Pa s, respectively, at
room temperature, density �=975±10 kg/m3, and surface
tension �=20.7 mN/m. The experiments are performed with
gap thickness b=0.2, 0.5, and 0.8 mm, angular velocities
�=30, 60, 90, 100, 120, 150 rev/min, and initial radii R0
from 4 to 10 cm. Combinations of these parameters allow
the generation of patterns in a wide range of time and length
scales. Pattern morphologies are essentially controlled by the

dimensionless combination of experimental parameters S
=R0

3�2� /�, a ratio of centrifugal to capillary forces. S deter-
mines a most significant feature of the patterns, the number
of fingers in the early nonlinear regime n���1+S� /3 �12�.
The degree of development of the patterns is controlled by
the dimensionless time t /�, where �=12� / ���2b2�. The
other relevant dimensionless parameter of the problem is the
�local� capillary number Ca=�v� · n̂ /� �with n̂ directed out-
wards�, a ratio of viscous to capillary forces.

In Fig. 1, we display snapshots of two experiments with
the same set of parameters, for dry and wet conditions. The
dynamics are clearly sensitive to the wetting condition, and
lead to remarkably different morphologies. We find that these
differences are very systematic and reproducible in a wide
range of experimental parameters �n from 5 to 30, t /� from
0.5 to 1.5, typically�. The main features are well captured by
the representative examples of Figs. 2 and 3. The typical
morphology in the wet case produces fingers elongated and
thin, with droplet-shaped ends. The longer fingers escape
from the rest, with a nearly exponential growth of the radial
distance �15�. For the dry case, instead, the most prominent
fingers are slowed down, and pile up into a front with a
nearly circular envelope, with a slowly growing radius. This
is to be compared with the more polygon-shaped convex
envelope of the wet case. In addition, the few air fingers that
manage to penetrate deeply into the liquid tend to adopt a
typical balloonlike shape, close to circular.

A quantitative analysis of the temporal evolution of ex-
periments is presented in Fig. 4. We have singled out for
each experiment one of the most prominent outgoing fingers,
and measured the dimensionless radial coordinate of the tip,
r+�t� /R0. This clearly discriminates between wet and dry
cases. We find an excellent collapse of all the experiments
performed in wet conditions. The experiments in dry condi-
tions, although not showing such a good collapse, do exhibit
the systematic slowing down of the pattern growth.

It is important to note that, in a dry cell, different parts of
the same interface meet regions of the cell that may be either
wet or dry. The wet regions are those previously visited by
the oil, so, strictly speaking, the local wetting conditions will
depend on the whole history of the flow. In practice, it is
sufficient to assume that the points of the interface with posi-
tive �negative� normal velocity meet dry �wet� regions of the
cell �16�.
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III. THEORETICAL DISCUSSION

The effective two-dimensional �2D� velocity of an incom-

pressible fluid in the cell, v� , satisfies v� =�� �, with �� ·v� =0
and �=− b2

12� �p−F�, where p is the pressure and, for a rotat-
ing HS cell, F= 1

2��2r2 with r the radial coordinate. The
boundary conditions commonly used in the literature are the
continuity of the normal velocity, and the equilibrium
Laplace-Young pressure drop for the 2D meniscus p2− p1
=���−2 cos 	 /b�, where the label 1 �2� refers to the outer
�inner�, less �more� viscous fluid, � is the curvature in the
cell plane �taken positive for a circle�, and 2 cos 	 /b is the
curvature perpendicular to the plane, where 	 is the contact
angle.

For a nonwetting fluid �air� displacing a wetting one �oil�
�as for the receding parts in our experiment and for the
prewetting procedure�, Park and Homsy �17� have shown
that the Laplace-Young pressure-drop boundary condition is
actually the lowest-order approximation in a double expan-
sion on Ca, and 
=b /L, where L is the typical scale of trans-
verse variation. Then, the effect of the dynamic formation of
the coating layers gives, for the projected 1D interface,

p2 − p1 = ��K −
2

b
�1 + J�Ca�2/3�	 , �1�

with K= �
4 �+O��Ca�2/3� and J=3.80+O��Ca�1/3�. The curva-

ture term is assumed to be small �of order 
2� so the kinetic
corrections to K are then of order 
2�Ca�2/3.

In the prewetting procedure, the oil filling the cell is dis-
placed by air at Ca0 �18�, forming coating layers of thickness

FIG. 1. Time sequence of two experiments performed in a dry
cell �left� and in a prewetted cell �right� for the same set of param-
eters. The time lapse between consecutive snapshots is 9 s. The
parameters are b=0.5 mm and �=60 rev/min. The initial radii,
R0=7.6 cm �left� and 7.9 cm �right�, are the same within experi-
mental error because the initial drop is not perfectly circular, so that
S
7�104. Maximal values of Ca �for the fastest fingertips in the
last snapshot� are 3.3�10−3 �left� and 4.2�10−3 �right�.

15 cm

FIG. 2. Time sequence of fingering patterns formed in a wet cell
�t=9, 13.5, 18, and 22.5 s�. The oil is Rhodorsil 47V 50, and b
=0.5 mm, �=120 rev/min, R0=5 cm �S=2.3�105�. The maximal
Ca is 1.6�10−2.

15 cm

FIG. 3. Time sequence of fingering patterns formed in a dry cell
�t=8.4, 10.4, 14.4, and 18.4 s�. The oil is Rhodorsil 47V 50, and
b=0.5 mm, �=150 rev/min, R0=6 cm �S=6.6�105�. The maxi-
mal Ca is 1.7�10−2.
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d
0.67b�Ca0�2/3 �19� �always below 3% of b in our experi-
ments�. Then, in the subsequent experiment, for the regions
where oil is invading the coated plates, and extending the
analysis of Bretherton �19�, Eq. �1� applies with J=J�
�, an
unknown function of 
�Ca/Ca0, which must be determined
numerically from asymptotic matching. Reference �19�
shows that J�
��0 for small 
 and decreases monotonically,
crossing zero around 

0.4. In the range 1�
�10 we find
−1�J�
��−3. However, as shown below, the term propor-
tional to J in Eq. �1� is negligible as long as Camax and Ca0
are within the same order of magnitude, as in our experi-
ments.

On the contrary, for a dry cell, the presence of a moving
contact line �i.e., when the two fluids make contact with the
glass plates� does have an important effect. We model this
case by taking the contact angle as a dynamic variable. Ngan
and Dussan �20� have pointed out that the variability of ap-
parent dynamic contact angle with Ca can indeed be rather
large in a HS cell even for liquids with good wetting prop-
erties. One reasonable approximation for small contact
angles is �6,21,22�

	3 = lCa, l = 9 ln
Y

Y�

, �2�

where we have already assumed that, as for silicone oil, the
static contact angle is zero. Y is a macroscopic scale associ-
ated with the gap thickness b, and Y� is a microscopic cutoff
length scale below which macroscopic hydrodynamics fails
�for the silicone oil Rhodorsil 47V 50, Y�
60 nm �6��. Ex-
panding cos 	 in the Laplace-Young expression for the pres-
sure drop, and picking up the same � /4 prefactor for � as in
�17�, we find, to lowest order,

p2 − p1 = ���

4
� −

2

b
�1 −

1

2
�lCa�2/3
 + ¯ 	 �3�

at those points where the wetting fluid is invading a dry
region of the cell �Ca�0�. Thus the leading kinetic correc-
tion from dynamic wetting also scales as Ca2/3 but is signifi-
cantly larger than for the typical advancing regions in the
prewetted case. Taking Y 
b, we get l
80–100, i.e., 1

2 l2/3


10, to be compared with �J�
��, which at most reaches 3 at
the fastest points and at the late stages.

Both for theoretical insight and numerical simulation, it is
convenient to consider the vortex-sheet formulation of the
HS problem �8�. The evolution of the interface, �dr� /dt� · n̂

=U� · n̂, reads

U� �s,t� =
1

�
P� ẑ � �r��s,t� − r��s�,t��

�r��s,t� − r��s�,t��2
��s�,t�ds�, �4�

which is defined uniquely by the interface position and the
vorticity � at the interface,

� = B�s + U� · ŝ − Cr� · ŝ , �5�

where s is the arclength, B=�b2 / �12��, C=��2b2 / �12��, ŝ
is the tangent vector, and the subscript s denotes a derivative.
Neglecting kinetic corrections, �= �

4 �. We will refer to this
case as the standard boundary condition. Within this formu-
lation, our model for contact line motion reduces to

� =
�

4
� −

2

b
cos��lCa�1/3� . �6�

IV. NUMERICAL INTEGRATION

We have numerically solved the HS equations for a rotat-
ing cell, using the code described in Ref. �23�. The initial
condition is a circle, modulated by the first 30 harmonic
modes with an amplitude of 0.002 R0 and random phases.

In a first series of computations, we use the standard
boundary condition, �= �

4 �. Remarkably, our numerical re-
sults systematically show good agreement with experiments
in the wet cell. First, Fig. 4 shows good quantitative agree-
ment for the evolution of r+ /R0. Second, the morphologies
found in this case mimic well the experimental ones. Snap-
shots of the late stages of the evolution in two representative
cases are shown in Fig. 5. These results show that neither the
kinetic correction J�Ca�2/3 nor the �unknown� corrections of
O�
2�Ca�2/3� in Eq. �1� �which could be relevant since 
�1
in the tip regions� is significant in our experiments. A proper
numerical integration of all kinetic corrections in this case is
indeed much more involved and is not addressed here �24�.

A second series of computations has been designed to
reproduce the experimental results in a dry cell. We have
used the standard boundary condition for the receding re-
gions �Ca�0� and Eq. �6� for the invasion of dry regions
�Ca�0� �25�. Numerical results are shown in Figs. 4 and 5.
The typical morphologies obtained are strongly resemblant
to those observed in experiments in dry cells. Figure 5 is
particularly illustrative because it allows a local comparison
for identical initial conditions.

FIG. 4. Dimensionless maximum radial coordinate of outgoing
fingers r+ /R0 vs dimensionless time t /� in log-linear scale, for wet
�circles and diamonds� and dry �squares and triangles� conditions.
The two solid lines are the numerical results for the corresponding
cases. See text for details. The range of maximal Ca is �1.0
�10−3�–�2.5�10−2�.
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V. DISCUSSION AND CONCLUSIONS

Experiments in a wet cell are typically well reproduced
with the standard HS boundary conditions, implying that ki-
netic corrections have negligible impact on the morphologies
in the range of capillary numbers explored �Ca�10−2, Ca
�10Ca0�.

Experiments in a dry cell show the important role of the
dynamic contact angle. This can be properly taken into ac-
count through a modified boundary condition. In this case,
the receding parts of the interface see the same conditions as

in a wet cell, while the motion of the advancing parts is
significantly slowed down by the presence of the contact
lines. This different behavior has a strong impact on the re-
sulting morphologies. In particular, the nearly circular enve-
lope of the patterns can be understood on the basis of Eq. �6�
in the following terms. The tendency of surface tension to
decrease the curvature variation �s of the interface is re-
placed by a tendency to decrease �s, i.e., to have an interface
of uniform curvature and normal velocity. While the kinetic
contribution to � could eventually stabilize the circular
shape in the more traditional case of a radial HS cell with
fluid injection, in the purely centrifugal case a circular shape
is necessarily stationary �Ca=0� so that the kinetic contribu-
tion is not relevant at the early stages. However, when the
fingering morphology is well developed, the circular shape
can be roughly recovered in the envelope of the pattern. This
suggests that the fingered region can be treated to some ex-
tent as an effective medium with lower �average� density. In
such a case, the velocity of the circular envelope is not con-
strained by conservation, and the stabilization due to dy-
namic wetting can indeed be effective.

As a final comment, we would like to stress the remark-
able fact that, in the case of the dry cell, a microscopic length
scale �nanometer range� enters the macroscopic description
of the problem, producing significant effects at the macro-
scopic scale �millimeter range�, about six orders of magni-
tude apart.
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FIG. 5. Patterns from numerical integration, using the liquid
properties of Rhodorsil 47V 50, and �a� b=0.4 mm, R0=8.0 cm,
�=40 rev/min �S=2�104�, t=210 s; �b� b=0.4 mm, R0

=10.0 cm, �=60 rev/min �S=1.2�105�, t=140 s. � given by Eq.
�6� with l=100 has been used on the left panels, and the standard
boundary condition on the right ones. The maximal Ca are 1.1
�10−3 �wet �a��, 8�10−4 �dry �a��, 2.0�10−3 �wet �b��, 1.2
�10−3 �dry �b��.
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