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We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural
tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized
by a local bending rigidity ���� which varies with the average local lipid composition �. We show, in the case
where � varies weakly with �, that the effective interaction between lipids of the same type either can be
everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid
size. When this interaction has a repulsive component, it can prevent macrophase separation and lead to
separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and
numerical observations of mesoscopic domains in such systems.
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I. INTRODUCTION

At the simplest level biological membranes are modeled
by homogeneous flexible bilayers of amphiphilic lipid mol-
ecules �1,2�. However, in many physical and biological situ-
ations, these membranes are inhomogeneous on some micro-
scopic scale. Indeed, four major distinct lipid types are
typically present in mammalian cell membranes �3�. It is
natural to ask what may be the role of this homogeneity in
the biological context and how it influences the mechanical
properties of the cell. The interplay between the lipid com-
position and membrane fluctuations has been addressed in
many recent studies. The local composition of the membrane
will clearly affect its fluctuations and local geometry. Indeed,
the coupling between membrane fluctuations and local com-
position is at the origin of the budding instability �4,5� seen
in certain systems. On the other hand, membrane fluctuations
will also influence its local composition. In this paper we
will examine how the coupling of membrane fluctuations to
local composition can affect the phase ordering of its com-
ponent lipids.

In previous works, the way in which the fluctuation-
composition coupling is incorporated into the overall free
energy of system falls into two main classes. �i� The mem-
brane is composed of a homogeneous lipid background with
added insertions such as trans-membrane proteins and at-
tached polymers. �ii� The membrane is modeled as a multi-
component system with several lipid types and where the
mechanical properties of the system are dependent on the
relative local concentrations of the various lipid types.

The insertions considered in models of class �i� modify
the membrane fluctuations via several different mechanisms.
First pointlike inclusions, such as polymers, exert a pressure
distribution on the flexible membrane. This involves a cou-
pling of the membrane composition, in this case the density
field of the inclusions, to the height h�x� over the projected
area of the membrane. Another possible coupling is via an
imposed boundary condition on the height field h at the
boundary between the inclusions and the membrane. For ex-
ample, the contact angle at the boundary can be taken to be
fixed in order to minimize the hydrophobic free energy of the

insertion. This is an example of a hard constraint. Alterna-
tively, one can introduce a general coupling tensor, related to
the orientational degrees of freedom of the inclusions, to the
local strain tensor �i� jh, from which the curvature tensor
can be extracted. This then corresponds to an energetic term
which induces a preferred local curvature. In the literature
several types of inclusions are considered: circular �6–8�,
elliptic �9�, more general �10–13� embedded inclusions, as
well as adsorbed cylinders �14�. Besides introducing a ten-
dency for a spontaneous local curvature, which breaks the
up-down symmetry of the system, inclusions may also
modify the energy associated with terms quadratic in the
curvature tensor. For example, isotropic inclusions may
modify the local bending and Gaussian rigidities of the mem-
brane. In the case of two inclusions one may then explicitly
evaluate their effective interaction. To summarize, the den-
sity field of the inclusions in all these cases is coupled via �a�
h in the case of insertions exerting a pressure, �b� an effective
vectorial �ih coupling in the case of imposed boundary con-
ditions at the inclusion frontier with the membrane, �c� a
two-tensor coupling to �i� jh when there is a locally pre-
ferred curvature tensor, and finally �d� a coupling to
�i� jh�k�lh, when the local bending and Gaussian rigidities
are modified by the inclusions and also when nonisotropic
effects are present. The above are the most physically rel-
evant couplings up to quadratic order and consequently are
the most significant in systems where the height fluctuations
are relatively small.

In this case of models of type �ii�, the variation of the
elastic properties of the membrane is more continuous than
in the case of inclusions. If one neglects the possibility of
nonisotropic effects, the most natural parameters that will
vary with local lipid composition are the bending rigidity �,
the Gaussian rigidity �̄, and the spontaneous local curvature
c. For instance, a concentration-dependent spontaneous cur-
vature is considered in �15–18�. Linear perturbations to both
the bending rigidity and the spontaneous curvature are stud-
ied in �19,20�. In �6�, linear perturbations to the bending and
Gaussian rigidity were considered; the interaction arising in
this case is proportional to 1/r4 and the prefactor is given by
the product of coefficients of the linear deviations from the
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average values of � and �̄. The induced interaction may thus
be attractive or repulsive depending on the sign of these co-
efficients. Of course models of type �i�, with discrete inclu-
sions, can be described by models of type �ii� when it makes
sense to take a continuum limit for the inclusions. This limit
will be valid for inclusion sizes that are comparable to the
microscopic length scale of the membrane, that is to say, the
lateral lipid size.

All of the studies mentioned above assume zero surface
tension. However, the study of membranes under tension
sheds light upon the physics of biological membranes which
are not truly at equilibrium but under external constraints or
perturbations. The surface tension can be due to electrostatic
interactions with the aqueous solvent or due to the presence
of molecular protrusions. Furthermore, the external action of
laser tweezers on a vesicle attracts phospholipids and puts
the membrane under tension. This leads to interesting phe-
nomena such as pearling instabilities �21�. It has been theo-
retically shown that the presence of surface tension can in-
duced a repulsive interaction between inclusions of the same
type �22,23�. The model used in �22,23� is of type �i� and is
based on a linear coupling of the inclusion to the height of
the membrane, for example, to model the local pressure ex-
erted by an attached polymer. The interaction is sensitive to
the strength of membrane-inclusion coupling. In this system,
the up-down symmetry of the membrane is clearly broken by
the linear coupling. Indeed, in many biological situations the
up-down symmetry of the membrane is clearly broken, for
instance, by different compositions in the top and bottom
leaves or by the presence of conical trans-membrane inclu-
sions. However, it is interesting to ask if the presence of
surface tension can also lead to repulsive interaction between
domains, with similar lipid composition, even when the up-
down symmetry is conserved.

The physics of phase separation may play an important
role in biological systems. It has been experimentally shown
that erythrocyte membranes which contain many different
lipid types form immiscible two-dimensional liquids, which
are very close to the miscibility critical point �24�. The re-
sulting thermodynamic forces can affect the mechanical
properties of the membrane and in particular its shape. How-
ever, in turn the fluctuations will also affect the distribution
of the components in the membrane. As an example, a long-
range fluctuation mediated repulsion between inclusions,
combined with a short-range van der Waals attraction, could
lead to the formation of mesoscopic domains �16,25� of the
inclusions. It has also been shown that the presence of a
surface tension modifies the effective interactions between
conical inclusions �26�; inclusions of the same type are al-
ways repelled but oppositely orientated inclusions interact
attractively at long distances and then repel at shorter dis-
tances. This is in contrast to the case where there is no ten-
sion when all interactions are always repulsive.

In this paper, we consider a two-component bilayer with
the up-down symmetry and, in general, with a nonzero sur-
face tension. We show that for certain variations of the bend-
ing rigidity and the local surface energy �the composition-
independent component of which can be interpreted as a
surface tension� with the local composition in lipids, a
fluctuation-induced lipid-lipid repulsive interaction can ap-

pear between domains of similar composition. This, together
with a short-range van der Waals attraction, can induce the
formation of mesophases. In the scheme of previous models,
our model falls into the class of type �ii� above and our
cumulant expansion method is similar to that used in
�6,19,20�. In our study we add a nonzero surface energy, as
in �22,23�, but where this local surface energy fluctuates with
the local lipid composition.

The paper is organized as follows. In Sec. II we present
our field-theoretical model. In Sec. III using a cumulant ex-
pansion for small height fluctuations we calculate the in-
duced interaction; this rather technical section may be
skipped by a reader interested only in the physical conse-
quences of the calculation. In Sec. IV the general physical
properties and asymptotic behavior of this effective interac-
tion are discussed. Section V is devoted to a description of
the results, which are compared to previous studies. In addi-
tion we suggest a possible experiment where the effects pre-
dicted here could possibly be seen.

II. FIELD-THEORETICAL FORMULATION

We consider a model membrane with two lipid types A
and B and where the top and bottom leaves have the same
lipid composition. In the most frequent case, at least when-
ever van der Waals interactions are dominant, it is energeti-
cally favorable for lipids of the same type to be adjacent. In
this case, we can write down a typical attractive energy per
site E=��A�B where �A and �B are the liquid volume frac-
tions of lipids A and B and ��0 is a Flory parameter related
to the electronic polarizabilities of both molecules. We will
consider a coarse-grained model for a field � related to the
local surface fraction of the two lipid types, i.e., �=�A
−�B, which in the absence of surface fluctuations exhibits a
continuous phase transition at sufficiently low temperatures.
The theory is then described by the Ginzburg-Landau Hamil-
tonian �16�

HI��� =� �gd2x� J

2
gij�i�� j� + V���� , �1�

which is written in a covariant form that ensures the inde-
pendence of the energy from the choice of the two-
dimensional coordinate system denoted by x. The parameter
J is positive and related to the Flory parameter �; it is a
ferromagnetic interaction and energetically favors lipids of
the same type being next to each other. The potential V���
fixes the two characteristic values of � and the global com-
position via chemical-potential-like terms. As the potential V
appears in H simply integrated over the area of the mem-
brane, it can be interpreted as a composition dependent-
contribution to the surface energy of the membrane. Indeed,
the constant part of V which is V�0� can be interpreted as a
surface tension because it is coupled to the total physical area
of the membrane 	�g d2x. The term V�0� can thus be used as
a Lagrange multiplier to fix the physical membrane area. As
mentioned above, V will have a � dependence as in the usual
Landau models for phase-separating systems. As in standard
Landau theory, we will assume that V is a single well at high
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temperature and a double well at low temperature. This
means that the system on a plane will exhibit a continuous
phase transition. At the mean-field level, this transition oc-
curs when the mass associated with this field theory, given
by M0

2=V���0�, vanishes �where �0 is the homogeneous
mean-field solution�. This transition exhibits a divergent cor-
relation length and corresponds to a macrophase separation
which occurs at a critical temperature T=Tc.

In the above, the metric of the membrane surface is de-
noted by gij and in the Monge gauge it is given by

gij = �ij + �ih� jh �2�

where h is the height of the surface above the projection
plane whose area we will denote by A. The term g denotes
the determinant of gij and is given by

g = 1 + ��h�2. �3�

Hence the Hamiltonian given by Eq. �1� already implicitly
includes a coupling between the local composition, as en-
coded by �, and the membrane fluctuations, as encoded by h.
The interface energy or line tension, which corresponds to
the term quadratic in the gradient, is written as to ensure
covariance; gij is the inverse of gij and is given by

gij = �ij −
�ih� jh

1 + ��h�2 . �4�

Here we note that the fact that one should use the covariant
form of the line tension is often forgotten in the literature. To
lowest, i.e., quadratic, order in the fluctuations h, one has

HI��,h� =� d2x� J

2
����2 + V���� +� d2x� J

4
����2��h�2

−
J

2
��� · �h�2 +

1

2
��h�2V���� . �5�

We now take into account the elastic energy of the mem-
brane so the total Hamiltonian of the system is given by

H��,h� = HI��,h� + HS��,h� . �6�

The Hamiltonian for surface fluctuations will be taken to be

HS��,h� =
1

2
� d2x ������2h�2, �7�

which is the simplest Helfrich Hamiltonian for surface fluc-
tuations �1� and correspond, strictly speaking, to the first
term in a �2h expansion of the mean curvature �2�. This
Hamiltonian corresponds to a bending energy with local
bending rigidity which depends on the local composition
characterized by �. The two-dimensional membrane system
is assumed to have no spontaneous curvature and thus has an
up-down symmetry. More generally, one could also include a
composition dependence on the Gaussian rigidity; the contri-
bution coming from this term would then cease to be a to-
pological invariant and should strictly be included.

The effective partition function in the presence of mem-
brane fluctuations is given by

Z =� d���d�h�exp�− �H� �8�

where �−1=kBT is the thermal energy scale. We recall that A
is the projected area of the membrane; the physical area of
the membrane is denoted by A+�A, where �A is often
called the excess area. For typical biological membranes,
�A /A is small, of the order of a few percent, and we will
thus legitimately assume, in the rest of the paper, that height
fluctuations are small compared to the typical length scale of
the system.

III. CALCULATION OF THE FLUCTUATION-INDUCED
INTERACTION

In this section we explicitly calculate the fluctuation-
induced interaction to second order in the cumulant expan-
sion.

In the high-temperature regime, lipids form a mixed phase
characterized by a homogeneous and uniform composition
�0, with fluctuations � about �0. In an ensemble where the
average value of � is fixed we write �=�0+� where �0
=A−1	d2x ��x�. Consequently in this case, we have
	d2x ��x�=0. By assuming that � and V behave continu-
ously around �0, we expand the total Hamiltonian �6� up to
O��2� in the fluctuations. This leads to

H��0,�,h� = AV��0� + H0
I ��0,�� + H0

S��0,h� + �H��0,�,h� ,

�9�

H0
I ��� =

1

2
� d2x�J����2 + V���0��2� , �10�

H0
S�h� =

1

2
� d2x����0���2h�2 + V��0���h�2� . �11�

When the term proportional to V��0� is included in the sur-
face Hamiltonian H0

S, as we have chosen to do above, V��0�
can be interpreted as an effective elastic energy. However,
because it is constant, V��0� can be interpreted as an effec-
tive surface tension. The part of the Hamiltonian which we
will treat perturbatively is

�H��0,�,h� =
1

2
� d2x
J�1

2
����2��h�2 − ��� · �h�2�

+ �V���0���h�2 + ����0���2h�2�� +
1

2
�V���0�

	��h�2 + ����0���2h�2��2� . �12�

The scheme of the calculation is just slightly different in the
case where the value of �0 is allowed to fluctuate but nothing
intrinsically changes.

We perform a cumulant expansion in the partition func-
tion �8� as follows
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Z � Z0
S exp�− �AV��0�� � d���exp�− �H0

I ��1 − �
�H�S

+
�2

2

��H�2�S� �13�

�� Z0
S exp�− �AV��0�� � d���exp�− �Heff��0,���

�14�

where Z0
S=	d�h�exp�−�H0

S� and 
O�S= �Z0
S�−1	d�h�O exp

�−�H0
S�. The cumulant expansion at this order is clearly ex-

act to O��2�. The effective interaction at this order is thus
given by

Heff��0,�� = H0
I ��0,�� + 
�H�c

S −
�

2

��H�2�c

S �15�

where the subscript c indicates that it is the connected part of
the correlation function.

Note that only the first term in the cumulant expansion
can lead to a quadratic term in ��; however this term can be
seen to be zero by the following:

� 1

2
����2��h�2 − ��� · �h�2�

c

S

=
1

2
����2
��h�2�c

S − �i�� j�
�ih� jh�c
S

=
1

2
����2
��h�2�c

S − �i�� j��ij
1

2

��h�2�c

S = 0,

�16�

where we have appealed to the isotropy of the system. There
is therefore no renormalization of the coupling J. Also in the
first term of the cumulant expansion, terms linear in � cancel
by definition of � �as they are integrated against a constant
by isotropy� and the remaining terms yield 
�H�c

S

= 1
2 	d2x M1

2�2 where the mass M1 is given by

M1
2 =

1

2
�V���0�
��h�2�c

S + ����0�
��2h�2�c
S� . �17�

Again to quadratic order in �, the second-order term in the
cumulant expansion yields

−
�

2

��H�2�c

S =
1

2
� d2x d2y ��x�U�x − y���y� �18�

where

U�x − y� = −
�

4
���2��0�
��2h�x��2��2h�y��2�c

S

+ 2V���0�����0�
��2h�x��2��h�y��2�c
S + V�2��0�

	
��h�x��2��h�y��2�c
S� . �19�

The potential U�x−y� is nonlocal and characterizes the in-
duced interaction mediated by height fluctuations. The vari-
ous connected correlation functions above are evaluated as


��2h�x��2��2h�y��2�c
S =

2

�2 ��4G�x − y��2,


��h�x��2��h�y��2�c
S =

2

�2�
ij

��i� jG�x − y��2,


��2h�x��2��h�y��2�c
S =

2

�2 ���2G�x − y��2. �20�

Here the Green’s function G is given by

G = ����0��4 − V��0��2�−1 =
1

V��0�
�G0 − Gm� , �21�

where


 =
1

m
=����0�

V��0�
. �22�

The intrinsic length 
 is usually in the range 10–100 nm for
biological membranes. The Green’s function G0 is G0

=− 1
2� ln� x

L � �L is an arbitrary length� and Gm is the Yukawa
interaction given by

− �2G�x� + m2Gm�x� = ��x� . �23�

In two dimensions one has

Gm�x� =
1

2�
K0�m�x�� , �24�

where K0�x� is the Bessel function of the second kind of
order 0. Using these results we find that

U�x� = B��x� + v��x�� . �25�

The first term of the right-hand side �RHS� is short ranged
with B=−�m4 /2�������0� /���0��2���0�−2m2Gm�0�� and
needs to be regularized via an ultraviolet cutoff �=2� /a
corresponding to a microscopic length scale a which would
be of the order of the distance between lipid heads. The
second term v of the rhs above is the long-range induced
interaction and is independent of the ultraviolet cutoff. It is
given by

v�r� =
m4

2�
�����0�

���0�
�2


��u� , �26�


��u� = −
1

4�2�K0
2�u� + 2�K0�

2�u� + �2
�K0��u� −
1

u2�2

+
1

u2�K0��u� +
1

u
�2�� �27�

where u=m�x�=mr and

� =
V���0�
V��0�

���0�
����0�

. �28�
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IV. PROPERTIES OF THE FLUCTUATION-INDUCED
INTERACTION

Here we discuss the features of the interaction derived in
Sec. III. First, the strength of this interaction is polynomial in
m and therefore reducing the local surface or elastic energy
and increasing the local bending rigidity reduces the interac-
tion energy considerably. This same reduction, however, also
increases the range of the interaction. Second, the interaction
strength is set by kBT, which means that this interaction has
an entropic origin.

If � is positive, we see that the interaction between areas
having the same lipid type �with the same sign of �� is al-
ways attractive. To see this, we note that in the expression for
v�u�, Eq. �26�, the coefficients of �0, �, and �2 are functions
of u that are positive and monotonically decreasing, hence
yielding an attractive interaction at all distances. In a ferro-
magnetic analogy where the lipid types are characterized by
a field � having the values concentrated about ±1, this cor-
responds to a long-range ferromagnetic interaction which en-
hances the short-range one already present. However, when
� is negative, v now has a repulsive component, correspond-
ing to the coefficient of �, which could prevent macrophase
separation.

For large u we have �27�

K0�u� �� �

2u
exp�− u� �29�

and thus at large distances v behaves as

v�r� � −
kBT

4�2
V���0�
V��0� �2 1

r4 . �30�

This 1 /r4 interaction, which is always attractive, is typically
seen between inclusions of the same type in membranes
without surface tension and is found in many of the studies
discussed in the Introduction. However, this 1 /r4 attraction
does not have the same physical origin as in previous studies
because, as can be seen by examining the prefactor, it is
generated solely by the fluctuations of the surface energy.

For small r we find

v�r� � − �
kBT

8�2�����0�
���0�

�2m2

r2 + O�ln2 r�

� −
kBT

4�2

����0�V���0�
�2��0�

1

r2 + O�ln2 r� �31�

which is again attractive if ��0 but is repulsive when �
�0 �or ����0�V���0��0�. In this last case, the overall inter-
action is somewhat frustrated: it is attractive at very short
length scales �of the order of the microscopic length scale�
due to van der Waals interactions �in our model represented
by the local ferromagnetic interaction�, together with a
longer-range membrane-mediated repulsion over intermedi-
ate length scales, before becoming attractive at longer length
scales. One can suppose that the occurrence of these attrac-
tive and repulsive interactions can prevent macroscopic
phase separation and lead to mesoscopic domains.

V. MICROPHASE SEPARATION

The final effective quadratic Hamiltonian can now be
written as

Heff��0,�� =
1

2
� d2x�J����2 + M2

2�2�

+
1

2
� d2x d2y ��x�v�x − y���y� , �32�

where the corrected mass is given by M2
2=M0

2+M1
2+B. It is

important to note that this mass depends on the microscopic
cutoff a since M1

2 includes the expectation values 
��2h�2�S

and 
��h�2�S which diverge and must thus be regularized,
and a similar regularization is needed to evaluate B. As al-
ready explained in the Introduction, we consider systems
such that, in the absence of height fluctuations, when M0
→0 the system exhibits a second-order phase transition with
diverging correlation length �0=�J /M0. In Fourier space, we
find

Heff��0,�� =
1

2�2��2 � d2q�Jq2 + Me
2 + w�q���̃�q��̃�− q� ,

�33�

where q= �q� and the Fourier transform and its inverse are
defined by

f�x� =� d2q

�2��2 f̃�q�exp�iq · x� , �34�

f̃�q� =� d2x f�x�exp�− iq · x� . �35�

In the Fourier representation the nonlocal part of the interac-
tion is given by w�q�= ṽ�q�− ṽ�0� and Me

2=M2
2+ ṽ�0� thus

gives the effective mass for the theory.
The stability of the homogeneous solution against phase

separation is determined by the lipid-lipid correlation func-

tion in Fourier space 
�̃�q��̃�q���= �2��2��q+q��S�q� where
the structure factor is

S�q� =
kBT

Jq2 + Me
2 + w�q�

. �36�

Defining

� = � ���0�
����0�

�2

, �37�

we find three dimensionless parameters in the structure factor

S̃�q̃� =
S�q̃�
2�
2 =

1

2��J��
/�e�2 + q̃2� + W��q̃�
�38�

where q̃=
q, which are �, ��J, and �e
2=J /Me

2. The Fourier
transform of the dimensionless potential is
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W��q̃� = 2��
0

�

u du�J0�q̃u� − 1�
��u� , �39�

where J0�x� is the Bessel function of the first kind of order 0.
A divergence of the structure factor Eq. �38� at q̃=0, while S
remains finite for q̃�0, signals a macrophase separation. In
this case, since we find S�0�=�e

2 / ��J�, the phase separation
occurs when the correlation length �e→� and this corre-
sponds to the case where the induced interaction does not
change the nature of the transition but only changes where it

occurs. We show the behavior of W��q̃� and S̃�q̃� for differ-
ent values of � in Fig. 1. When ��0, W��q� and its first
derivative are always positive, and the only maximum of the
structure factor occurs at q̃=0.

However, when ��0 we see that for particular values of

��J and 
 /�e, S̃�q̃� reaches a maximum at an intermediate
values of q̃ and this maximum can even diverge at a nonzero
wave vector q̃*. In this case, the homogeneous solution be-
comes unstable before �e→� which leads to the formation
of mesophases �mesoscopic phase separation� with a finite
characteristic length scale given by 
 / q̃*. Note that at large
values of q̃, we have W��q̃��� ln q̃ but this short-range
component of the induced interaction is dominated by the
short-range van der Waals interaction term whose strength is
controlled by J, and S�q̃� ultimately decreases as 1/ q̃2 for
large q̃. The maximum of the structure factor diverges for an
intermediate wave vector q̃* which is implicitly defined by
the two following equalities:

W���q̃*� + 4��Jq̃* = 0, �40�

W��q̃*� + 2��J�q̃*2 + �
/�e�2� = 0, �41�

i.e., when the parabola −2��J�q̃2+ �
 /�e�2� is tangent to
W��q̃�. Given the number of parameters in our theory the
evaluation of a complete phase diagram is not feasible; how-
ever, the fundamental question we wish to address is whether
there is a macrophase or microphase separation. To do this
we can examine the structure factor at the point where the
q=0 mode becomes unstable, that is to say, where the effec-
tive mass Me=0. This is thus equivalent to examining tem-

peratures Tc which are critical in the true sense. If the modes
q�0 are stable at Tc then we expect to see the macrophase
separation. However, if at Tc there is already a mode q�0
which is unstable then a microphase separation must have
already occurred at a temperature T�Tc. Thus, without hav-
ing to specify the full theory, we can identify when a mac-
rophase separation is converted to a microphase one due to
coupling between membrane fluctuations and its composi-
tion.

Since we are interested in the behavior of the structure
factor when approaching the macrophase transition ��e

→��; we calculate the onset of the microphase separation
given by Eqs. �40� and �41� for 
 /�e=0, i.e., at the critical
temperature Tc. The result is shown in Fig. 2: the gray region
corresponds to the region of the phase diagram ���J ,��
where mesophases appear whereas the white region corre-
sponds to macrophase separation. The solid line corresponds
to the solution of Eqs. �40� and �41� �the dots are the exact
solutions�. This “phase diagram” is plotted at a fixed lipid
composition �0 and fixed temperature T=Tc corresponding
to the critical point in the �� ,T� space. It is important to note
that when the temperature deviates from the critical tempera-
ture, the correlation length �e becomes finite �but very large�,
and the gray region delimited by the solid line shrinks. How-
ever, in the case where, for given lipid types, the parameters
��J and � lie in the gray region, mesophases appear before
the macrophase separation at a temperature T�Tc. In the
extremal situation where we are far from the macrophase
separation the region of the phase diagram corresponding to
mesophases disappears completely.

For parameter values belonging to the gray region of the

diagram, the structure factor S̃�q̃� diverges before q̃=0 at a
finite value q̃*. When moving along the solid line starting at
the origin, the value of q̃* decreases until we reach the point
���J=3.8	10−3, �=−0.557� where q̃*=2.095, which is the
smallest value and corresponds to a characteristic length
scale of 5–50 nm for the mesophases. Then q̃* increases
again when ��� increases.

FIG. 1. Plot of W��q̃� for various values of �: 0.05 �dotted line�,
−0.1 �broken line�, and −0.15 �solid line�.

FIG. 2. Theoretical phase diagram of the bilipidic fluctuating
membrane in the plane ���J ,�� at the onset of the macrophase
separation, i.e., at the critical temperature Tc. The gray region cor-
responds to the parameter range for which a phase separation occurs
at a nonzero wave vector q̃* leading to the formation of mesophases
instead of a macrophase separation.
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On the experimental side, the parameters � and ��J are
not easy to determine. The phenomenological parameter J
coming from the Landau-Ginzburg theory is somehow re-
lated to the van der Waals attractions between lipids and
varies roughly as 1/T such that �J is fixed for given lipid
types and independent on temperature. Although we do not
know exactly the value of this parameter, we can assume
�J�1. For lipidic vesicles made of a mixture of two very
different lipids such as dimyristoylphosphatidylcholine
�DMPC�/cholesterol �a long lipid and a short one�, the cur-
vature modulus has been experimentally measured �0
�50kBT �26kBT with DMPC alone� and increases when the
proportion of cholesterol increases up to 250kBT with 50% of
cholesterol �28,29�. Hence we find ��J�0.01, which means
that the mesophases region of the phase diagram can be ex-
perimentally reached in such systems.

Finally, in the mesophase region, the denominator of S�q�
given by Eq. �36� becomes negative and the calculation of
the preceding sections, based on quadratic fluctuations of �
is no longer valid �the modes q�q* are unstable�. The nature
of the resulting stable mesophase requires further analysis to
determine it and this is beyond the scope of the present pa-
per.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown that the coupling of mem-
brane composition via a composition dependence on the lo-
cal surface energy and bending rigidity can alter the phase
diagram of a membrane composed of a mixture of different
lipids. Indeed, depending on the physico-chemical properties
of the lipids �for instance by modifying the length of their
hydrophobic tail�, the membrane can exhibits a microphase
separation leading to the formation of so-called mesophases
at a temperature T�Tc, i.e., before an eventual macrophase
separation. In the previous works where surface tension was
considered the composition-fluctuation coupling was linear
and the up-down symmetry of the system thus broken.

The long-range part of the interaction given by Eq. �26�
behaves as −1/r4 for large r. This interaction has the same
behavior as that found between inclusions in several models
where surface tension is not present. For instance, in tension-
less membranes one finds the effective pairwise interaction
�7,9�

VC�r� = − kBT6�2� r0

r
�4

�42�

between circular inclusions with the up-down symmetry,
where r0 is the radius of the inclusions. The long-range part
of the interaction found in Eq. �26�–�30� is also proportional
to the thermal energy but it is solely due to fluctuations in the
surface or elastic energy.

A few works focused on the effect of the surface tension
on fluctuation-induced interactions �18,22,23,30�. Calculat-
ing the potential between two circular inclusions which lo-
cally apply a pressure on the membrane, Evans et al. found
an interaction that is everywhere repulsive �22� between in-
clusions of the same type and is given by

��r� =
�1�2

2��
K0�mr� , �43�

where �i is related to the force distribution of inclusions i
acting on the membrane surface and � is the surface tension.
Here again, this interaction is different from Eq. �26� in ori-
gin but has some similar features: it is present for mem-
branes under tension and is repulsive with a typical range of

�30 nm for biological membranes. Our model is very dif-
ferent; it does not assume any pressure distribution acting on
the membrane but relies on the behavior of ���� and V���
close to a liquid-liquid immiscibility critical point. This
proximity to a liquid-liquid immiscibility critical point in a
real biological context is supported by beautiful experiments
on monolayers made of lipids extracted from erythrocytes
�24�.

In this study we have seen that the induced interaction
only has a repulsive component when ��0. Qualitatively,
this means that the signs of ����0� and V���0� are opposite:
when a region is locally enriched for instance in lipid A,
bending rigidity increased �����0��0� whereas the effective
surface tension decreases �V���0��0�. Let us consider for a
moment the mean-field theory where one neglects the fluc-
tuations � about �0. Consider an incompressible membrane
which is constrained to have a constant projected area, for
example a membrane supported by a frame. Also let the
membrane exchange lipid species with the bulk solution
around it �32�. The mean-field free energy as a function of �0
is given from Eq. �14� as

F��0�
A

= V��0� +
1

4��
�

0

�

k dk ln����0�k4 + V��0�k2� .

�44�

This mean-field free energy must be regularized by the ultra-
violet cutoff �. As the membrane is in a solution containing
a reservoir of lipid species, �0 is not fixed but is thermody-
namically selected so as to minimize the mean-field free en-
ergy. In this case, in our previous treatment we should have
thus included a term V���0�� in the expression for H0

I ; how-
ever, this term can be seen to cancel exactly with the first
term of the cumulant expansion, which in this case is also
now no longer zero. The part of the free energy F* that varies
with �0 is given by

F*��0�
A

= V��0� +
1

8��

�2 ln����0� +

V��0�
�2 �

+
V��0�
���0�

ln����0��2

V��0�
+ 1�� . �45�

The calculation carried out in this paper is valid for small
surface fluctuations; a way of ensuring that the fluctuations
are small is by choosing a very stiff membrane. This can be
ensured by taking ���� large. The equation minimizing
F*��0� can be expressed as
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V���0��1 +
1

4��
�

0

�

k dk
1

���0�k2 + V��0��
+

����0�
4��

�
0

�

k dk
k2

���0�k2 + V��0�
= 0. �46�

Now physically we must have V��0��0, as for any ef-
fective surface tension �it is necessary to have m real�; this
result implies that the system will naturally be in the region
where ��0. Now it is straightforward to show �see, for
example, �31�� at the mean-field level used here that the ratio
of the excess area to the projected area is given as

�A

A
=

1

4��
�

0

�

k dk
1

���0�k2 + V��0�

=
1

8�����0�
ln����0��2

V��0�
+ 1� . �47�

In terms of the ratio of the excess to projected area, Eq. �46�
can now be written as

V���0��1 +
�A

A
� +

����0�
���0� � �2

8��
−

V��0��A

A
� = 0.

�48�

In the limit where �A /A is small, using Eq. �28� we obtain

� = −
�2

8��V��0�
. �49�

Now if we write �=2� /a where a is the microscopic length
scale we find that

� = −
�kBT

2�a
, �50�

where �a is the surface energy of a square of the membrane
of linear dimension a, i.e., the average surface energy per
lipid. Hence we find ��0 which suggests a scenario to ob-
serve the formation of mesophases experimentally. For in-
stance one can use a membrane composed by a mixture of
DPMC and cholesterol and supported by a frame close at a
temperature close to Tc.

In a more general context, molecular dynamics �33� and
Monte Carlo simulations �34� have shown that the bending
rigidity has a nonmonotonic behavior as a function of the
short-lipid number fraction xs: it first decreases rapidly for
small xs and then increases slowly, with a minimum around
xs�0.6. These studies suggest that for a two-component bi-
layer made of short and long lipids, the gradients of ���� and
V��� could have opposite signs but some tuning may be
required. In this case the effective interaction will have a
repulsive component which could induce mesoscopic phase
separation.

The issue of mesophase formation has been discussed in
several papers. Taniguchi �16� has shown in a model with a
linear coupling of the composition � to the mean curvature

that near-spherical vesicles with off-critical compositions ex-
hibit circular domains that closely resemble patterns ob-
served in red blood cell echinocytosis �24�.

A similar study has been carried out in different geom-
etries �17� and the same general phenomena are observed.
Inspired by the problem of pattern formation of quantum
dots at the air-water interface, Sear et al. �25� have studied
the effects of a short-range attraction �on top of a shorter-
range hard core� and long-range repulsion in Monte Carlo
simulations of two-dimensional systems of interacting par-
ticles. In their simulations both circular domains and stripes
were observed as is the case in the experiments.

Finally, by adding an attractive short-range interaction to
the potential Eq. �43�, Evans et al. have argued that me-
sophase formation �22� could be induced. Hence, it could
explain the formation of caveolae buds from cell membranes
and their striped texture. The mechanism proposed in this
paper of course leads to the same phenomenology in the case
where the effective potential induced by membrane fluctua-
tions has an intermediate range repulsive component. How-
ever we do not find any repulsion in the situation where �
�0 which implies some conditions on the membrane com-
position which could perhaps be tested experimentally.

The model presented in this paper can be generalized by
considering lipid distributions without the up-down symme-
try, i.e., with different compositions in the top and bottom
leaves. In this case, one would introduce a composition-
dependent spontaneous curvature c��� in the Hamiltonian. If
one assumes that the mixed homogeneous phase has no
spontaneous curvature then one takes c��0�=0 and in this
case the correction to the long-range interaction is

v*�r� = −
V��0�

2�
�c���0��2K0�mr� �51�

and the mass is renormalized �by a repulsive term�. Hence
this correction is attractive and could wipe out the above
repulsive effect. The two-component membrane could also
contain trans-membrane proteins. Despite the fact that the
repulsive interaction between inclusions described by Evans
et al. would appear, it is well known that protein aggregation
also increases the local lipid composition, as observed in
erythrocyte membranes where it induces a phospholipid en-
richment �35�. The inclusion of proteinlike insertions in this
two-lipid model could thus produce quite rich behavior and
is a line worth pursuing.

Our study has predicted that it is possible that a mem-
brane whose fluctuations are impeded exhibits a macrophase
separation whereas if it is allowed to fluctuate freely this
transition becomes a mesophase separation. In a stack of
membranes the fluctuations are suppressed by Helfrich
forces �36� which are of steric origin. Experimentally, there-
fore, one could prepare a stack of bilayers at a lipid compo-
sition where the bilayers within the stack exhibit a mac-
rophase separation. However, according to our predictions, a
single membrane could possibly exhibit a mesophase sepa-
ration �37�. Another possibility is that one could try to ob-
serve the effect predicted here by using charged membranes
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and then varying their rigidity by changing the bulk solu-
tion’s salt content �38�.

We emphasize that, in this paper, we have concentrated on
an entirely equilibrium mechanism as a possible explanation
for the formation of mesoscopic domains. However, in living

cells, out-of-equilibrium effects are of course important. Re-
cently the recycling of lipids between the membrane and cell
interior has been put forward as a nonequilibrium mecha-
nism for the formation of raftlike structures in active systems
�39,40�.
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