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I. INTRODUCTION

The functioning of biological macromolecules is deter-
mined by their tertiary structure and different types of semi-
flexible polymers in solutions exhibit a variety of conforma-
tional phase transitions �1�. Even modest conformational
changes modify long-range electronic interactions in oli-
gopeptides �2�, they may remove steric hindrances and open
the pathways for molecular motions which are not available
in rigid proteins �3�. In particular, it has been recently shown
�4� that flexibility increases the hydrogen accessibility of
DNA fragments and in this way facilitates strand breaks in
DNA molecules.

The electronic conduction properties of DNA have re-
cently attracted much attention because of their relevance in
such biologically important processes as damage, mutation,
and repair of DNA �5–7�. Experiments �8� and ab initio cal-
culations �9� provide some evidence that DNA may be con-
sidered as a semiconductor where electrons �or holes� added
to an otherwise empty band �conduction band for electrons
and filled valence band for holes� are strongly coupled with
vibrational modes and the conduction is due to the thermal
motion of small polarons �10–12�. The conduction of
poly�dA�-poly�dT� is due to negatively charged polarons
while positively charged polarons are in poly�dG�-poly�dC�
�8�. Calculations of DNA molecular dynamics have showed
that nonlinear mechanisms might lead to the existence of
“vibrational hot spots,” where the trapping of charge can
occur �12�.

In the main part of the previous studies of the electronic
properties of DNA the charge-lattice coupling included com-
pression and torsion of the base pairs as well as internal
motion of the base pair molecules. Research in solitonic
properties of the chains with a bending has been initiated in
recent years �13–17�. In particular, it was shown that the
bending of the chain could manifest itself as an effective trap

for nonlinear excitations �13,15,17� and that the energy of
excitations decreases when the curvature of the bending in-
creases �15�. A phenomenological model for describing the
conformational dynamics of biopolymers via the
nonlinearity-induced buckling and collapse instability was
proposed in Ref. �18�. Buckling instability of semiflexible
polyelectrolytes with intrachain attractions due to counterion
correlations was studied in Ref. �19�.

Recent DNA cyclization experiments �20�, which have
shown the facile in vitro formation of DNA circles shorter
than 30 nm �100 base pairs�, opened a new exciting area of
research where an interaction of charge carriers with bending
degrees of freedom of closed molecular chain is crucial.

The geometric structure of bacterial light-harvesting �LH�
complexes, supramolecular machines which transform the
solar energy into a charge separation, is also flexible and
plays an important role in the photosynthesis �21�. The x-ray
crystallography shows �22� that bacteriochlorophyll a �Bchl-
a� molecules in the LH complex are organized into two con-
centric rings: the B800 and B850 rings. The former consists
of nine well-separated Bchl-a molecules with an absorption
band at 800 nm and the latter consists of 18 Bchl molecules
with an absorption band at 860 nm �see Fig. 1 in Ref. �23��.
Based on single-molecule fluorescence spectroscopy experi-
ments, it has been shown that the shape of the LH2 com-
plexes can deviate from the ideally circular shape of the
complex in crystals �23–26�. Recently an oblate plate shape
of the LH2 complex from bacteria Rhodobacter spheroides
2.4.1 in detergent solution has been determined from syn-
chrotron small-angle x-ray scattering data �27�. Based on
atomic force microscopy experiments which showed a vari-
ety of shapes and conformations for light-harvesting LH1
complexes and different types of their packing in two-
dimensional crystals, it has been proposed that the rich and
flexible geometric structure of light harvesting complexes
arises from the H-bonding patterns that stabilize binding of
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the Bchl’s to the light harvesting polypeptides �28�. It is well
known that hydrogen bonded systems �such as hydrogen
bonded water molecules� are often excellent proton conduc-
tors �see, e.g., Ref. �29��. The charge transport in these sys-
tems is due to coupled motion of ionic and orientational
defects �30�. It is of interest and importance, therefore, to
study the role of mobile defects in the shaping of the light
harvesting complexes.

The main aim of this paper is to develop a simple, generic
model for electron-curvature interactions on closed molecu-
lar aggregates. In what follows we will be mostly concerned
with the role of electrons �holes� in closed DNA-like semi-
flexible polymers. Our approach to the conformational prop-
erties of light-harvesting complexes which we present in Sec.
VI, is based on the suggestion that the flexible geometry of
LH complexes is due to mobile charges carriers in the
hydrogen-bonded networks. We show that the presence of
charge modifies �softens or hardens� the local chain stiffness.
We consider the mean field theory, where the thermal fluc-
tuations are ignored; we find that due to the interaction be-
tween electrons and the bending degrees of freedom the cir-
cular shape of the aggregate may become unstable and the
aggregate takes the shape of an ellipse or, in general, of a
polygon. The shape instability is associated with nontrivial
periodic solutions of the nonlinear Schrödinger equation. We
determine how �n, the critical charge density at which trans-
formation to an n-gon shape occurs, depends on the param-
eters of the system �electron hopping integral, chain stiffness
and strength of the electron-curvature coupling�. Below this
value the shape of aggregate is circular whereas above the
instability point, the aggregate takes a polygon shape. The
role of interaggregate interaction is also investigated. It is
shown that the interaction between aggregates may stabilize
the ringlike shape. The paper is organized as follows. In Sec.
II we describe a model. In Sec. III we present an analytical
solution to the Euler-Lagrange equation. In Sec. IV we com-
pare our analytical results to results obtained directly by nu-
merical simulations. In Sec. V the interplay between shape of
complexes and intercomplex interaction is studied. Section
VI is devoted to application to conformational transforma-
tions in light-harvesting complexes. Section VII presents
some concluding remarks.

II. THE MODEL

Let us consider a polymer chain consisting of L units �for
DNA each unit is a base pair� labeled by an index l, and

located at the points r�l= �xl, yl, zl� �l=1, . . . ,L�. We are in-
terested in the case when the chain is closed and so we im-
pose the periodicity condition on the coordinates r�l

r�l = r�l+L. �1�

To describe the chain flexibility we use a discrete worm-
like chain model. In the frame of this model the chain flex-
ibility is accounted for by employing a microstructure con-
sisting of many sequentially joined rods which connect base
pairs and by incorporating a bend potential at each point of
rotation �31�. Thus the bending energy of the chain has the
form

Ub =
k

2�
l

�l
2

1 − �l
2/�max

2 , �2�

where

�l �
1

a
	r�l+1 + r�l−1 − 2r�l	 = 2 sin

�l

2
�3�

determines the curvature of the chain at the point l. Here �l is
the angle between the tangent vectors r�l+1−r�l and r�l−r�l−1, a
is an equilibrium distance between units �in what follows we
assume a=1�, k is the elastic modulus of the bending rigidity
�spring constant� of the chain. Note that to avoid too large
bending deformations we have introduced the term �l

2 /�max
2

in the denominator of Eq. �2�. Here the parameter
�max=2 sin��max/2� is the maximum local curvature with
�max being the maximum bending angle.

In addition to the bending angle, there is a degree of free-
dom at each segment l , l+1 describing the change of the
distance 	r�l−r�l+1	 between units. We take the corresponding
stretching energy in the form

Us =
�

2 �
l

�	r�l − r�l+1	 − a�2, �4�

where � is an elastic modulus of the stretching rigidity of the
chain.

We assume that there is a small amount of mobile carriers
�electrons, holes in the case of DNA, protons in the case of
hydrogen bonded systems� on the chain. We take the sim-
plest theoretical model for the carriers, a nearest-neighbor
tight binding Hamiltonian of the form

Hel = E0�
l

	�l	2 + J�
l

	�l − �l+1	2, �5�

where �l is the wave function of the carrier localized on site
l, E0 is the on-site electron �hole� energy which is determined
by the affinity �ionization� potential of the base, and J de-
scribes carrier hopping between adjacent sites. The on-site
energy and the hopping integral are affected by various mo-
tions of the chain. The role of vibrational degrees of freedom
which are responsible for the change of the distance between
subunits and the relative twist angles is well established
�9,32�. As pointed out by a number of workers �8,9� the
electron-phonon interaction in DNA leads to the creation of
small radius polarons. We are interested here in the role of
bending degrees of freedom and their coupling with charge

FIG. 1. The shape of the chain: in the ellipselike state �n=2�, in
the polygon states �n=3,4 ,5�.
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carriers. To be more concrete we assume that each site pos-
sesses a permanent quadrupole moment. The interaction be-
tween the charge carriers and the quadrupole moments pro-
vides on-site softening �or hardening� of bending rigidity of
the chain �see Appendix A for details� which in turn may
lead to the change of geometry of the chain. As is shown in
Appendix A, the coupling between the charge carrier and the
molecular geometry is described by the Hamiltonian

Hel-conf = −
1

2�
l

��	�l+1	2 + 	�l−1	2��l
2, �6�

where � is the carrier-curvature coupling constant. The total
Hamiltonian of the system can be presented as the sum

H = Ub + Us + Hel + Hel-conf �7�

The quantity

� �
1

L
�

l

	�l	2 �8�

gives the total density of charge carriers which can move
along the chain and participate in the formation of the con-
formational state of the system. We will neglect the interac-
tion between electron �holes�. This is legitimate when the
total density of electrons �holes� in the chain � is small.
Combining Eqs. �2� and �6�, we notice that the effective
bending rigidity changes close the points where the electron
�hole� is localized. For positive values of the coupling con-
stant � there is a local softening of the chain, while for �
negative there is a local hardening of the chain �33�. In what
follows we assume that the chain is planar �zl=0� and inex-
tensible ��→ � �:

	r�l − r�l+1	 = 1. �9�

III. CONTINUUM APPROACH

We are interested here in the case when the characteristic
size of the excitation is much larger than the lattice spacing.
This permits us to replace �l by the function ��s� of the
arclength s which is the continuum analog of n. Using the
Euler-Mclaurin summation formula �34� we get

H = Ub + Hel, �10�

Ub =
1

2
k


0

L

��s�2ds , �11�

Hel = 

0

L

�J	�s�	2 − ���s�2	�	2�ds . �12�

Being interested here in small curvature effects: ��s���max,
we consider the bending energy in the harmonic approxima-
tion given by Eq. �11�.

A. Ground state of the chain

The electron ground state wave function ��s� ���s� is
real� and the shape of the chain r��s� may be obtained by
minimizing the functional

E = Hel + Ub �13�

with Hel and Ub given by Eqs. �12� and �11� under the
constraint

� =
1

L



0

L

��s�2ds , �14�

which is a continuum analog of Eq. �8�. The inextensibility
constraint �9� reads in the continuum limit

	�sr�	2 = 1. �15�

The inextensibility constraint �15� is automatically taken into
account by choosing the parametrization

�sx�s� = sin 	�s�, �sy�s� = cos 	�s� , �16�

where the angle 	�s� satisfies the conditions

	�s + L� = 2
 + 	�s� �17�

and



0

L

cos 	�s�ds = 

0

L

sin 	�s�ds = 0 �18�

which follow from Eq. �1�. Note that, in the continuum limit,
the curvature of the chain ��s� given by Eq. �3� can be
expressed as

��s� = 	�s
2r��s�	 . �19�

Thus, in the frame of the parametrization �16�

��s� = �s	 �20�

and the functional �13� takes the form

E = 

0

L �J���s��2 + � k

2
− ���2
��s	�2�ds , �21�

where the rescaled function ��s�=����s� which satisfies the
normalization condition

1

L



0

L

�2�s� = 1, �22�

has been introduced.
The Euler-Lagrange equations for the problem of

minimizing E, given by Eq. �21� under the constraint �22�
become

�s
2� +

�

J
��s	�2� − �� = 0, �23�

�s��s	�1 − w�2�� = 0, �24�

where � is the Lagrange multiplier and

w =
2��

k
�25�

is a coupling constant which characterizes the strength of
the charge-curvature interaction in terms of the bending ri-
gidity of the chain and the charge density. We are interested
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in solutions of Eq. �23� subject to the periodic boundary
conditions

��s� = ��s +
L

n

 , �26�

where n is an integer which characterizes the shape of the
chain �see below�. Integrating Eq. �24�, we get

�s	 =
A

1 − w�2 , �27�

where A is an integration constant. Taking into account the
condition �17� we obtain that the integration constant A is
determined by the relation

A =
2


L
I , �28�

where the functional I is given by the relation

1

I
=

1

L



0

L ds

1 − w�2 . �29�

From Eqs. �16� and �27� we see that the shape of the chain is
determined by the equations

x�s� = 

0

s

sin 	�s��ds�, y�s� = 

0

s

cos 	�s��ds�,

	�s� =
2


LI



0

s 1

1 − w�2�s��
ds�. �30�

B. Solution of the Euler-Lagrange equations

There are two kinds of solutions to Eqs. �23� and �27�.
�i� Circular chain. Charge is uniformly distributed along

the chain

� = 1, �31�

where the normalization condition �14� has been used, and
the curvature of the chain is constant

��s� � �s	 =
A

1 − w
. �32�

This case corresponds to a circular chain

x = R sin
s

R
, y = − R cos

s

R
. �33�

The radius R of the circle can be obtained by putting Eq. �32�
into the boundary condition �17�. As a result we have

R =
L

2

. �34�

The energy of the circular chain is thus

Ecirc =
2
2

L
k�1 − w� . �35�

�ii� Polygonally deformed chain. Let us consider now the
case of spatially nonuniform distributed electrons. Inserting
Eqs. �27�–�29� into Eq. �21� we get

E = J�

0

L

��s��2ds +
2
2k

L
I . �36�

We restrict our analytical consideration to the case when the
charge-curvature coupling is weak and/or the charge density
is low: w�1. Expanding the functional I in terms of the
small parameter w we obtain from Eq. �36�

E =
2
2k

L�1 + w�
+ J�


0

L ���s��2 −
G�

R2 �4 − w
G�

R2 �6�ds ,

�37�

where

G =
2�2

Jk�1 + w�2 �38�

is an effective nonlinear parameter. For small w one can
neglect the last term in Eq. �37� and the Euler-Lagrange
equation for the functional �37� then takes the form

�s
2� + 2

G�

R2 �3 − �� = 0. �39�

Straightforward calculations show that Eq. �39� has a solu-
tion of the form

� = R� �

�2 − m�G�
dn��� �

�2 − m�
s�m
 , �40�

where dn�u 	m� is the Jacobi elliptic function with the modu-
lus m �34�. Inserting Eq. �40� into the boundary condition
�26� and the normalization condition �22�, we find that the
Lagrange multiplier � and the modulus m are determined by
the equations

� �

�2 − m�
L

n
= 2K�m� , �41�

G� =
n2


2K�m�E�m� �42�

and the charge distribution along the chain is given by

� =�K

E
dn��2nK

L
s�m
 , �43�

where K�m� and E�m� are the complete elliptic integrals of
the first kind and the second kind, respectively �34�.

The curvature of the chain is given by the equation

��s� � �s	 �
1

R
I�1 + w

K

E
dn2��2nsK

L
�m


+ w2K2

E2 dn4��2nsK

L
�m
� . �44�

Integrating Eq. �44� and neglecting terms of the order w2, we
get
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	�s� =
2


L
I�s + w

L

2nE
E��	m�
 , �45�

where E�� 	m� is the incomplete elliptic integral of the sec-
ond kind, and �=am� 2nK

L s 	m� is the amplitude function �34�.
By using the Fourier expansion for the amplitude function
for small m we obtain from Eq. �45�

	�s� �
2


L
�1 + w�Is +

w

4n
Im sin�2n


L
s
 . �46�

Inserting Eq. �46� into the closure condition �18�, we find
that it is satisfied for n
2. Equations �30� and �46� describe
a polygon: for n=2 it is an elliptically deformed chain, while
for n=3 it has a triangular shape �see Fig. 1�. We see from
Eqs. �43� and �44� that the polygon structure is a result of the
self-consistent interaction between electrons and bending de-
grees of freedom: extrema of the curvature and of the charge
density correlate: in the case of the softening electron-
curvature interaction ���0� maxima of curvature and charge
density coincide, while in the case of the hardening interac-
tion ���0� the minima of the curvature coincide with the
maxima of the charge density. Equation �42� shows that, for
a given value of the nonlinear parameter G, the n-gon struc-
ture appears when the charge density exceeds the threshold
value �n:

� � �n �
n2

4G
. �47�

The energy difference between the n-gon structure and the
circular chain is given by the expression

En − Ecirc =
4
2

3L

GJ�2

E2 �3E2 − �2 − m�EK − �1 − m�K2� .

�48�

The normalized energy difference

�n =
En − Ecirc

Ecirc
�49�

for n=2,3 versus the charge density is shown in Fig. 2. We
note that when the charge density is above the critical value
the deformed structure with spatially inhomogeneous charge
distribution is energetically more favorable than the circular
system with a uniformly distributed charge. The state with
elliptically deformed chain n=2 is the most energetically
preferable.

Note also that our analytical approach was based on
the assumption that w�2�1. Taking into account Eq. �43�,
this means that it is legitimate to consider not too
sharp distributions which correspond to wK�m��1 or
m�1−exp�−0.72/w�.

C. Estimates

As an example, let us consider the possibility of the cre-
ation of a deformed structure with spatially inhomogeneous
charge distribution in closed DNA-like polymers where each
subunit is modeled as an ellipsoid with a quadrupole moment
Q��. The coupling between a charge carrier �an extra elec-
tron or hole� and curvature is due to the charge-quadrupole
interaction

� =
e�Q

a3 , �50�

where the quantity �Q=Q�−Q� characterizes the anisotropy
of the charge distribution in the subunit �see Appendix A for
details�. By using the esu units for the quadrupole moments
�Q=q10−26 esu cm2, where q is a dimensionless quadrupole
anisotropy parameter, and assuming that the distance be-
tween subunits a is given by a= �3.5−4.5�10−8 cm �as in
DNA molecules�, from Eq. �50� we get

� = �0.03 – 0.07�q eV. �51�

The bending rigidity of the chain k can be expressed as �35�

k = lpkBT , �52�

where lp is the persistence length in units of chain period,
T is the temperature, and kB is the Boltzmann constant.
Following estimates presented in Ref. �10� we chose
J�0.1 eV. Introducing Eqs. �51� and �52� into Eq. �38� for
kBT�0.02 eV �room temperature�, we get

G = �1 – 5�
q2

lp
, �53�

where we have neglected w�1 in the denominator of
Eq. �38�. Thus, for a chain which has a persistence length in
the interval lp=100–200 �DNA-like molecules� and which
consists of subunits with the quadrupole moment anisotropy
q=10–30 �e.g., aromatic molecules – uracil-glycine com-
plexes �36�� we find that G�1–25. This means that the
threshold condition �47� may be fulfilled for relatively low
concentration of charge carriers in the chain.

IV. NUMERICAL STUDIES

To check our results we have performed also several nu-
merical studies. To this end we carried out the dynamical
simulations of the equations

�
d

dt
r�l = −

�H

�r�l

, �54�

FIG. 2. The normalized energy difference �n from Eq. �49� for
the ellipselike n=2 � solid line � and triagonlike chain n=3 �dashed
line� with 2�=4 J=k.
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i
d

dt
�l = −

�H

��n
* �55�

with the Hamiltonian H being defined by Eqs. �6� and �7�.
Thus the conformational dynamics is considered in an over-
damped regime with the friction coefficient �. Then we took
as our starting configurations systems involving the electric
charge density of �almost� the same magnitude ��l� at all
points �we broke the symmetry by increasing the density at
one point of the chain by 1%�. Initially, all the lattice points
were placed at symmmetric points on the circle of an appro-
priate radius �see Fig. 3�. We performed such simulations for
several values of the charge density. Due to the absorption
the energy of the system was decreasing during the evolution
and the system was evolving towards a minimum. At the
same the points of the chain were moving from their initial to
their new positions.

We considered both the cases of the hardening and soft-
ening of the electron-curvature interaction. In the case of a
hardening electron-curvature interaction ���0� a typical fi-
nal distribution of the chain points is shown in Fig. 4. The
charge density and the curvature distributions are in full
agreement with the results of our analytical considerations:
the curve is more flat where the density of the electrons is
maximal. In fact, the ellipselike shape is rather robust as it

arises for a large range of parameters �of the strength of the
hardening electron-curvature interaction and of the anharmo-
nicity coefficient �max�.

Complexes with a softening electron-curvature interaction
are much more flexible. Their equilibrium shape depends
drastically both on the anharmonicity and on the charge den-
sity. Figures 5 and 6 demonstrate how drastically the shape
of the complex and the charge distribution along the chain
can change as a function of the total charge density �: in-
creasing the total charge by 5% can lead to the localisation of
almost the whole charge of the system at one place.

In our numerical work we also studied the stability of our
“final” field configurations, i.e., the configurations which we
thought the system was settling at. This we studied by per-
turbing the system. Such perturbations were introduced in
two stages. First we changed the electric charge of the con-
figuration by multiplying all “final” values of the electric
charge by a constant factor �; this had the effect of changing
the energy of the system. Then we performed the new mini-
mization and, when the system appeared to have settled at
the new “final” configuration, we changed back its �l by a
new multiplication by 1/�. As �l 	�l	2 is conserved during
the evolution, the final system had the same value of it as the
original “unperturbed” fields. The results of the further mini-
misation were then compared with the original “final” fields.

FIG. 3. The top panel shows the initial shape of the chain; the
bottom panel shows the initial charge �solid line� and curvature
�dashed line� distribution along the chain.

FIG. 4. The top panel shows the equilibrium shape of the chain
and the bottom panel shows the charge distribution �solid line� and
curvature variation �dashed line� along the chain in the case of
hardening electron-curvature interaction with �=0.22, �=−2, k=1
J=0.4.
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When we applied this technique to our field configuration
shown in Fig. 6 we found that the system was really un-
changed by this perturbation; in fact the perturbation led to
an overall rotation of the system by one lattice point, but the
sequence of values of the fields was essentially the same thus
showing the stability of the found minimum.

V. EFFECTS OF INTERCOMPLEX INTERACTION

The aim of this section is to investigate how the interac-
tion between complexes influences the shape. We will con-
sider the system which is described by the Hamiltonian

H = �
j

E j +
1

2�
i,j

Uij , �56�

where E j is the energy of the jth aggregate which is given by
Eq. �21� with � replaced by � j and 	 replaced by 	 j, and Uij
is the interaction energy between particles. The latter we will
take in the form of the Gay-Berne potential �37� which is a
generalization of the Lennard-Jones 12-6 potential and is
widely used to study translational and orientational ordering
in systems of aspherical molecules. We consider small devia-
tions from the ringlike structure of aggregates and so we

neglect the difference of the well depths for side-to-side and
end-to-end configurations. In this case the Gay-Berne poten-
tial between two parallel uniaxial molecules is given by

Uij � U�r�ij� =
U0

�1 − �2�� �0

rij + ��r�̂ij� + �0

12

− � �0

rij + ��r�̂ij� + �0

6� , �57�

where r�ij =rijr�̂ij is the interparticle vector and

��r�̂ij� = �0�1 −
2�

1 + �
�r�̂ij · e��2�−1/2

�58�

is the anisotropy parameter where e� is a unit vector specify-
ing the axes of symmetry. The anisotropy coefficient � is
determined by the lengths of the major and minor axes �		
and ��

� =
�		

2 − ��
2

�		
2 + ��

2 �59�

and �0 gives a characteristic length scale while U0 deter-
mines the intensity of the interaction.

The centers of densely packed circular aggregates
of the radius R create a two-dimensional triangular lattice
r� j = j1a�1+ j2a�2 �j��j1 , j2�, j1 , j2=0 , ±1, ±2, . . .� with the

FIG. 5. The top panel shows the equilibrium shape of the chain
and the bottom panel shows the charge distribution �solid line� and
curvature variation �dashed line� along the chain in the case of
softening electron-curvature interaction with �=0.22, �=2.15, and
k=J=1.

FIG. 6. Same as Fig. 5 with �=0.23, �=2.15, k=J=1.
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basic vectors a�1= l�1,0� and a�2= l�1/2 ,�3/2�, where l is the
lattice constant �see Fig. 7�. Being elliptically deformed in
such a way that the major axes of all aggregates are parallel
to the x axis, the centers of densely packed elliptical aggre-

gates create a lattice r� j = j1b�1+ j2b�2 with the basic vectors

b�1= l�1+u ,0� and b�2= l�1/2�1+u� ,�3/2�1−u�� �see Fig. 8�,
where the parameter u is given by

u =
�		 − ��

�		 + ��

. �60�

Now we study the ground state of this system by using a
trial function approach. We assume that this state is spatially
homogeneous and relying on the results of the previous sec-
tion, we assume that the electron trial function and the trial
curvature can be taken in the form

� j = �cos � + �2 sin � cos�2s

R

� , �61�

�s	 j =
1

R
�1 + � cos�2s

R

� . �62�

The functions �61� and �62� can be considered as a truncated
Fourier expansion of the solutions �40� and �44� in which the
coefficients � and � are variational parameters and R is the
radius of the cylindrically symmetric aggregate. The function
�61� satisfies both the periodicity condition �26� and the
number of particles constraint �14�. In the limit ��1 the
shape of the curve with the curvature given by Eq. �62� is
parametrically determined by the expressions

x�s� = R��1 +
�

4

cos� s

R

 +

�

12
cos�3s

R

� ,

y�s� = R��1 −
�

4

sin� s

R

 +

�

12
sin�3s

R

� . �63�

Thus the lengths of the major and minor axes of the curve
�63� are given by

�		 = R�1 +
�

3

, �� = R�1 −

�

3

 �64�

and comparing Eqs �60� and �64�, we see that u=� /3.
Inserting Eqs. �61� and �62� into Eqs. �56�, �21�, and �57�

for an energy per aggregate we get

H
Na

= Etr + U , �65�

where

Etr =

k

R
�1 +

�2

2
−

1

8
���8 + 5�2 − �2cos�2��

+ 8�2 sin�2��� +
4J

k
� sin2�� �66�

is the energy of an isolated aggregate, and

U = �
j=0

5

U��� j� �67�

is the energy due to the interaction between aggregates

in the lattice. In Eq. �67� the function U��� j� is given
by Eqs. �57� and �58� with e� = �1,0� and vectors

�� j =�0��1+ �
3

�cos� 
j
3

� , �1− �
3

�sin� 
j
3

�� connect nearest and
next-nearest neighbors of the lattice. The interaction energy
�67� has a minimum at l=21/6�0, �=0 which corresponds to
a system of densely packed circular aggregates. Expanding
the function �67� in the vicinity of this point, in powers of the
variational parameter �, we get

U = −
3

2
U0 + cU0�2 + ¯ , �68�

where the numerical coefficient c�2.05. According to the
variational principle we should satisfy the equations

��Etr = 0, �69�

FIG. 7. Arrangement of densely packed ringlike aggregates.

FIG. 8. Arrangement of densely packed ellipselike
aggregates.
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���Etr + U� = 0. �70�

From Eq. �69� we get

tan�2�� =
8�2k�

32J − k��2� . �71�

Inserting Eq. �71� into Eq. �66� and expanding it in terms of
� we obtain that

Etr = Ecirc +

k

2R
�1 −

�

�cr

�2 + B�4 + ¯ , �72�

where

�cr =
k

2�

J

J + �
�73�

is the critical charge density and the notation

B =



16R

�3�

J3 �2� − J�

is introduced. Thus in the framework of the variational ap-
proach the energy of a single complex has a single minimum
at �=0 when ���cr and in this case the aggregate has a
ringlike shape. When ���cr and 2��J the energy �72� pos-
sesses two equivalent minima with ±�0 ��0�0� �see Fig. 9�.
As seen from Eqs. �63� the finite value of �0 implies that the
aggregate is elliptically deformed either along the x axis
�when ��0� or along the y axis �when ��0�. Note that
in the limit ��J, �cr coincides with �2 given by Eq.�47�.
Combining �68� and �72� we see that the interaction between
aggregates modifies the condition for appearance of the
low-symmetry form. Indeed, even in the case when ���cr
�an isolated aggregate has an ellipselike shape� in the
condensed phase of aggregates for strong enough interaggre-
gate interaction we may have an inequality

� � �cr�1 +
2cU0


k
R
 �74�

which means that interacting aggregates are ringlike and
create a densely packed crystallic structure with the group
symmetry D6h �see Fig. 7�. When

� � �cr�1 +
2cU0


k
R
 �75�

the ellipselike shape survives in the condensed phase which
has a rectangular unit cell and transforms in accordance with
the group symmetry D2h �see Fig. 8�. There are two equiva-
lent types of arrangement in the low-symmetry phase when
the aggregates are elliptically deformed either along the x
axis �when ��0� or along the y axis �when ��0�. In accor-
dance with this, the condensed phase of the aggregates must
have a domain structure, i.e., it must consist of various re-
gions in which the direction of long axes are different.

VI. APPLICATIONS

A. Application to bacteriochlorophyll a complexes

As mentioned in the Introduction, the isolated light-
harvesting rings can deviate from the ideally circular struc-
ture of the complex in crystals. For example, in contrast to
the cylindrical crystal structure with a diameter of 6.8 nm,
the shape of an isolated LH2 complex from bacteria Rhodo-
bacter spheroides 2.4.1 is an oblate plate with an eccentricity
�=0.59 �27�. It was conjectured in Ref. �24� that the ex-
tremely dense packing of LH2 in crystals causes the cylin-
drical symmetry of the complexes. Based on the resonance
Raman, mutagenesis, and atomic microscopy approaches
�28,38,39�, it has been proposed that a network of hydrogen
bonds stabilizes the structure of light-harvesting complexes.
We suggest that the flexible geometry of these complexes is
due to the interaction between proton-assisted mobile defects
and the bending degrees of freedom. The quantum descrip-
tion of Bjerrum and polarization defects based on a tight-
binding Hubbard-like Hamiltonian was presented in Ref.
�40�. Recently a model, in which a tight-binding electronic
Hamiltonian was used for the dynamics of defects on
hydrogen-bonded chains �41,42�. Applying the above-
developed theory to the case of flexible light-harvesting
complexes �this means that �n�t� is now the wave function of
the defect at the site n of the hydrogen-bonded network�, we
obtain a qualitative explanation of these transformations. It
has shown that in the presence of sufficiently strong charge-
curvature interaction an isolated complex has an ellipselike
shape while the interaction between complexes in the form
of an anisotropic Gay-Berne potential stabilizes the ringlike
shapes of the complexes. However, if the intensity of the
intercomplex interaction is less than some threshold value
�see Eqs. �68� and �72�� the noncircular shape of the complex
is preserved in the condensed phase. The model is too
simplified for quantitative predictions for light-harvesting
complexes but we believe that it contains interesting physics
which should be important for further studies of such
systems.

B. Exciton spectra of polygonally deformed chains

One can expect that the polygonal deformation of chains
may be established by observing their fluorescence from po-
larized light excitation. A link between a geometrical defor-
mation and the spectroscopic properties has recently been

FIG. 9. Energy per aggregate �Eq. �65�� as a function of the trial
anisotropy parameter � for the charge density below the threshold
�dashed� and above the threshold �solid�.
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provided by measuring fluorescence-excitation spectra of
light-harvesting complexes from Rhodopseudomonas acido-
phila in Refs. �23–25�. Measurements of the anisotropic
properties of the absorption of isolated LH2 complexes from
bound to mica surfaces �25�, the fluorescence-excitation
spectra of individual LH2 complexes from bacteria
Rhodopseudomonas acidophila �23,24,26� showed that the
complexes are generally not cylindrically symmetric but re-
veal a deformation of the circular complex into an elliptical
shape. The properties of exciton states of elliptically de-
formed LH2 complexes were considered in Ref. �26�. It was
concluded that an elliptical shape with the eccentricity 0.58
can explain the splitting of exciton states and other features
of the spectra of individual LH2 complexes.

Exciton spectra of polygonally deformed chains
also provide useful information on the geometry of the
system. There are two types of exciton states in closed
chains: even states �Ck	 and odd states �Sk	 �the parameter
k=0,1 , . . . , �L /2−1� ,L /2 gives the number of nodes of the
exciton wave function on the half period�. In cylindrically
symmetric aggregates the states with k=1, . . . , �L /2−1� are
doubly degenerate. Under polygonal shape transitions
circle→n-gon the exciton states experience an energetic
shift �n�k� and a doublet splitting �n�k�. Using the theory
developed above, in the framework of the zeroth-order per-
turbation, one can obtain �see Appendix B for details� that

�n�k� � − M
w2

4R2� 4

n2G� − 1
cos
2
k

L
. �76�

The degeneracy of the exciton levels is removed for states
with 2k=nj, �j=1,2 , . . . �. This means, in particular, that all
exciton states �B9� of the elliptically deformed chain �n=2�
split and the maximal splitting takes place for the state with
k=1. In the limit of small w and m this splitting is given by

�2�1� = M
mw

2R2 cos
2


L
, �77�

where m is given by Eq. �B16�. When n=4 the states with
even k split while the states with odd k remain degenerate.
For polygonally deformed chains with odd number of sides
�i.e., n=3,5 , . . .� in the order of approximation under consid-
eration �n�k�=0 all exciton states remain doubly degenerate.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the role of the charge-
curvature interaction on the formation of the ground state of
closed semiflexible molecular chains. We have found that the
coupling between charge carriers and the bending degrees of
freedom of the chain can induce a local softening or harden-
ing of chain bonds, i.e., the effective bending rigidity of the
semiflexible chain changes as the density of charge changes
along the chain. When the charge density and/or the strength
of the charge-curvature coupling exceed a threshold value,
the spatially uniform distribution of the charge along the
chain and the circular, cylindrically symmetric shape of the
chain become unstable. In this case the ground state of the
system is characterized by a spatially nonuniform charge dis-

tribution along the chain and the chain takes on an ellipselike
�or in general polygonlike� form.

These results were obtained by using the mean-field ap-
proach where thermal fluctuations are ignored and strictly
speaking, this approach is valid only for low temperatures.
However, this case is also experimentally relevant. As
an example one can recall experiments in Refs. �23,24�,
where the fluorescence-excitation spectra of individual
light-harvesting complexes at 1.2 K were measured and C2
geometrical deformations were found.

In the case of high temperatures the role of fluctuations
may be crucial. For example, in Ref. �19� the effects of ther-
mal fluctuations on buckling in polyelectrolytes were studied
and it was shown that in polyelectrolytes with attractive in-
trachain interactions the thermal fluctuations destroy the
buckling instability and convert it into a collapse. One can
also expect that the thermal fluctuations are particularly im-
portant for closed chains with a softening charge-curvature
interaction because the presence of charge in this case facili-
tates the buckling and collapse of the chain �see, e.g., Ref.
�18��. Contrary to this, in the systems where the presence of
charge hardens the local chain stiffness, the charge-curvature
interaction counteracts the collapse of the chain and one
can expect that the mean-field picture survives. We plan to
investigate how the thermal fluctuations effect the mean-field
picture in a future work.
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APPENDIX A

The aim of this appendix is to derive an explicit form of
the electron-conformation interaction. We assume that each
lth chain unit possesses a quadrupole moment which is char-
acterized by the tensor Ql

�� �� ,�=x ,y ,z�. Then the interac-
tion between an electron and chain units takes the form

Hint = �
l,l�

Vll�	�l	2, �A1�

where the matrix element Vll� describes a charge-quadrupole
interaction between an electron which occupies the site n in
the chain and the group at the site n�

Vll� = �
��

eQn�
���r�l − r�l����r�l − r�l���

	r�l − r�l�	
5 . �A2�

We assume that the quadrupole moment tensor Qn
�� is diag-

onal in the local frame of reference which is determined by
the triad �t�n ,��n , ẑ�, where
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��l =
r�l+1 − r�l

	r�l+1 − r�l	
�

1

	r�l+1 − r�l	
�xl+1 − xl,yl+1 − yl,0� �A3�

is the unit tangent vector,

�� l = ẑ �
r�l+1 − r�l

	r�l+1 − r�l	
�

1

	r�l+1 − r�l	
�− yl+1 + yl,xl+1 − xl,0�

�A4�

is the normal to the chain at the point l, and ẑ is the unit
vector perpendicular to the xy plane. In this case the interac-
tion �A2� takes the form

Vll� =
e

	r�l − r�l�	
5 �Q����l� · �r�l − r�l���

2 + Q���� l� · �r�l − r�l���
2� ,

�A5�

where Q� �Q�� is the tangential �normal� component of the
quadrupole moment. Let us consider the nearest-neighbor
approximation. Taking into account that

�r�l+2 − r�l+1� · �r�l+1 − r�l� = a2�1 −
1

2
�l+1

2 
 �A6�

and

ẑ � �r�l+2 − r�l+1� · �r�l+1 − r�l� =
1

2
��xl+2 − 2xl+1 + xl��yl+2 − yl�

+ �yl+2 − 2yl+1 + yl��xl+2 − xl��

� a2�l+1, �A7�

where a discrete analog of the Frenet formula

��l+1 − ��l = − �l�� l �A8�

and approximate identity

�xl+2 − xl��xl+1 − xl� + �yl+2 − yl��yl+1 − yl� � 2a2

were used, we obtain that

Vll+1 =
eQ�

a3 −
e�Q� − Q��

a3 �l+1
2 + O��4� . �A9�

In the same way

Vll−1 =
eQ�

a3 −
e�Q� − Q��

a3 �l−1
2 + O��4� . �A10�

Introducing Eqs. �A9� and �A10� into Eq. �A1� we get

Hint = −
1

2�
l

�	�l	2��l+1
2 + �l−1

2 � , �A11�

where we have omitted a constant term and

� =
e�Q� − Q��

a3 . �A12�

In the case when the chain units are axially symmetric and

Q� = Q� = Q

the nearest neighbors do not contribute to the charge-
curvature interaction. We should take into account the effect

due to the next-neighbor coupling and as a result we obtain
the charge-curvature interaction in the form �A11� with the
coupling constant � in the form

� = −
3

32

eQ

a3 . �A13�

APPENDIX B

The aim of this appendix is to show how the exciton
spectra of closed molecular chains change upon a polygonal
deformation. According to the theory of molecular excitons
�33� the exciton Hamiltonian of the chain has the form

Hexc = E0�
l=1

L

Bl
†Bl + �

l,l�=1

L

Mll�Bl
†Bl�. �B1�

Here, Bl
†�Bl� is the creation �annihilation� operator of the

electronic excitations on the subunit l, E0 is the excitation
energy, Mll� is the matrix element of the excitation transfer
from the subunit l to the subunit l� which we consider in the
dipole-dipole approximation

Mll� =
d� l · d� l�

	r�l − r�l�	
3 − 3

�d� l · �r�l − r�l����d
�

l� · �r�l − r�l���

	r�l − r�l�	
5 , �B2�

where d� l is the transition dipole moment from the ground
state 	gr� to the excited state 	l��Bl

† 	gr� of the subunit l.
Taking into account that in the local frame of reference
���l ,�� l� the transition dipole moment can be presented in the
form

d� l = d���l + d��� l, �B3�

where d��d�� are the tangential �normal� projections of the
dipole moment and restricting ourselves to the nearest-
neighbor transfer, from Eqs. �B3� and �B2� we obtain that the
exciton Hamiltonian of the deformed chain has the form

Hexc = E0�
l=1

L

Bl
†Bl + M�

l=1

L ��1 −
1

2
�l

2
Bl
†Bl−1 + H . c . � ,

�B4�

where the parameter

M =
�d�

2 − 2d�
2�

a3

gives the strength of the excitation transfer.
A circular chain. It is clear from Eq. �33� that the curva-

ture is constant along the chain and

�l =
1

R
=

2


L
. �B5�

There are two sets of exciton eigenstates: even
eigenfunctions

	Ck� =�2

L
�
l=1

L

cos�2
kl

L

	l� �B6�

with k=0,1 , . . . , �L /2−1� ,L /2, and odd eigenfunctions

CONFORMATIONAL TRANSFORMATIONS INDUCED BY¼ PHYSICAL REVIEW E 74, 021914 �2006�

021914-11



	Sk� =�2

L
�
l=1

L

sin�2
kl

L

	l� �B7�

with k=1, . . . , �L /2−1�. Both types of exciton eigenstates
have the energy

Ek = E0 + 2M�1 −
2
2

L2 
cos�2
k

L

 . �B8�

Thus in the circular chain the eigenvalues with

k = 1, . . . ,�L/2 − 1� �B9�

are doubly degenerate.
A polygonally deformed chain. From Eq. �B4� we see that

the excitations in a polygonally deformed chain experience a
perturbation which has the form

Hpert =
1

2
M�

l
� 1

R2 − �l
2
Bl

†Bl−1, �B10�

where the curvature �l takes the form of Eq. �44� with
s→ l:

�l =
1

R
I�1 + w

K

E
dn2��2nlK

L
�m
 + w2K2

E2 dn4��2nlK

L
�m
� .

�B11�

Under the influence of the perturbation �B10� the exciton
levels in a n-gon chain shift and split and their energy takes
the form

E±�k� = Ek + �n�k� ±
1

2
�n�k� . �B12�

In the zeroth-order perturbation theory the exciton energy
shift �n�k� has the form

�n�k� =
1

2
��Ck	Hpert	Ck� + �Sk	Hpert	Sk��

= M
1

L�
l
� 1

R2 − �l
2
cos

2
k

L
�B13�

and the splitting energy �n�k� is given by

�n�k� = �Ck	Hpert	Ck� − �Sk	Hpert	Sk�

= − M
1

L�
l

cos�4
k

L

�l

2cos
2
k

L
. �B14�

Inserting Eq. �B11� into Eq. �B13� we get that in the
limit of weak charge-curvature coupling �w�1� and smooth
deformations �m�1�

�n�k� � − Mm2 w2

8R2 cos
2
k

L
. �B15�

It is clear from Eq. �42� that for small m

m = 4�2� 4

n2G� − 1 �B16�

and therefore

�n�k� � − M
w2

4R2� 4

n2G� − 1
cos
2
k

L
. �B17�

Introducing Eq. �B11� into Eq. �B14�, we see that in the
zeroth-order perturbation theory the degeneracy of the exci-
ton levels is removed for states with 2k=nj, �j=1,2 , . . . �.
This means, in particular, that all exciton states �B9� of the
elliptically deformed chain �n=2� split and the maximal
splitting takes place for the state with k=1. In the limit of
small w and m this splitting is given by

�2�1� = M
mw

2R2 cos
2


L
, �B18�

where m is given by Eq. �B16�. �n�k�=0 for n=3,5 , . . . .
Thus in the order of our approximation all states of polygons
with odd number of sides remain degenerate.
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