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Orientational transition in a nematic liquid crystal at a patterned surface
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We consider a semi-infinite nematic in contact with a periodic patterned surface with alternate planar and
homeotropic stripes. Extending the work of Barbero et al., we find the free energy (assuming K;=Kj3) for the
situations where the easy direction on the planar stripe is either perpendicular or parallel to the length of the
stripes. We find the bulk free energy difference between the structures to be proportional to VK,/K; and so we
consider the possibility of a spontaneous transition between the two states if the azimuthal anchoring energy is
sufficiently weak and K; # K,. We compute the critical azimuthal anchoring energy for such a transition in
terms of the relative width of the stripes and the period of the pattern and find it to be ~107° J m~2, comparable

to experimental values.
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I. INTRODUCTION

In recent years there has been much interest in the align-
ment of nematic liquid crystals with micropatterned and
nanopatterned surfaces to construct bistable devices [1-3].
Using, for example, a photoaligned polymer [4] developed
with appropriate masks, a surface may be fabricated which
incorporates regions that promote either homeotropic or pla-
nar alignment. Near such a surface the director field n is
highly distorted; away from the surface the nematic adopts a
uniform bulk orientation that depends on the relative area of
the planar and homeotropic regions. It is therefore possible
to pattern a surface that promotes any desired orientation in
the bulk nematic.

One pattern that has been fabricated is a periodic array of
stripes that alternately promote planar and homeotropic
alignment. We restrict our attention in this paper to the cases
where the preferred azimuthal aligment on the planar stripes
is either parallel or perpendicular to the stripes. The case
where the director lies perpendicular to the stripes we shall
refer to as a “splay-bend” surface [Fig. 1(a)] and the case
where the director is parallel to the stripes we refer to as a
“twist” surface [Fig. 1(b)].

The splay-bend geometry has been studied theoretically:
Barbero considered the uniform bulk orientation promoted
by a splay-bend surface with arbitrary pretilt angles and fi-
nite polar anchoring [5]. Kondrat showed that for finite polar
anchoring if either the planar or homeotropic set of stripes is
very narrow, the nematic may adopt a spatially uniform con-
figuration rather than the distorted configuration [6].

In this paper we extend previous work on the splay-bend
surface to the twist surface. We show that if the twist elastic
constant is lower than the splay and bend elastic constants, as
is the case for most nematics, the energy of a nematic is
lower if it is in contact with a twist surface than with a
splay-bend surface. We consider the feasibility of a transition
between the two states which might take place if the azi-
muthal anchoring on the planar stripes is rather weak, and
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compute the critical azimuthal anchoring energy as a func-
tion of period and relative homeotropic stripe width.

II. MODEL

The final configuration of the nematic is that which mini-
mizes the total free energy including bulk and surface con-
tributions. The bulk energy density is the well-known Frank
free energy,

1
fo= 3K (V- 8P+ Kyl ¥ X )7+ Kolfh X V A

(1)

where K;, K,, and K; are the elastic constants associated
with splay, twist, and bend distortions, respectively, and are
all of order 107! N except near phase transitions. The
saddle-splay K4 term is omitted as it does not contribute to
the free energy if the director is confined to a single plane.

The nematic-surface interaction is characterized by an an-
choring potential that quantifies the energy cost of moving
the director away from an “easy” direction. A commonly
used phenomenological potential is the Rapini-Papoular po-
tential [7],

f,= %[Wa sin’(6- 6,) + W, cos® @sin*(p— ¢,)],  (2)

where W, is the polar anchoring energy, W is the azimuthal
anchoring energy, and the two angles 6, and ¢, define the
easy orientation. Experimentally determined values of W are
of order 1 107* J m™* [8]. Typically, W, is found to be an
order of magnitude lower than W, [9-11].

To evaluate the free energy, we adopt a coordinate system
in which the x coordinate is along the surface and perpen-
dicular to the length of the stripes and the z coordinate is
normal to the surface; both coordinates are scaled by the
period of the pattern A\. If the director is constrained to a
single plane that makes an azimuthal angle ¢ with the wave
vector of the stripes, the director may be parametrized,

n ={cos 0 cos ¢,cos Osin ¢,sin 6}. (3)
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FIG. 1. Schematic of the director field n(x,z) for a nematic with
K;=K,=Kj in contact with a surface patterned with period \ and
relative homeotropic stripe width a. (a) “Splay-Bend” surface;
(b) “Twist” Surface.

For most nematics K, <K;=Kj; and we therefore make
the simplification that K;=K5. The free energy density is
then

fIK, = %(xe,% +6), (4)

where «=[1-(1-7)sin’> ] and 7=K,/K,. The Euler-
Lagrange equation

KO0, +6,.=0 (5)

has a Fourier series solution that is regular as z— oo,

[

6(x,z) = 6y + 2, exp(~ 2n7-r\s";z)[p,,sin(2n77x)

n=1
+ g,cos(2nmx)]. (6)

The coefficients p, and g, are to be determined from the
boundary conditions at the surface. Substituting Eq. (6) into
(4) and integrating over x and z yields the bulk free energy
per period,
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FIK, = 4m/k> n(p* + ¢2). 7)

n=1

If the Fourier coefficients are nearly independent of 7 as we
show below and K,<K;, Eq. (7) has a minimum at ¢
=/2, which corresponds to the twist geometry, and a maxi-
mum at ¢=0 which corresponds to the splay-bend geometry.
The energy of a nematic in contact with each of the two
geometries differs by a factor of 1—1'7. It is possible then for
a nematic with K, <K in contact with a splay-bend surface
to spontaneously “twist out” to adopt the twist structure if
the azimuthal anchoring is sufficiently weak. Conversely, a
nematic with K,> K in contact with a twist surface may
spontaneously adopt the splay-bend configuration. The nec-
essary criterion in both cases is that the energy difference
between the two configurations in the bulk is greater than the
energy cost at the surface,

|Fsp(a,\) = Fry{a, N, 7)| > WyN(1 - a)/K;. (8)

Neither the twist nor splay-bend configuration (depending
on the ratio K,/K,) necessarily represents the absolute en-
ergy minimum: it is conceivable that the energy may be re-
duced by a periodic modulation of ¢; spontaneous twist
modulations occur in other liquid crystal systems [12,13] but
they require very anisotropic elastic constants (K,/K;
<0.3) or submicron cell thickness. We restrict our attention
to common nematic materials in which the amplitude of such
a modulation in ¢ will necessarily be very small and so Eq.
(7) is a good estimate of the free energy. If the elastic con-
stants are very anisotropic, the possibility of a modulation in
¢ might be explored by a variational method [13] or numeri-
cal solution of the Euler-Lagrange equations.

III. RESULTS

We first consider the situation where 6 is fixed along the
surface,

T 0=x<a
6(x,0)=1 2 , )

0 a=x<l1
then 6, is simply the average value (6(x,0))=ma/2 and the

coefficients p,, and ¢, are the coefficients in the Fourier se-
ries,

. 2 .
sin“(nam) sin(2na)
Pn= T dnm T (10)
2n 4n
The associated free energy
oo . 2
< sin
F= 77\«"7'2 —(naﬂ') (11)
n

n=1

does not converge due to the poles in V@ at (x,z)=(0,0) and
(a,0) which, in this rigid anchoring model, are disclination
lines.

To deal with similar cases, others have postulated that
above a certain magnitude of V6, the nematic “melts” leav-
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FIG. 2. Critical azimuthal anchoring energy as a function of a
for A=10 um, K;=1X10"'"' N, and with rigid polar anchoring.
Solid lines were computed with 7,=107® m and dashed lines with
r.=5X 1078 m. Note that a transition from splay-bend to twist is
feasible if Wy<Wyerisicar-

ing a small isotropic region at the core of the disclination.
We assume that the core energy of the disclinations is inde-
pendent of 7and define a cutoff radius r, (a typical value is
1078 m [14]) below which the elastic theory breaks down.
The free energy density (4) is locally convergent except at
the poles and we may therefore integrate it numerically over
x and z excluding the two semicircles around the disclina-
tions defined by x>+z><r? and (x—a)>+z><r%.

The azimuthal anchoring energy which just satisfies Eq.
(8) for the splay-bend to twist transition is plotted in Fig. 2 as
a function of a for several values of 7. An equivalent plot for
the twist to splay-bend transition may be obtained by rela-
belling K,/K;— K;/K,. A second plot of W y,cq With re-
spect to A shows that reducing the period also favours the
transition (Fig. 3). If the period is short, @ may be restricted
in fabrication as the minimum width of a stripe developed
with a mask is =1 um. Comparing our calculated W, ical
with experimentally measured values, we see that it is simi-
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FIG. 3. Critical azimuthal anchoring energy as a function of A\
with rigid anchoring for a=0.5, r.=10"% m, and K;=1X 1071 N.
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lar to that obtained for obliquely evaporated silicon oxide
(W4=2.9%X107° Jm~2 [11]) and photoaligned polymer films
(Wy<1X107°Jm™ [10]) and so we might expect to ob-
serve the transition with these surface treatments; somewhat
larger values of W, (2.3 X107 J m™ [9]) are measured for
rubbed polyimide films and so we would not expect to ob-
serve the transition on such a surface. In a physical system,
no fine boundary will exist between the stripes due, for ex-
ample, to weak polar anchoring (which we consider below),
misregistration in fabrication, and order parameter reduction.
The latter effects are tantamount to changing the defect ra-
dius r,. and we plot also in Fig. 2 the calculation with r.=5
X 1078 m; the effect on W geriticar 18 1Ot sufficient to alter our
conclusions.

We now consider the situation where 6 is allowed to vary
at the surface. We make the simplifying approximation that
the azimuthal part of the anchoring energy is independent of
6. Furthermore, in the Rapini-Papoular potential 6—6, ap-
pears in the argument of a transcendental function and so it is
not possible to evaluate the coefficients independently: we
use an approximate potential W,(#-6,)>/2 which gives the
boundary condition

a0 N

{— ~2(0- 08)] ~0, (12)
9z LH z=0

where Ly,=K;/W, is the penetration depth of the surface

treatment. Substituting Eq. (6) into Eq. (12) and integrating

we obtain the Fourier coefficients

sin*(nam) sin(2na)
Pn= 7\’ qn= . (13)
2n(1 + 2nLym\7) 4n(1 +2nLym\7)
and the associated free energy
o0 . 2
- sin(na
F=m\r __sin(nam)” _ (14)

o1 (1 + 2L0n77v:')

is convergent and may be used to evaluate the critical azi-
muthal anchoring energy directly. Quantitatively similar re-
sults for Wy isicq as a function of a and \ to those calculated
from the rigid anchoring model are obtained for Wy=1
% 10~ J m~2 [8]. The polar anchoring strength in the weak
polar anchoring model has the same effect as changing the
defect core radius r. in the strong anchoring model as the
energy difference between the splay-bend and twist states
depends on how well the surface treatment is able to main-
tain the large director gradient around the boundary between
adjacent stripes. Wy iicq grows logarithmically with W,
(Fig. 4).

A restriction on a occurs as a— 1 in the finite polar an-
choring model, a transition to a uniform homeotropic state as
predicted by Kondrat [6] will occur for some critical a; the
“splay-bend—twist” transition discussed in this paper will
raise the critical a for which the uniform state has lower
energy.

IV. CONCLUSION

We have considered the bulk energy difference of a semi-
infinite nematic region in contact with each of the splay-bend
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FIG. 4. Critical azimuthal anchoring energy as a function of the
polar anchoring energy W, for a=0.5, A\=10 um, and K;=1
X 107" N.

and twist patterned surfaces for anisotropies in the elastic
constants consistent with those measured in typical liquid
crystal compounds (i.e., 1/2<K,/K;<2). The energy differ-
ence is sufficient to make a transition feasible between the
two structures if the Rapini-Papoular azimuthal anchoring
energy is less than 10~ N m~2: the transition is energetically
favored for surfaces designed to promote high pretilt angles
where the planar stripe width is small compared to the ho-
meotropic stripe widths (i.e., as a— 1); the transition is also
favored if the period A is made smaller.
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Although we considered a semi-infinite nematic, we an-
ticipate that the transition will occur in a physical system: the
elastic distortion vanishes at a distance of the order of the
penetration depth L=\\K,/K,/(27) and so if the nematic is
terminated by a second interface at a distance d>> L the per-
turbation of the director field in the distorted region is neg-
ligible. If the second surface is micropatterned identically to
the first, then the stability criterion (8) still applies where the
splay-bend and twist states are replaced by symmetric splay-
bend and twist states near either surface separated by a re-
gion of undistorted nematic in between.

The possibility of observing such a transition in a cell
depends on the validity of the phenomenological azimuthal
anchoring potential for large displacements from the easy
orientation and the Rapini-Papoular energy is an underesti-
mate. Grooved surfaces (where W,~10Jm™) are un-
likely to allow the transition unless the polar anchoring en-
ergy is also much higher than 10™* J m2; the transition is
likely to be possible on a photoaligned polymer surface W,
<1078 Jm™2.

A further interesting consequence is that a micropatterned
surface with azimuthally degenerate planar stripes will none-
theless tend to align a typical nematic with K, <K, along the
length of the stripes as the twist state has lower energy. This
mechanism requires anisotropic elastic constants unlike the
well-known one due to Berreman [15].
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