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The equilibrium texture of nematic shells is studied as a function of their thickness. For ultrathin shells the
ground state has four short 1

2 disclination lines but, as the thickness of the film increases, a three-dimensional
escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. We derive an
exact solution for the nematic ground state in the one Frank constant approximation and study the stability of
the corresponding texture against thermal fluctuations.
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I. INTRODUCTION

The study of liquid crystal phases benefits from geometri-
cal reasoning in two important ways. First, liquid crystal
elasticity can often be cast in terms of the curvature of equi-
potential lines �or surfaces� that map out the corresponding
textures. Second, the observed textures are strongly affected
by geometric and topological constraints imposed by the
presence of boundaries confining the system. The liquid
crystal ground state results from the competition between the
energetic requirement of minimizing the “curvature of the
texture” and the geometric frustration introduced by bound-
aries that impart a preferred curvature at the edge of the
sample that often cannot propagate across the system �1–3�.

The boundary conditions can be controlled experimentally
with the possibility of designing molecular systems with in-
triguing technological applications �4�. For example, colloi-
dal particles coated by a very thin nematic layer have in their
ground state four disclinations sitting at the vertices of a
tetrahedron. Each coated colloidal particle can then be
viewed as the fundamental building block of a self-
assembled lattice with tetravalent coordination. The “bonds”
between the colloidal particles could be provided by chemi-
cal linkers attached at the four “bald spots” at the cores of the
four disclinations present in each colloid �5�. A second ex-
ample, is provided by self-assembled systems of block co-
polymers �6� which are a promising tool for “soft lithogra-
phy” on both flat and curved substrates �7�. In addition,
liquid crystals in confined geometries provide an arena for
physicists and mathematicians interested in applications of
geometrical and topological ideas to material science �8–10�.

In this work we present a theoretical study of liquid crys-
tal phases �focusing on vector, nematic and hexatic order�
confined in a spherical shell of varying thickness with the
director assumed to be tangent to the two interfaces. We first
consider the two-dimensional regime where a nematic film
coats a quenched spherical surface such as a colloidal par-
ticle in solution or the interface of, say, a water droplet in oil.
The presence of topological defects in the ground state for
ordered states on spherical surfaces is unavoidable �11–13�.
Recent experimental and theoretical investigations of spheri-
cal crystallography have provided an alternative context to
study the constraints posed by the compactness of the under-
lying curved space �14,15�. More recent explorations have

concentrated on two-dimensional �2D� ordered phases con-
fined to interfaces of varying Gaussian curvature �16–18� as
well as dynamically fluctuating surfaces �19,20�.

As the thickness of a nematic film increases, an escaped
three-dimensional texture, also strongly influenced by the
spherical topology and the boundary conditions, become en-
ergetically favored with respect to planar textures. This in-
stability destabilizes the tetravalent nematic texture on col-
loids. In this paper, we estimate the thickness of the nematic
film above which a texture with four radial disclination lines
of charge s= 1

2 becomes unstable to four half-hedgehogs. The
two competing textures studied in this paper are shown in
Fig. 1. We also discuss the possibility of hysteresis between
the two textures.

The organization of this paper is as follows. In Sec. II we
derive exact solutions for the ground state of spherical films
of tilted molecules and nematogens within isotropic elasticity
by using the method of conformal mappings. In the notation
of Refs. �5,13�, these situations correspond to order param-
eters described by a bond angle with p= �1,2�-fold symmetry
in the tangent plane of the sphere �see Appendix A�. A math-
ematical justification for our approach is provided in Appen-
dix B, where the same technique is illustrated in the context
of a more familiar flat space problem. In Sec. III we study
the stability of liquid crystal textures to thermal fluctuations
by means of a normal mode analysis whose details are rel-
egated to Appendixes A and C. The stability of the valence-
four texture against escaped solutions is considered in Sec.
IV where a phase diagram is derived with the thickness as a
control parameter. The texture distortions caused by the elas-
tic anisotropy between bend and splay deformations are
briefly considered in Sec. V.

II. TEXTURES

The liquid crystal free energy for molecules embedded in
an arbitrary frozen surface with splay and bend terms pro-
portional to K1 and K3 reads

F =
1

2
� dA�K1�Din

i�2 + K3�Dinj − Djni��Dinj − Djni�� ,

�1�

where n�u� is the liquid crystal director defined in the tan-
gent plane, u= �u1 ,u2� is a set of internal coordinates, Di is
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the covariant derivative with respect to the metric of the
surface and dA is the infinitesimal surface area �19,21–23�.
In the one constant approximation one recovers

F =
K

2
� dADin

j�u�Dinj�u� . �2�

The free energy of Eq. �2� is invariant upon rotating each
molecule n�u� by the same �arbitrary� angle with respect to
any axis of rotation perpendicular to the local tangent plane.
The treatment of systems with a p-fold symmetry is straight-
forward provided that the one Frank constant approximation
is used for p=1 and p=2 and the consequences of any addi-
tional couplings to curvature neglected �22�. This choice of
free energy implies that the minimal energy configuration
will be given locally by neighboring n�u� vectors which dif-
fer only by parallel transport. The curvature of the surface
induces “frustration” in the texture. In fact, by Gauss’ “Theo-
rema egregium” �8�, tangent vectors parallel transported
along a closed loop are rotated by an amount equal to the

Gaussian curvature integrated over the enclosed area. On a
sphere, this theorem insures that the nematic ground state
always has four excess disclinations �11,13�. More generally,
the sum of the topological charges on any closed surface is
equal to the integrated Gaussian curvature, implying a mini-
mum of two and six disclinations in the ground state of tilted
molecules and hexatics, respectively.

We introduce a local angle field ��u�, corresponding to
the angle between n�u� and an arbitrary local reference
frame, we can rewrite the free energy introduced in Eq. �2�
as

F =
1

2
K� dSgij��i� − Ai��� j� − Aj� , �3�

where dS=d2u�g, g is the determinant of the metric tensor
gij and Ai is the spin-connection whose curl is the Gaussian
curvature G�u� �8,23�. On a sphere of radius R parametrized
by polar coordinates �� ,��, the only nonvanishing compo-
nents of the �inverse� metric tensor are grr= 1

R2 sin2 �
and g��

= 1
R2 . A convenient choice of the spin connection �which

plays the role of the vector potential� is discussed in Appen-
dix A. The simplified free energy in Eq. �3� is the starting
point of our analysis.

A. Tilted molecules on a sphere

The orientational order of molecules tilted by a constant
angle with respect to a spherical interface can be modelled
by a vector field n�� ,�� defined in the local tangent plane on
which the molecule has a fixed length projection �12�. To
determine the ground state of the liquid crystal texture, we
minimize the Frank free energy of Eq. �3�. As discussed
above, the topological charges must sum up to 4�, the inte-
grated Gaussian curvature of the sphere �8,23�. For a vector
field �p=1� the texture with only two defects of charges +2�
minimizes the Frank free energy and satisfies the topological
constraint. Since the defects repel each other they preferen-
tially sit at two antipodal points that we can designate as the
north and south pole of the sphere. If the splay and bend
coupling constants of the nematic are equal, then there is a
large degeneracy in the ground state arising from the invari-
ance of the vector free energy in Eq. �3� under global rota-
tions ��u�→��u�+c, where u	� ,�. One representative
texture is a “sink” and a “source” of n�u� at the two poles. In
this splay rich texture n�u� is parallel to the lines of longi-
tude on a sphere. In a bend rich texture, related to the previ-
ous by a �

2 rotation about the local normal to the surface,
n�u� is everywhere parallel to the lines of latitude. Any other
rotation of n�u� that makes an arbitrary constant angle with
respect to this texture is an acceptable solution for the
ground state of the molecules.

As we now show, this degeneracy is lifted when K3�K1.
Indeed the effect of distinct splay and bend elastic constants
K1 and K3 �the twist elastic constant K2 is absent in two
dimensions� is to select the bend-rich texture if K1�K3 or
the splay-rich one if K3�K1. The intermediate configura-
tions obtained by a global rotation of the director are now
unstable. Assume for simplicity that K3�K1. In this case, it

FIG. 1. �Top panel� Two-dimensional texture characterized by
four short disclination lines at the vertices of a tetrahedron inscribed
in the sphere. The surface texture shown �inscribed on the surface
of a baseball� is invariant throughout the thickness of the shell.
�Bottom panel� Cut view of the escaped three-dimensional texture
given by two pairs of half hedgehogs located at the north and south
poles of the sphere.
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is convenient to recast the Frank free energy �see Appendix
A� as follows:

F =
1

2
� d2x�g�K1�Din

j��Dinj� + �K3 − K1��D � n�2� ,

�4�

where the covariant derivatives is expressed in terms of the
Christoffel connection, �it

j ,

Din
j = �in

j + �it
j nt, �5�

and the covariant form of the curl squared is �23,24�

�� � n�2 	 �Dinj − Djni��Dinj − Djni� . �6�

The first term in Eq. �4� resembles the Frank free energy in
the one coupling constant approximation and is minimized
by choosing the sink-source �or “lines of longitude”� solu-
tion. The second term �which is positive definite� will vanish
for this texture since the sink-source texture is bend free. All
other textures have a higher energy.

A similar argument can be used to prove that the two
vortex-configuration which follows the lines of latitude is the
minimum of the free energy when K1�K3 by rewriting the
Frank free energy as

F =
1

2
� d2x�g�K3�Din

j��Dinj� + �K1 − K3��D · n�2� , �7�

where the covariant form of the divergence reads

D · n 	
1
�g

�i��gni� . �8�

The latitudinal texture minimizes the first term of Eq. �7�
while the second vanishes because this texture is splay free.
Any deviation from the splay-free latitudinal texture will
only increase the energy.

The energy of both textures can be expressed as a func-
tion of the anisotropy parameter, �, and the mean of the
elastic constants, K,

� 	
K3 − K1

K3 + K1
, �9�

K 	
K3 + K1

2
, �10�

and the radius of the sphere, R, scaled by the short distance
cutoff a. The resulting free energy for arbitrary � reads �see
Eq. �A16� with the vanishing Ec�

F = 2�K�1 − 
�
��ln�R

a

 − 0.3� . �11�

The conclusions of this section are summarized in Fig. 2
which suggests that there is a discontinuous first order tran-
sition when � passes through zero. This analysis mirrors
similar arguments valid in the plane �25�.

B. Nematic texture

The nematic texture of very thin spherical shells of nem-
atic liquid crystal with tangential boundary conditions can be
analyzed within the one Frank constant approximation by
using the method of conformal mappings whose mathemati-
cal justification is illustrated in Appendix B by means of a
simpler example.

An elegant argument introduced by Lubensky and Prost in
Ref. �13� shows that the ground state of nematogens on a
sphere is given by four disclinations of topological charge
s=1/2 sitting at the vertexes of a tetrahedron. The energy of
single disclinations is proportional to the square of its
strength. As a result, the longitudinal and latitudinal textures
derived for tilted molecules in Sec. II A are unstable since
their energies can be lowered by splitting each s=1 defect at
the north and south pole into two s=1/2 disclinations and
letting them relax to their equilibrium positions at the ver-
texes of a tetrahedron where they are as far away from each
other as possible. According to a calculation in Ref. �13�, the
energy Fs of a sphere of radius R with in plane orientational
order and 2n interacting minimal disclinations for a p-fold
order parameter is given by

Fs = 2�Kh�1

p
ln�4p2R

a

 + cp� , �12�

where the �cp� are constants depending on the symmetry of
the order parameter and the defect core energy while h is the
thickness of the liquid crystal layer. The numerical values of
the relevant constants are c1=0 and c2�−0.2. When p=2 is
chosen in Eq. �12� the elastic energy is indeed smaller than
the corresponding value for p=1 in the limit R	a, in agree-
ment with related arguments given in Ref. �5�.

To obtain an algebraic expression for the texture we pro-
ceed as illustrated in Appendix B and seek a function

�x ,y ,z�=��x ,y ,z�+ i��x ,y ,z� which is harmonic on the
sphere except for two arcs connecting the defects in pairs.
The calculation for nematogens described below was sug-
gested to us by Dyson �26�. The function ��x ,y ,z�, which
we can interpret as an electrostatic potential, takes equal and
opposite values on the two arcs and is equal to zero on a
baseball-like seam �see Fig. 3� which divides the sphere into
two congruent regions. The nematic director is then oriented
�up to a global rotation� along the contour lines of ��x ,y ,z�,

FIG. 2. Schematic illustration of the phase diagram of the tex-
ture of tilted molecules on a sphere as a function of the anisotropy
parameter � superimposed on a plot of the free energy, F, stored in
the texture versus �. The two competing ground states �top view�
are characterized by either pure bend �lines of longitude configura-
tion at left� or pure splay �lines of latitude configuration at right�.
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that is the equipotential lines of this “curved space capaci-
tor.” In this analogy, the contour lines of ��x ,y ,z� are elec-
tric field lines, hence they correspond to a valid texture
where the director is rotated locally by �

2 with respect to the
equipotential lines. The arcs can be either great-circle arcs
extending more than half-way around the sphere or short
great-circle arcs connecting the same pair of defects along
the shortest path. The first choice leads to equipotential lines
whose seam resembles in shape that of a baseball. If the
second choice is made the pattern of equipotential lines
would not deviate much from concentric circles and the seam
would look more like the seam of a cricket ball. We will
explicitly show that the two choices are equivalent since the
equipotential lines of the first solution are field lines of the
second and vice versa.

We choose the arcs connecting the defect pairs along great
circles and we take the four defects labelled by A, B, C, D to
lie at the vertices of a tetrahedron inscribed on a sphere of
radius 1 and whose north and south poles are N= �0,0 ,1� and
S= �0,0 ,−1�, respectively,

A =
1
�3

�1,1,1�, B =
1
�3

�− 1,− 1,1� ,

C =
1
�3

�− 1,1,− 1�, D =
1
�3

�1,− 1,− 1� . �13�

We now perform a stereographic projection �see Fig. 4� that
maps every point on a unit sphere centered on the origin onto
the plane z=−1 according to the rule

�x

y

z
� → � a

b

− 1
� . �14�

The coordinates of the image points �connected to points on
the sphere by dashed lines in Fig. 4� are given by

a =
2x

1 − z
,

b =
2y

1 − z
. �15�

Upon transforming to a complex coordinate w=a+ ib, the
four tetrahedral points of Eq. �13� are mapped onto

A� = p�1 + i�, B� = p�− 1 − i� ,

C� = q�− 1 + i�, D� = q�1 − i� , �16�

where

p = �3 + 1, q = �3 − 1. �17�

�In this section p does not refer to the symmetry of the order
parameter.� The great arc passing through the south pole
�corresponding to one capacitor plate in the electrostatic
analogy� maps onto the segment A�B�, as illustrated sche-
matically in the top panel of Fig. 5, while the great arc
through the north pole maps onto the two semi-infinite seg-

FIG. 3. �Color online� Schematic illustration of the baseball tex-
ture of a thin nematic shell. The same texture is reproduced from a
different perspective in the top panel of Fig. 1.

FIG. 4. Graphical construction of the stereographic projection.
Regions close to the north pole have larger images in the conformal
plane than regions of equal areas close to the south pole. The ste-
reographic projection preserves the topology of the surface pro-
vided all points at infinity are identified with the north pole.

FIG. 5. Illustration of the change in the branch cut structures of
the complex function 
�v� describing the nematic texture after per-
forming a series of conformal transformations. In the top panel we
have simply performed a stereographic projection from the sphere.
The middle panel shows the “fold up” transformation of Eq. �18�
whereas the bottom panel corresponds to the transformation in Eq.
�22� that symmetrizes the positions of the cuts.
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ments of the line a+b=0 which bracket C�D�. We can fold
the two cuts in the w plane back on top of each other by
mapping the w plane onto the u plane via

u = − iw2. �18�

As shown in the middle panel of Fig. 5, the images Ã and B̃
of A� and B� now both lie on the real axis at 2p2 while the
images of C� and D� now lie at −2q2. The two cuts in the u
plane are both on the real axis, running from zero to 2p2 and
from −2q2 to minus infinity. On the sphere, these correspond
to geodesics connecting defects which stretch more than
half-way around the sphere. In order to make the cuts sym-
metric with respect to the imaginary axis �see the bottom
panel of Fig. 5� we search for a conformal transformation
that maps the following four points in the complex u plane to
four points on the real axis of a complex v plane,

u0 = 0 → v0 = k ,

u1 = − 2q2 → v1 = − k ,

u2 = − 
 → v2 = − 1,

u3 = 2p2 → v3 = 1. �19�

In order to fully determine the conformal transformation we
need to determine the value of k. This can be done by using
a standard relation in the theory of conformal transforma-
tions �27�

u0 − u1

u0 − u2

u3 − u2

u3 − u1
=

v0 − v1

v0 − v2

v3 − v2

v3 − v1
. �20�

Upon inserting the points of Eq. �19� into Eq. �20�, we de-
termine the value of k �less than one�

k =
2�2 − p

p + 2�2
. �21�

Equation �19� contains four independent relations so we are
still left with three conditions to determine the three indepen-
dent coefficients �� ,� ,�� of the bilinear conformal transfor-
mation that implements the mapping illustrated pictorially in
the bottom plate of Fig. 5,

v =
u + �

�u + �
. �22�

The required coefficients needed to implement the mapping
in Eq. �19� are

� = − 1,

� = 2p�2�2 + p� ,

� = 2p�2�2 − p� . �23�

To solve Laplace’s equation, we desire a function 
�v�
which is analytic except on the two cuts on the real axis, and
whose real part takes constant values on the cuts. By sym-
metry, 
�v� is an odd function of v, and its real part ��v� is

zero when the real part of v is zero. Therefore the image of
the seam in the v plane is simply the imaginary axis Re v
=0. Upon substituting for v using Eqs. �22� and �18�, the
condition Re v=0 becomes

16 + 4p2 Im�w2� − 
w
4 = 0. �24�

With the help of Eqs. �15� and �14�, we can now write down
the equation of the seam explicitly in the original Cartesian
coordinates �26�,

z = �2 + �3�xy , �25�

or in spherical polar coordinates �� ,�� as

cos �

sin2 �
= �1 +

�3

2

sin 2� . �26�

The seam defined by the line of zero potential, is represented
for different orientations of the sphere in Fig. 6. Its contour
length l, on a unit radius ball, is readily calculated upon
integrating the expression for the infinitesimal arc of the
seam

dl =�sin2 ��d�

d�

2

+ 1d� , �27�

from �min�0.69 radians to �max�2.44 radians and multiply-
ing the result by four in view of the symmetry of the seam.
The values of �min and �max are obtained from Eq. �26� by
setting � equal to �

4 and 3�
4 , respectively. Upon using Eq.

�26� to substitute ���� in Eq. �27�, we obtain l�9.09 for a
sphere of unit radius. The seam is longer than the equatorial
circumference by slightly less than 50%.

The branch cut structure in the v plane is sufficiently
simple to allow a guess of the corresponding analytic func-
tion 
�v�. A function with cuts from k to 1 and −k to −1,
whose real part is equal and opposite on the two cuts and
with a single imaginary period around any curve separating
the cuts is easily identified to be a standard elliptic integral,

FIG. 6. �Color online� Different views of a track of parallel
nematogens which partitions the sphere into two equal areas, each
containing two s= 1

2 disclination defects. It resembles a “fattened”
version of the seam of a baseball.
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�v� = �
0

v

��k2 − t2��1 − t2��−1/2dt �28�

with v given in terms of w by Eqs. �18� and �22�. The nem-
atic director is oriented �up to a global rotation� along the
contour lines of the imaginary or �real part� of 
�v�. The
equipotential �red� and field lines �black� of 
�v� are conve-
niently plotted using the stereographic projection plane w
=a+ ib in Fig. 7 along with the positions of the disclinations
�green dots�. It is easy to switch from the stereographic-
projection plane w=a+ ib of Fig. 7 to spherical polar coor-
dinates �� ,�� by using the relation �reviewed in Appendix B�

w = 2R cot��

2

ei�, �29�

where R is the radius of the sphere.
If we had constructed the baseball with cuts along the

short geodesics connecting the defects, then the form of the
texture given in Eq. �28� would be the same, but the param-
eter k in the elliptic integral would be given by

k = ��3 − �2�2��2 + 1�2, �30�

instead of Eq. �21�. The equation for the seam becomes

z = − �2 − �3�xy �31�

and the corresponding equipotential and field lines are plot-
ted in black and red, respectively, in Fig. 7. The expression
reads

cos �

sin2 �
= − �1 −

�3

2

sin 2� , �32�

in spherical polar coordinates, and leads to the same contour
length l as Eq. �26�. Thus the two choices of arcs lead to two
equivalent textures differing only by a �

2 about the local nor-
mal. As in Sec. II A, the degeneracy in energy between the
red and black flow lines in Fig. 7 is lifted upon considering

the effect of elastic anisotropy generated by a different en-
ergy cost for bend and splay.

III. STABILITY OF LIQUID CRYSTAL TEXTURES
TO THERMAL FLUCTUATIONS

In this section, we study the stability of liquid crystal
ground states to thermal fluctuations �5�. To explore the fi-
delity of directional bonds at finite temperatures, we employ
a Coulomb gas representation of the liquid crystal free en-
ergy �in the one Frank constant approximation� obtained by
substituting in Eq. �3� the relation

��������� − A�� = s�u� − G�u� 	 n�u� , �33�

where ��� is the covariant antisymmetric tensor �23�, G�u� is
the Gaussian curvature and s�u�	 1

�g
�i=1

Nd qi��u−ui� is the dis-
clination density with Nd defects of charge qi at positions ui.
The final result is an effective free energy whose basic de-
grees of freedom are the defects themselves �14,19,21�

F =
K

2
� dA� dA�n�u���u,u��n�u�� . �34�

The Green’s function ��u ,u�� is calculated �see Appendix A
by inverting the Laplacian defined on the sphere

��u,u�� 	 − � 1

�



uu�
, �35�

and we have suppressed for now defect core energy contri-
butions which reflect the physics at microscopic length
scales. Equations �33� and �34� can be understood by anal-
ogy to two-dimensional electrostatics, with the Gaussian cur-
vature G�u� �with sign reversed� playing the role of a uni-
form background charge distribution and the topological
defects appearing as pointlike sources with electrostatic
charges equal to their topological charge qi. The charge q can
be defined by the amount � increases along a counterclock-
wise path enclosing the defect’s core. On a generic surface,
the defects tend to position themselves so that the Gaussian
curvature is screened: typically, the positive ones are at-
tracted to peaks and valleys while the negative ones to the
saddles of the surface �17,18�. This geometric potential is
ruled out by symmetry on an undeformed sphere since the
Gaussian curvature is constant. The Gaussian curvature plays
the role of a uniform background charge fixing the net charge
of the defects consistent with the topological constraint im-
posed by the Poincare-Hopf theorem �see Sec. II and Refs.
�8,28��. The equilibrium positions of the defects are then
determined only by defect-defect interactions which are pro-
portional to the logarithm of their chordal distance �see Ap-
pendix A� according to

F = −
�K

2p2�
i�j

ninj ln�1 − cos �ij� , �36�

where the integers ni and nj describing the singularities as-
sociated with each defect, and the integer p controls the pe-
riod 2�

p of the orientational order parameter. The “topological
charge” describing the rotation of the order parameter around

FIG. 7. �Color online� Illustration of the nematic texture in ste-
reographic projection. The red and black field lines correspond to
two energetically degenerate �in the one Frank constant approxima-
tion� families of bend and splay rich textures. The dots indicate the
four tetrahedral s= 1

2 disclination defects.
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each defect is given by sj =
n
p . The geodesic angle �ij sub-

tended by the two defects at positions ui= ��i ,�i� and uj
= ��j ,�j� can be conveniently recast in terms of their spheri-
cal polar coordinates

cos �ij = cos �i cos � j + sin �i sin � j cos��i − � j� . �37�

As a simple example, we first consider the case of a Z
=2 colloidal particle �p=1� with two antipodal defects of
index 1. We can study the effect of thermal disruption of the
ground state by setting �ij =�+� in Eq. �36� and expanding
in the bending angle �. The resulting free energy, apart from
an additive constant, reads

F �
�K

4
�2. �38�

Upon applying the equipartition theorem we obtain in the
limit K	kBT �5�

�cos �ij� � − 1 +
1

2
��2�,

� − 1 +
kBT

�K
, �39�

which describes the fidelity of � antipodal “bonds” of a di-
valent colloidal particle.

The effect of thermal fluctuations on the tetrahedral
ground state of nematic molecules confined on the sphere
�p=2 and all sj =

1
2 � can be studied by means of a normal

mode analysis. The basic results sketched in Ref. �5� were
obtained by a slightly different method. Here we describe an
alternative treatment in some detail and extend our analysis
to hexatic and tetratic defect arrays �see Appendix C�.

We start by defining a generalized array of defect coordi-
nates �qi� as a 2N-dimensional vector, where N is the number
of defects in the ground state �or, equivalently, the valence of
the colloidal molecule�. N=4 in the case of the tetrahedron.
The first N entries of the vector q are the longitudinal devia-
tions of the N defects from a perfect tetrahedral configuration
while the remaining N components describe defect displace-
ments along the lines of latitude of a sphere of unit radius. As
a result, the deviations of the ith defect from its equilibrium
configuration ��i

0 ,�i
0� are parametrized by the two indepen-

dent components of the vector q

qi = ��i,

qN+i = ��i sin��i
0� . �40�

The relations in Eq. �40� can be used to reexpress Eq. �37� in
terms of the components of the displacements vector qi, with
the result,

cos �ij = cos��i
0 + qi�cos�� j

0 + qj� + sin��i
0 + qi�sin�� j

0 + qj�

�cos��i
0 − � j

0 +
qN+i

sin �i
0 −

qN+j

sin � j
0
 . �41�

Upon substituting Eq. �41� in Eq. �36�, the free energy F can
be expanded around the equilibrium configuration to qua-

dratic order in qi with the result �apart from an additive con-
stant�

F �
1

2�
ij

Mijqiqj , �42�

where the matrix, Mij, describing the deformation of the tet-
rahedral molecule is naturally defined as

Mij = � �2F

�qi�qj



qi,qj=0
. �43�

The eigenvalues of this matrix can be classified according to
the irreducible representation of the symmetry group of the
tetrahedron; their degeneracies can be determined purely
from the group theoretical relation �29,30�

n��� =
1

g
�

i

gi�i
���*�i

���, �44�

where n��� is the number of frequency degenerate normal
modes that transform like the irreducible representation la-
beled by �, gi is the number of symmetry operations of the
tetrahedral point group in the ith class, g=�igi=24 is the
total number of symmetry operation in the group, �i

��� is the
character of the ith class in the irreducible representation
labelled by � while �i

��� is the corresponding character for
the reducible representation formed by the defects’ displace-
ments.

The information necessary to apply Eq. �44� to a tetrava-
lent colloid is collected in Table I. The top row contains the
five symmetry class �E ,C3 ,C2 ,S4 ,�d� contained in the tetra-
hedral point group Id, corresponding, respectively, to the
identity, threefold and twofold rotations, fourfold rotatory re-
flections and reflection through a plane of symmetry �29�.
The number of symmetry operations gi included in the ith
class also appears in the top row: thus, �gi�= �1,8 ,3 ,6 ,6�
where the same ordering used above to list the classes has
been adopted. The left-most column of Table I lists the one-,
two-, and three-dimensional irreducible representations of
the tetrahedral group �A1 ,A2 ,E ,F1 ,F2�, along with the eight-
dimensional representation � generated by the defect dis-
placements. The entries of the table list the characters corre-
sponding to each class of the five irreducible representations,
�i

���, and in the last row the corresponding characters, �i
���,

TABLE I. Character for the irreducible representations of the
tetrahedral point group together with the character of the eight-
dimensional representation � generated by the defect displacements
of a tetravalent colloid.

Id E 8C3 3C2 6S4 6�d

A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

F1 3 0 −1 1 −1

F2 3 0 −1 −1 1

� 8 −1 0 0 0
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for the eight-dimensional representation. The former are
tabulated from standard group theoretical treatments while
the latter needs to be worked out from the traces of the trans-
formation matrices that describe how the displacement coor-
dinates qi transform under the action of each symmetry ele-
ment in the group. These manipulations are rather
cumbersome, especially for the “icosahedral molecule” aris-
ing when a spherical surface is coated with a pure hexatic
layer �see Appendix C�.

In the rich literature on molecular vibrations a set of em-
pirical rules has been developed to write down the characters
by examining only the transformation of the three-
dimensional Cartesian displacements of the few atoms whose
equilibrium positions are not altered by the symmetry opera-
tion. In Appendix C we provide analogous rules that simplify
the task of finding the �i

��� characters by incorporating the
constraint that each atom is confined on a sphere and hence
only two orthogonal displacements need to be considered as
shown in Eq. �40�.

The interested reader is referred to Appendix C for a more
comprehensive mathematical justification of the normal
mode analysis applied to the tetrahedral colloid and to the
more complicated cases of hexatic Z=12 and tetratic order
Z=8. Here, we simply summarize the results of applying Eq.
�44� in conjunction with Table I to find the degeneracies of
the eigenvalue spectrum of the matrix Mij. The representa-
tion � contains �only once� the three-dimensional represen-
tations F2 and F1 as well as the two-dimensional representa-
tion E,

� = F2 + F1 + E . �45�

The three normal coordinates with vanishing frequency cor-
respond to the three rigid body rotations and belong to the F1
irreducible representation �29,30�. We are left with a doublet
�E� and a triplet �F2� corresponding, respectively, to two
shearlike twisting deformations of the tetrahedron and to
three stretching and bending modes of the cords joining
neighboring defects.

This symmetry analysis is confirmed by direct diagonal-
ization of the matrix Mij which leads the following set of
eigenvalues �i:

��i� =
3�K

8
�0,0,0,1,1,2,2,2� . �46�

In Appendix C, we also list the eigenvectors wi of Mij. The
displacement coordinates are readily expressed in terms of
the eigenvectors

qi = Uij
−1wj , �47�

where the unitary matrix U diagonalizes M and hence the
free energy of Eq. �42� and is defined by

UMU−1 = Diag��i� . �48�

Its construction is easily achieved by the standard Gram-
Schmidt orthogonalization procedure to the eigenvectors
�wi�= �w1 , . . . ,w8�, where the same ordering chosen in listing
the eigenvalues in Eq. �46� is implicitly assumed. The result-

ing orthogonal basis vectors are the rows of the 8�8 matrix
U.

We are now in a position to evaluate �cos �ij� where the
thermal average is performed with the Boltzman weight ob-
tained from the free energy in Eq. �42� which is now diago-
nal. Note that for the tetrahedron any choice of pair of de-
fects labelled by i and j �where i� j� will lead to the same
answer, unlike the less symmetric cases of the twisted cube
�p=4� and the icosahedron �p=6� considered in Appendix C.
The bending angle cos �ij in Eq. �41� can be Taylor ex-
panded in the qi. The resulting expression is rather cumber-
some, but once the displacements �qi� are reexpressed in
terms of the normal coordinates �wi� �by means of Eq. �47��,
cos �ij reduces to

cos �ij = − 1
3 + 2

9 �w6
2 + w7

2 + w8
2� , �49�

where the only eigenmodes �w6 ,w7 ,w8� appearing in Eq.
�49� correspond to the bending triplet of Eq. �46�.

It is now easy to perform the thermal average by Gaussian
integration of the energetically degenerate eigenmodes, with
the result �5�

�cos �ij� = −
1

3
+

2

9
��w6

2� + �w7
2� + �w8

2�� = −
1

3
+

16kBT

9�K
.

�50�

IV. VALENCE TRANSITIONS
IN THICK NEMATIC SHELLS

In this section, we study the crossover from a two-
dimensional to a three-dimensional regime as the thickness
of the spherical shell, h, increases. For thicker shells, three-
dimensional defect configurations �“escaped” in the third di-
mension� compete with the planar textures described in the
preceding sections, leading to a structural transition and a
change in valence from Z=4 to Z=2 beyond a critical value
of h.

We first consider the case of a cylindrical slab �or disk� of
radius R and thickness h filled with a nematic whose director
is tangent to the two circular faces �31� �see Fig. 8�. This
simpler geometry captures the essential features of the prob-
lem and provides a suitable starting point for understanding
thin spherical shells �see Fig. 9�.

A. Slab geometry

To estimate the energy stored in the texture of Fig. 8, we
coarse grain the system to “blobs” of size h. The elastic
energy arises from two sources: a long distance contribution
from a radial texture associated with an s=1 disclination and
a local energy cost for the elastic deformations inside the
spherical blob in Fig. 8. In the one Frank constant approxi-
mation, the former can be estimated as the energy �Kh ln� R

h
�

of a disclination whose enlarged “core” of size h is given by
the spherical blob while the latter is roughly 4�Kh, the en-
ergy of two half-hedgehogs living inside the blob �32�. In
view of the azimuthal symmetry of our configuration, the
director, n�r ,z�, can be parametrized by the angle ��r ,z�
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formed with respect to the ẑ axis of the circular slab along
the centers of the two half-hedgehogs shown in Fig. 8,

n�r,z� = sin ��r,z�er + cos ��r,z�ez. �51�

The energy density f���= 1
2K1�� ·n�2+ 1

2K3���n�2 ex-
pressed in terms of the bond angle reads

f��� =
K1

2
� sin �

r
+ �r cos � − �z sin �
2

+
K3

2
��z cos �

+ �r sin ��2, �52�

where K1 and K3 are the splay and bend constants and �r

	 ��
�r and �z	 ��

�z . In the one Frank constant approximation,
minimization of the free energy leads to a nonlinear partial
differential equation for the bond angle ��r ,z�,

1

r

�

�r
�r

��

�r

 +

�2�

�z2 =
sin 2�

r2 . �53�

The operator on the left arises from the Laplacian in cylin-
drical coordinates. Note there is no need to explicitly con-

sider the azimuthal angle � as an additional independent
variable in view of the symmetry of the problem.

Instead of solving this partial differential equation, we
follow a route analogous to that in Ref. �33�, that is we
construct an exact 2D solution for the liquid crystal problem
and then rotate it along the axis ẑ to retrieve an ansatz for the
three-dimensional �3D� director configuration. The 2D solu-
tion is the true minimum of the two-dimensional liquid crys-
tal elastic free energy while the 3D Ansatz does not minimize
f��� nor satisfy Eq. �53�.

To solve the 2D problem we adopt the method of confor-
mal mappings that simplifies the study of many complicated
boundary problems in fluid dynamics and electrostatics �27�.
Think of Fig. 8 as a source of fluid confined to flow in a
narrow and long channel �R	h�. The spherical ”half-
hedgehog” corresponds to the source and the hyperbolic one
at the top to the stagnation point of the flow. The complex
potential 
�w� of the desired flow is


�w� = ln�sin��w

h

 − 1� , �54�

where the complex variable is denoted by w=r+ iz to distin-
guish it from the z coordinate along the axis of the cylinder.
The velocity field is given by 
��w� and the corresponding
complex nematic director n�w�=cos �+ i sin � is obtained
by normalizing this vector field. Note that the prime in

��w� denotes the derivative with respect to w of the com-

plex function 
=�+ i� and we define 
̄	�− i�. A
straightforward but tedious calculation �see Appendix B�
leads the functional form of ��r ,z� for a source at z=− h

2 and
a stagnation point at z= + h

2 , namely

tan ��r,z� = sec��z

h

sinh��r

h

 . �55�

This trial solution respects the boundary conditions of the
problem, has the correct short and long distance behavior in
r, and the expected functional form near the source.

Upon inserting ��r ,z� in Eq. �52� and integrating the en-
ergy density f��� over the cylindrical volume of the slab, we
obtain the total elastic energy E1 stored in the field. The
resulting energy E1 does not rely on the assumption R	h, as
can be explicitly checked numerically,

E1 = �Kh�ln�R

h

 + c� , �56�

where c�4.2. Note that the functional dependence of E1 on
R and h matches the expectations from the blob argument.
Indeed the prefactor of the logarithm is universal in the sense
that it does not depend on the details of the trial solution near
the hedgehogs, but only on its long distance behavior. By
contrast, we expect the result quoted above for the coefficient
c to be only an estimate �an upper bound� since it relies on a
trial solution for ��r ,z� that is not the absolute minimum of
the free energy. Numerical studies carried out in Ref. �31� for
the slab geometry reported that c�4.19.

A competing energy minimum for the nematic is given by
a planar texture with two s= 1

2 disclination lines. Note that + 1
2

FIG. 8. �Color online� Side view of the 2D nematic texture
ansatz solution in Eq. �55�. The cylindrical slab has height h and
radius R. The arrows can be interpreted as flow lines of a fluid
entering a narrow and long channel from a point source located on
the top plate. To obtain the nematic texture the vectors need to be
normalized and viewed as rods with both ends identified as shown
in Fig. 9.

FIG. 9. Nematic texture in a thin spherical shell. The nematic
director near the pair of half-hedgehogs indicated in the figure is
well described by the one calculated for the slab in Fig. 8.
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lines cannot escape in the third dimension �25�. A tedious but
straightforward calculation shows that the energy Ep of the
pair of disclination lines is given by

Ep =
�

2
Kh�ln�R

a

 − 0.06 +

4Ec

�Kh
� . �57�

where a is a macroscopic cutoff typically of the order of the
molecular length. These two disclination repel each other,
and are repelled by the circular boundary, leading to a sepa-
ration of order R. The second term of Eq. �57�, correspond-
ing to the interaction of the two disclinations with the bound-
ary and among themselves, is negligibly small. The third
term accounts for the core energies of the two disclination
lines 2Ec. The combination Kh is equal to the two-
dimensional coupling constant K2D. The relevant dimension-
less ratio is

Ec

K2D
.

By setting Ep=E1 we obtain the critical thickness h*

above which the escaped ”half-hedgehogs” become energeti-
cally favored compared to a single s= 1

2 disclination line,

h* = ec��Ra . �58�

The core energy terms in Eq. �57� reduce the previous esti-
mate of c to c�=c−

2Ec

�Kh . A similar analysis applies to spheri-
cal shells which we now discuss.

B. Extrapolation to thin spherical shells

In principle, one could proceed along the same route as in
the preceding section and find a conformal mapping that pro-
vides a trial function for the bond angle ��� ,r� correspond-
ing to the texture shown in Fig. 9. This is possible but rather
cumbersome. In the case of very thin shells one can adapt the
slab calculation by noting again that the energy is composed
of two parts. There is a long distance piece arising from
“combing the hair” of the nematic texture in the tangent
plane of the sphere that we can read off from a suitable 2D
calculation �see Appendix A� and the short distance contri-
bution arising from the short distance contribution arising
from the two pairs of half-hedgehogs at the north and south
pole.

The energy Ed of two short +1 disclination lines placed at
antipodal points on a sphere �the north and south pole, say�
can be estimated by performing a 2D calculation on the
curved surface and simply multiplying the result by the
thickness of the layer h

Ed = 2�Kh�ln�R

a

 − 0.3 +

Ec

�Kh
� , �59�

where the middle term accounts for the interaction between
the two disclinations in their equilibrium positions. Note that
this result is accurate only up to factors of the order of � h

R
�

since the explicit integration over the volume of the thin
shell was bypassed. To obtain the energy of the escaped so-
lution, the core size a in Eq. �59� is rescaled to h. This will
account for the integration of the energy density at distances
of the order of a few h�R from the two hedgehogs. In these
portions of the shell the integrand reduces to the energy den-

sity of the two disclination problem and hence the integration
can be easily carried out leading the result in Eq. �59� with a
lower cutoff of the order h.

The energy stored in the remaining portions of the thin
shell is approximately given by twice the energy 4.2�Kh of
the yellow blob of Fig. 8. This estimate neglects curvature
corrections of the order of � h

R
� and arises because at distances

of the order h the spherical shell looks locally like a flat
circular slab as long as h�R. The resulting energy E2 of the
escaped configuration reads

E2 = 2�Kh�ln�R

h

 − 0.3 + 4.2� . �60�

Although the prefactor of the subleading term linear in h has
only been estimated, we expect that the coefficients of the
logarithm, which arises from large scales compared to h, is
exact. For a spherical shell whose radius R is 100 times its
thickness, the corrections from higher powers of h

R are in-
deed negligible. However for reasonable values of R

h , the
logarithmic term of Eq. �60� is still comparable in magnitude
to the ”subleading” one linear in h.

The energy E4 of the tetravalent configuration can be
evaluated using similar considerations, with the result

E4 = �Kh�ln�R

a

 − 0.4 +

4Ec

K�h
� . �61�

Upon setting E4=E2 we obtain the critical thickness h* be-
low which the tetravalent configuration becomes energeti-
cally favored

h* = e�4.1−�2Ec/K�h���Ra . �62�

The exponential prefactor arises from the terms linear in h in
Eq. �60�, which cannot be ignored in estimating h* even in
the limit R	h. Note that an accurate determination of the
argument in the exponent would require knowledge of the
core energies of the disclination lines. In fact, the exponen-
tial prefactor can be interpreted as a numerically significant
rescaling of the core radius.

The energy barrier between these two coexisting minima
of the free energy f��� can be estimated by splitting the path
connecting them in � space in two steps. First, consider a
continuous deformation of the escaped texture of Fig. 9 ob-
tained by appropriately rotating each nematigen until the
nonescaped solution �with two disclinations lines of index
one at the north and south pole� is recovered. This part of the
path must be uphill in energy if the escaped solution was
allowed to escape in the first place. The corresponding en-
ergy barrier �E is given approximately by the difference
between Ed as calculated in Eq. �59� and E2 in Eq. �60�,

�E = 2�Kh�ln�h

a

 − 4.2� . �63�

The second step consists in letting each of the unstable
disclination lines split in two + 1

2 defects and subsequently
separate them until they sit at the vertexes of a tetrahedron
inscribed in the sphere. This portion of the path is downhill
because the ”nonescaped” texture of valence 2 is unstable.
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This can be proved by writing down the energy of the pair
and show that it decreases monotonically as one separates
them because of the ”electrostaticlike” repulsion �13,17�. As
a result the energy barrier is simply the energy difference
calculated in Eq. �63�.

Upon inserting K�10−6 dyn in Eq. �63� and taking kBT
�4�10−14 erg, as in Refs. �32,34�, we obtain

�E

kBT
�

15h

nm
�ln�h

a

 − 4.2 +

Ec

K�h
� . �64�

For shells with critical thickness h* Eq. �64� reduces to

�E

kBT
� 103�R

a
ln�R

a

 , �65�

where a core size of the order of 10 nm was assumed and the
core energies were set to zero �13�. This estimate indicates
that the energy barrier is very high around h* suggesting that
exchange between the two minima is unlikely to happen by
thermal activation. In a monodisperse solution of shells with
thickness h, the ratio between shells of the two valence will
be given by their Boltzman factors as long as equilibrium is
reached. If one engineers shells with thickness below h*, the
Z=4 configuration would be more likely.

V. CONCLUSION

We have studied the crossover from the two-dimensional
regime of liquid crystals confined on a spherical surface to
the full three-dimensional problem in a spherical shell. For
very thin shells, the nematic ground state has four disclina-
tion lines sitting at the vertices of a tetrahedron inscribed in
the ball and whose texture approximately track the seam of a
baseball. As the thickness increases, a competing three-
dimensional defected texture characterized by two pairs of
half-hedgehogs at the north and south pole becomes energeti-
cally favorable. For ultrathin shells this instability is sup-
pressed and one expects a defected ground state with tetrava-
lent symmetry. Estimates of the stability of this texture to
thermal fluctuations indicate that the vibrations around the
equilibrium configurations of the defects should not be sig-
nificant. The present analysis has been carried out primarily
in the limit in which the elastic anisotropy parameter, 
�

= 


K3−K1

K3+K1

�1.

We hope to extend our investigation with a systematic
study of the effect of elastic anisotropy on the nematic tex-
ture. It is interesting to note that in the case of pure bend or
splay �i.e., �= ±1� the ground state is given by only two
disclinations of unit index at the north and south pole. This
suggests the possibility that the effect of the elastic aniso-
tropy may not be limited to locally adjusting the orientation
of the director but may induce a change in the interdefect
interaction and hence a distortion of the tetravalent equilib-
rium configuration. The limit of strong elastic anisotropy is
also relevant to studies of the nematic to smectic transition in
a spherical geometry for which the ratio of the bend to splay
coupling constants

K3

K1
is expected to diverge.

Additional experimental complications include the possi-
bility of having a nematic layer of nonconstant thickness that

would induce trapping of the defects in the regions where the
layer is thinner. This effect may also induce a local transition
to an escaped texture where the layer thickens in just one
hemisphere so that two disclination lines of index 1

2 are
traded for a pair of half-hedgehogs. If that happens shells
with threefold symmetry could be observed.
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APPENDIX A: FREE ENERGY OF A VECTOR FIELD
ON A SPHERE

We start our analysis with the Frank free energy with
splay and bend terms proportional to K1 and K3, and express
in terms of the covariant derivative Din

j,

F =
1

2
� d2x�g�K1�Din

i�2 + K3�Dinj − Djni��Dinj − Djni�� ,

�A1�

where

Din
j = �in

j + �ik
j nk. �A2�

The Christoffel connection �ik
j �24� is unchanged if the lower

indices i and k are interchanged. As a result, the covariant
derivative Di can be replaced by �i in the second term of Eq.
�A1� because the covariant curl is antisymmetric. It follows
that

D� � n� = � � n� . �A3�

The covariant form of the divergence is given by �24�

Din
i 	

1
�g

�i��gni� . �A4�

For a rigid sphere of radius R with polar coordinates �� ,��,
we have �g=R2 sin �, ���

� =−sin � cos �, ���
� =���

� =−cot �,
and all other �ik

j =0.
Upon adding and subtracting the expression for the curl of

n multiplied by K1 from the first and second term in Eq. �A1�
we obtain

F =
1

2
� d2x�g�K1�Din

j��Dinj� + �K3 − K1��� � n�2� .

�A5�

Similarly, upon adding and subtracting the covariant di-
vergence of n multiplied by K3 from the second and first
term in Eq. �A1� we obtain
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F =
1

2
� d2x�g�K3�Din

j��Dinj� + �K1 − K3��� · n�2� .

�A6�

Upon adding the two equivalent expressions for F in Eqs.
�A5� and �A6� and dividing by 2 we can express the free
energy in terms of the constants

� 	
K3 − K1

K3 + K1
, �A7�

K 	
K3 + K1

2
, �A8�

namely

F =
K

2
� d2x�g��Din

j��Dinj� + ���� � n�2 − �� · n�2�� .

�A9�

We now parametrize the orientation of the unit vector n in
terms of the bond angle field ��� ,�� that it forms with re-
spect to the longitudinal direction e�� which in polar coordi-
nates �� ,�� is given by

e� = R�cos � sin �,cos � cos �,− sin �� , �A10�

while the orthogonal vector e� is given by

e� = R�− sin � sin �,sin � cos �,0� . �A11�

The components of the vector n with respect to e�� and e�� are
given by

n� =
cos �

R
, �A12�

n� =
sin �

R sin �
. �A13�

Upon substituting the relevant expressions for the nonvanish-
ing components of the connection in the covariant derivative
�see Eq. �A2�� and using Eq. �A13�, the free energy density
f�� ,�� is given by

4R2

K1 + K3
f = � ��

��

2

+ ��
2��,��

+ � cos 2��� ��

��

2

− ��
2��,���

+ 2� sin 2�� ��

��

����,�� , �A14�

where the �-dependent function ���� ,�� is

����,�� 	
1

sin �
� ��

��
+ cos �
 . �A15�

The energies of the latitudinal ��=� /2� and longitudinal
��=0� tilted-molecules textures favored for � less or greater
than zero, respectively �see Sec. II A�, are easily determined

by substituting the appropriate � and � in Eq. �A14�. After
integrating the free energy density f in Eq. �A14� we obtain

F = 2�K�1 − 
�
��
a/R

�/2 cos2���
sin���

d�

= 2�K�1 − 
�
��ln�2R

a

 − 1� + 2Ec, �A16�

where we have introduced a core radius, a, and correspond-
ing core energy Ec for each defect.

In the zero anisotropy limit ��=0�, only the first line in
Eq. �A14� survives. The resulting free energy F
=�dSf�� ,�� then matches the one obtained using the spin
connection in the one Frank constant approximation upon
setting K1=K3=K,

F =
1

2
K� dSgij��i� − Ai��� j� − Aj� , �A17�

where dS=d�d�R2 sin � and the metric tensor gij

=diag� 1
R2 , 1

R2 sin2 �
�. The curl of the spin-connection Ai is the

Gaussian curvature 1
R2 �8,23� and its only nonvanishing com-

ponent is A�=−cos �.
We now adopt a Coulomb gas representation of the liquid

crystal free energy �in the one Frank constant approximation�
obtained by exploiting in Eq. �A17� the relation

�ij�i�� j� − Aj� = s�u� − G�u� 	 n�u� , �A18�

where �ij is the covariant antisymmetric tensor �23�, G�u� is
the Gaussian curvature and s�u�	 1

�g
�i=1

Nd qi��u−ui� is the dis-
clination density with Nd defects of charge qi at positions ui.
The final result is an effective free energy whose basic de-
grees of freedom are the defect positions themselves �14,19�:

F =
K

2
� dA� dA�n�u���u,u��n�u�� , �A19�

where n�u�, the defect density relative to the Gaussian cur-
vature, was defined in Eq. �A18�. The equilibrium positions
of the defects are determined only by defect-defect interac-
tions because the Gaussian curvature is constant G= 1

R2 on an
undeformed sphere. To calculate the Green’s function
��u ,u�� we need to invert the covariant Laplacian defined on
the sphere

��u,u�� 	 − � 1

�



uu�
, �A20�

As shown below, this inversion can be accomplished by per-
forming a weighted sum over eigenmodes of the covariant
Laplacian �14�.

We first recall that the �generalized� Green function
��u ,u�� is defined by

�u��u,u�� =
��u,u��

�g
−

1

S
, �A21�

where S=4�R2 denotes the area of the surface and �
= 1

�g
�i��ggij� j�. The presence of the second term on the left-

hand side of Eq. �A21� can be understood as follows. The
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Green function of the Laplacian �according to the usual defi-
nition without the area correction in Eq. �A21�� can be inter-
preted physically as the steady temperature response of the
system to a pointlike unit source of heat. However, for a
closed system such as the surface of the sphere heat cannot
escape. Hence, it is impossible to impose a point source, that
would inject heat at a constant rate and have the system
respond with a time-independent distribution. To prevent en-
ergy from building up in such a system, we set the spherical
surface of area S in contact with a reservoir that uniformly
absorbs heat at the same rate it is pumped in. The need for
subtracting the “neutralizing background heat” 1

S in Eq.
�A21� will become transparent mathematically once we pro-
ceed to determine ��u ,u�� explicitly.

The first step consists in writing the delta function as a
sum over spherical harmonics Yl

m�� ,��,

��u,u��
�g

	
��� − ������ − ���

R2 sin ��

=
1

R2�
l=0




�
m=−l

m=+l

Yl
m��,��Yl

m*��,�� , �A22�

and recall the eigenvalue equation

�Yl
m��,�� = −

l�l + 1�
R2 Yl

m��,�� . �A23�

Upon substituting Eq. �A22� in Eq. �A21� and using the ei-
genvalue equation �A23�, we can write down the Green func-
tion as

��u,u�� = − R2�
l=1




�
m=−l

m=+l
Yl

m��,��Yl
m*���,���

l�l + 1�
. �A24�

We have used the fact that Y0
0=� 1

4� , and used the neutraliz-
ing background charge 1

S in Eq. �A21� to cancel out the l
=0 diverging mode.

To simplify the series in Eq. �A24�, we exploit the famil-
iar identity �35�

�
m=−l

m=+l

Yl
m��,��Yl

m*���,��� =
2l + 1

4�
Pl�cos �� , �A25�

where � is the angle �relative to the center of the sphere�
between the directions �� ,�� and ��� ,��� �see also Eq. �37��.
Upon substituting Eq. �A25� in Eq. �A24�, we find

��u,u�� = − �
m=−l

m=+l �1

l
+

1

l + 1

Pl�cos ��

4�
. �A26�

The first term of the sum in Eq. �A24� can be simplified
using the following identity �36�

�
l=l

l=

Pl�cos ��

l
= − ln�1 + sin��

2

� − ln�sin��

2

� ,

�A27�

while for the second term we substitute

�
l=l

l=

Pl�cos ��

l + 1
= ln�1 + �sin

�

2

� − ln�sin��

2

� − 1,

�A28�

with the result

��u,u�� =
1

4�
ln�1 − cos �

2

 +

1

4�
. �A29�

Upon dropping additive constants that do not contribute to
the energy and substituting in Eq. �A19� we obtain

F = −
�K

2p2�
i�j

qiqj ln�1 − cos �ij� + �
i=1

Nd

qi
2Ec, �A30�

where the phenomenologically determined core energy Ec
has been added by hand and reflect the microscopic physics
not captured by our long-wavelength theory.

APPENDIX B: LIQUID CRYSTAL TEXTURES AND
CONFORMAL MAPPINGS

This appendix collects a number of results from the
theory of complex variables relevant to the study of liquid
crystal textures. The perspective adopted is to link the liquid
crystal elasticity to the intrinsic geometry of the texture by
the use of conformal transformations. The same method pro-
vides an elegant route to finding the flow lines of simple
incompressible fluids in 2D �37� and to the exact solution of
analogous problems in electromagnetism and elasticity
�27,28�.

Nematic textures in the plane in the one Frank constant
approximation can be obtained by solving Laplace equation,
which is conformally invariant, and in complex coordinates
�z=x+ iy, z̄=x− iy� reads

�z̄�z� = 0. �B1�

Here ��x ,y�	��z , z̄� is the bond angle that the director n
= �cos � , sin �� forms with respect to a fixed direction, say
the real axis x̂. The flat space Laplacian equation �B1� is also
obtained by minimizing the free energy of a vector field on a
sphere �see Appendix A� provided that a “stereographic pro-
jection gauge” is chosen to carry out the calculation �13,38�.
The stereographic projection maps an arbitrary point on the
sphere R�� ,�� to the corresponding point z=2R tan� �

2
�ei� in

the complex plane. The metric reads �13�

gij =
1

2�1 +
zz̄

4R2
�
0 1

1 0

 , �B2�

and the components of the gauge field in Eq. �3� are given by

Az = Āz̄ = −
1

2iz� 1 −
zz̄

4R2

1 +
zz̄

4R2
� . �B3�

In this representation of liquid crystal order on a sphere, the
Frank free energy is
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F =
K

4
� d2z
�z� − Az
2, �B4�

and the corresponding Euler-Lagrange equation is indeed Eq.
�B1�, since the divergence of the gauge field is zero ��zAz̄

+�z̄Az=0� �13�. The stereographic projection provides an ex-
ample of how conformal transformations can be used to map
physics on an arbitrary curved surface onto simpler planar
problems. This technique can also be employed to analyze
two-dimensional order on surfaces of varying Gaussian cur-
vature �see Refs. �17,18��.

A second use of conformal mappings is as generators of
2D liquid crystal textures in bounded geometries or in the
presence of defects. Consider an analytic function w= f�z�
that maps a grid of horizontal and vertical lines in the com-
plex plane z=x+ iy onto a family of orthogonal curves in the
w=u+ iv plane that are, respectively, streamlines and equi-
potential lines of the corresponding flow �see Fig. 10�. Simi-
larly, we can define the inverse function 
�z�= f−1�z� and
note that 
�z�=��x ,y�+ i��x ,y� maps equipotential lines
and streamlines, given by the contour lines of ��x ,y� and
��x ,y�, into a grid of vertical and horizontal lines, respec-
tively.

The connection between liquid crystal textures and con-
formal mappings rests on the following observation: if the
director n�z� forms a constant angle with respect to the
streamlines �or the equipotential lines� of 
�z�, then ��z�
automatically satisfies Eq. �B1� �28�. In the one Frank con-
stant approximation, the complex nematic director n��z�
=nx�x ,y�+ iny�x ,y� is given �up to an arbitrary global rota-
tion� by

n��z� =

��z�


��z�


. �B5�

The complex function 
��z� denotes the derivative with re-
spect to z of the complex function 
=��x ,y�+ i��x ,y� and

we define 
̄	��x ,y�− i��x ,y�. The bond angle is readily
expressed in terms of 
�z� via the relation

��z� = − Im ln�
��z�� , �B6�

where Im denotes the imaginary part of a complex number.
As an illustration consider the simple case of two discli-

nations on the real axis at positions x= ±1, respectively. The
nematic director rotates by � on a path encircling only one
defect and by 2� on a path enclosing both �see Fig. 10�.
These requirements are met by choosing the complex func-
tion 
�z�=arccos�z� that is analytic everywhere except for a
branch cut on the real axis from x=−1 to x=1. The stream-
lines and equipotential lines are a family of hyperbolas and
ellipses with coinciding foci at x= ±1; they correspond to
two distinct nematic textures dominated by splay and bend,
respectively. The bond angle of the director oriented along
the streamlines is easily extracted from the argument of the
complex vector field in Eq. �B5�, with the result

��x,y� = arctan� y2 + 1 − x2 − ��y2 + x2 + 1�2 − 4x2

2xy

 .

�B7�

In this simple example, one can explicitly check that the
result in Eq. �B7� is recovered through the more familiar
route of superposing the solutions corresponding to the two
isolated defects

��x,y� =
1

2
arctan� y

x − 1

 +

1

2
arctan� y

x + 1

 . �B8�

The applicability of the method of conformal mappings to
finding liquid crystal textures can be justified by means of
simple geometric reasoning. We start by noting that the curl
and divergence of a two-dimensional vector field v, whose
streamlines and orthogonal trajectories are labelled by the
subscripts s and p, respectively, can be expressed geometri-
cally via the relations �28�

�xvx + �yvy 	 � · v = �s
v
 + �p
v
 , �B9�

�xvy − �yvx 	 � � v = − �p
v
 + �s
v
 , �B10�

where �s and �p are the respective curvatures while �s and �p
are the directional derivatives along the two orthogonal fami-
lies of level curves. The direction of increasing p is chosen to
make a counterclockwise �

2 angle with v. For example the
black lines in Fig. 10 trace the electric field v generated by a
uniformly charged plate or the flow lines of an ideal fluid
exiting a slit of width given by the branch cut. Unlike the
liquid crystal director in Eq. �B5�, the magnitude of v is
allowed to vary with position. By construction, such a vector
field is divergence free and curl free, hence

�s = �p ln
v
 , �B11�

�p = − �s ln
v
 . �B12�

By combining Eqs. �B11� and �B12�, we obtain the geomet-
ric condition that a family of equipotential lines �or stream-

FIG. 10. �Color online� Splay rich �hyperbolic� and bend-rich
�ellipsoidal� families of nematic “flow” lines generated by two s
= 1

2 disclinations. The two families of flow lines are the equipoten-
tial and field lines of a complex function 
�z� whose branch cut is
a horizontal line connecting the two defects.
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lines� needs to satisfy in order to be identified as level curves
of an harmonic potential, namely

��p

�p
+

��s

�s
= 0. �B13�

This condition is entirely cast in terms of the curvatures of
the equipotential lines and streamlines without explicit refer-
ence to either the potential to be assigned or to the magnitude
of the vector field v�z� �39,40�. This is a natural language to
discuss orientational order in liquid crystals since the direc-
tor n��z� is a vector field of unit magnitude.

If we take the liquid crystal director to form a constant
angle with respect to v�z�, the curvatures �s and �p in Eq.
�B13� can be simply cast as the directional derivatives of �
along the streamlines and equipotential lines, respectively. In
fact, the curvature of these contour lines is the rate of change
of their directions which is naturally parametrized by �.
Hence Eq. �B13� reduces to

�2�

�p2 +
�2�

�2s
= 0. �B14�

The left-hand side of Eq. �B17� is the Laplacian of � ex-
pressed in terms of orthogonal coordinates along s and p.
Since the Laplacian is coordinate independent, Eq. �B14� is
equivalent to Eq. �B1� and ��x ,y� represents �apart from an
arbitrary global rotation� the desired texture that minimizes
the Frank free energy when K1=K3.

As a byproduct, Eqs. �B11� and �B12� can help to visual-
ize how the elastic energy stored in every portion of the
texture of Fig. 10 is distributed between bend and splay de-
formations. For most liquid crystals K3�K1, so the texture
with director tangent to the streamlines will be energetically
favored �black lines in Fig. 10�. In this case, the full Frank
energy density can be rewritten in terms of the local curva-
tures of streamlines and equipotential lines via the simple
relation

K3�� � n�2 + K1�� · n�2 = K3�s
2 + K1�p

2. �B15�

The energetically costly deformation involving bend takes
place only around the defects in a region of radius of the
order of their separation. Elsewhere �s is vanishingly small.
In contrast, �p drops off more slowly at large distances like
the inverse of the radius of a circle centered on the midpoint
between the two disclinations. Splay deformations are
present throughout the system but they have a smaller energy
cost K1. The converse situation occurs if K3�K1 so that the
texture represented by the red equipotential lines in Fig. 10
becomes energetically favored.

The curvatures �s and �p are, respectively, the real and
imaginary parts of the complex curvature, K�z�=�s+ i�p, of
the mapping. This quantity can be readily derived from the
complex potential 
�z�. For calculational purposes, it is
more convenient to recast Eq. �B16� in the form �p+ i�s=
− 

�

�


�2 ,

K�z� 	 �s + i�p = − i


�

�¯


�¯ 2
. �B16�

The reader is referred to the mathematical literature �28,39�
for a proof of Eq. �B16�. The intuitive significance of the
complex curvature can be grasped by considering how a con-
formal mapping f =
−1 acts on a curve with local curvature
� at a point in the z=x+ iy plane. The curve is mapped onto
an image curve in the w=u+ iv plane whose curvature �� at
the corresponding point differs from �. The curvature �� of
the image curve is determined by two mechanisms. First, the
mapping f�z� locally stretches distances by a factor 
f��z�
,
hence the radius of curvature of the image curve will be
naturally multiplied by this amplifying factor. The second
mechanism arises because a conformal mapping can intro-
duce curvature even if none was originally present �in the
isothermal net� simply by locally twisting the direction of the
isothermal net by an angle equal to arg�f��z��. For this rea-
son, the complex derivative f��z� is sometimes called an am-
plitwist and encodes information on the local effect of the
mapping �28�. The nonanalytic function K�z� controls the
amount of curvature generated ex-novo by the mapping. For
example, the mapping f�z�=cos�z� transforms a grid of hori-
zontal lines �think of them as a possible direction for the
nematic molecules in the defect-free ground state� into the
family of hyperbolae in Fig. 10 corresponding to a defected
texture with two +1/2 disclinations. It is not surprising that
the free energy density stored in the defected texture is sim-
ply proportional �in the one Frank constant approximation�
to

� ��

�p

2

+ � ��

�s

2

= �s
2 + �p

2 = 
K�z�
2, �B17�

where the two elastic constants were set to be equal in Eq.
�B15� and the director n�z� was parametrized in terms of the
bond angle ��z�. The Frank free energy is thus proportional
to the complex curvature modulus-squared in analogy with
the Helfrich free energy of a membrane whose derivation
rests on an higher dimensional generalization of Eq. �B15�.

APPENDIX C: VIBRATIONAL SPECTRUM
OF COLLOIDAL MOLECULES

In this appendix we provide an introduction to the group
theoretical treatment of the vibrational spectrum of colloidal
“molecules.” The more complicated cases of hexatic �p=6�
and tetratic �p=4� order are analyzed in some detail �see Fig.
11�.

The starting point of the group theoretical treatment of the
vibrational spectrum of colloidal “molecules” is the observa-
tion that the defects displacements from equilibrium, q �see
Eq. �40��, form the basis of a reducible representation of the
point group of the molecule. If a molecule is acted upon by a
symmetry operation, a new configuration will result in which
the displacements of each defect will be permuted and trans-
formed, but interdefect distances and angles will be pre-
served. Here we take the point of view that the defects them-
selves are not permuted only their displacements, for
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example, defect i may exchange its displacement coordinates
qi with defect j. The liquid crystal free energy �in the one
Frank constant approximation� is therefore invariant under
all the operations of the point group of the colloidal defect
array.

The action of each operation of the group is naturally
represented by a distinct 2N�2N matrix �N is the number of
defects� that relates the new and old defect positions. This
representation can be completely reduced by choosing a set
of symmetry-related normal coordinates that are obtained
from the original ones by means of a linear transformation.
When normal coordinates are used, the matrixes representing
the action of the symmetry group can be brought in block
diagonal form simultaneously. Energetically degenerate lin-
ear combination of the original coordinates form the smallest
sets invariant under application of any symmetry operation
of the group. The members of any one set generate an irre-
ducible representation of the group. For each point group
there is only a small number of inequivalent irreducible rep-
resentations generally classified by the characters of their
transformations. The characters of the transformations are
simply defined as the traces of the matrices corresponding to
each symmetry operation and they are conveniently tabulated
in most texts of group theory �29,30� �see Tables I–III for the
character tables relevant to the tetrahedral, icosahedral and
twisted-cube shaped distributions of defects on a sphere�.

The task of finding the number of degenerate eigenmodes,
n���, with a given symmetry �labelled by �� reduces to count-
ing how many times the corresponding irreducible represen-

tation appears in a reducible representation. Note that the
characters of the original representation are the same as the
ones of the completely reduced one since the two differ only
by a change of coordinates which preserves the trace. Thus,
the character �R of the completely reduced representation
will be the sum of the characters of the various irreducible
representations that it contains

�R = �
�

n����R
���, �C1�

where �R
��� labels the character of the symmetry operation R

in the irreducible representation �. By appealing to the or-
thogonality of the characters one can write an expression for
n��� in analogy with the familiar expression for the compo-
nent of a vector along a given basis axis �29,30�

n��� =
1

g
�
R

�R
���*�R, �C2�

where g is the number of the symmetry operations in the
group and �R is the character of the completely reduced rep-
resentation. Equation �C2� is equivalent to Eq. �44� quoted in
the main text, as long as the sum over the group elements R
is replaced by a weighted sum over the classes in the group
since the characters of group elements in the same class are
equal.

We now adopt the analysis of Refs. �29,30� to provide a
set of rules that produce the characters �R of the reducible
representation generated by the coordinates without working
out the full form of the transformation matrices. There are
two key points to notice. First only the defects located on a
symmetry axis or plane contribute to �R the trace of the
transformation matrix; defects whose displacements are in-
stead interchanged or permuted by the symmetry operation
contribute only to the nondiagonal terms of the matrix and
hence can be ignored in determining the character �R. Sec-
ond the directions along which the displacements from equi-
librium are measured can be chosen freely since the trace is
invariant upon coordinate transformations. It is generally
convenient to choose them so that only one of the two dis-
placements components is affected by the symmetry opera-
tion.

FIG. 11. �Color online� �a� The ground state of a tetratic phase
exhibits eight short disclination lines located at the vertices of a
square antiprism inscribed in the sphere. �b� The 12 disclinations
that characterize hexatic order on a sphere lie at the vertices of an
icosahedron.

TABLE II. Character for the irreducible representations of the
icosahedral point group together with the character of the 24-
dimensional representation � generated by the defect
displacements.

Y E 12C5 12C5
2 20C3 15C2

A 1 1 1 1 1

F1 3 �a −�−1 0 −1

F2 3 −�−1 � 0 −1

G 4 −1 −1 1 0

H 5 0 0 −1 1

Y 24 2�−1 −2� 0 0

aNote that �=
�5+1

2

TABLE III. Character for the irreducible representations of the
tilted cube point group together with the character of the 16-
dimensional representation � generated by the defect
displacements.

D4d E 2S8 2C4 2S8
3 C2 4C2

1 4�2

A1 1 1 1 1 1 1 1

A2 1 1 1 1 1 −1 −1

B1 1 −1 1 −1 1 1 −1

B2 1 −1 1 −1 1 −1 1

E1 2 �2 0 −�2 −2 0 0

E2 2 0 −2 0 2 0 0

E3 2 −�2 0 �2 −2 0 0

� 16 0 0 0 0 0 0
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As a simple example, consider a defect lying on a reflec-
tion plane �see Fig. 12�. The displacement vectors before and
after the symmetry operation is applied are ��� ,��� and
��� ,−���, respectively. The resulting contribution to the
character from a single defect is thus 1−1=0. Inversions
through a center of symmetry �coinciding with the center of
the sphere� have a vanishing contribution to �R because there
are no defects there that can contribute to �R.

A rotation Cn
k by an angle 2�k

n through an n-fold axis of
symmetry on which the defect lies leads to the following
transformation laws for the longitudinal and latitudinal dis-
placements,

���i�

��i�

 =�cos�2�k

n

 − sin�2�k

n



sin�2�k

n

 cos�2�k

n

 ����i

��i

 . �C3�

We measure displacements using polar coordinates with re-
spect to the symmetry axis; the prime denotes the orthogonal
displacements after the symmetry operation Cn

k is applied.
Inspection of Eq. �C3� shows that the contribution from Cn

k to
the character �R is equal to 2 cos� 2�k

n
� times the number of

defects lying on the axis of rotation. On the other hand, the
contribution to �R from the improper rotation Sn

k is zero. To
see this note that the symmetry operation Sn

k is a rotary re-
flection achieved by performing a successive rotation
through an �alternating� axis followed by a reflection in the
plane perpendicular to the axis k times. An example of a
molecule possessing the symmetry operation S4 is methane,
CH4, with the carbon atom lying at the intersection between
an alternating axis and the reflection plane �see Fig. 5–2 in
Ref. �29��. The tetrahedral defect configuration considered in
this paper does not posses any defect at the position occupied
by the carbon atom of the methane molecule. More gener-
ally, the possibility of having a defect whose equilibrium
position is unchanged by the rotary reflection is ruled out
because such defect would have to lie off the spherical sur-
face at the intersection between the alternating axis and the
plane of reflection.

To sum up, each of the characters, �R, of the completely
reduced representation formed by the displacement coordi-
nates is given by the number of atoms whose equilibrium
positions are not changed by the symmetry operation R times
its fundamental character as derived in the preceding para-
graphs. Similar results that apply to unconstrained molecules
whose atoms have three-dimensional displacements are
listed in Table 6–1 of Ref. �29�. The resulting characters for
the tetrahedral, icosahedral and tilted cube defects configu-
rations are listed in Tables I–III. Upon using Eq. �44� and the
character Table II we can decompose the 24-dimensional
representation, Y, formed by the displacements from an
icosahedral equilibrium configuration into irreducible repre-
sentations. The result reads

Y = 2H + 2G + 2F1. �C4�

The three rigid body rotations correspond to one of the two
triplets in F1 while the remaining 21 independent normal
coordinates form energetically degenerate multiplets with the
following degeneracy factors: two quintets, two quartets, and
one triplet. This analysis is confirmed upon direct diagonal-
ization of the representation Y which leads the 21 nonvan-
ishing eigenvalues �i, with the multiplicities shown in bold
type in parentheses

�i = �0.87 � �5�,0.09 � �5�,0.74 � �4�,0.22

� �4�,0.96 � �3�� . �C5�

Note that the normal modes in the second quintet are much
“softer” than the rest.

A similar analysis applied to the twisted cube configura-
tion of defects leads to the following decomposition of the
�defects’ displacements� representation, �:

� = 2E1 + 2E2 + 2E3 + A1 + A2 + B1 + B2, �C6�

where the three rigid body rotations are contained in one of
the two doublets E3 and in the singlet A2, which leaves five
doublets and three singlets for the eigenvalues �i. Direct di-
agonalization of � leads four doublets, one triplet, and two
singlets of nonvanishing eigenvalues,

�i = �1.37 � �3�,1.31 � �2�,0.89 � �2�,0.47 � �2�,0.06

� �2�,0.11,1.26� . �C7�

The discrepancy between the degeneracies found by direct
diagonalization on the one hand and group theory on the
other hand is caused by an accidental symmetry of the po-
tential energy of the tilted-cube arrangement of defects.
Hence the first triplet is to be interpreted as the missing dou-
blet and singlet that happen to have the same energy even if
there is no symmetry reasons to expect so. The modes in the
last doublet of Eq. �C7� are the softest.

FIG. 12. �Color online� Schematic illustration of the inversion
through an equatorial plane of symmetry �shaded circle bisecting a
sphere� for a reflection �. The longitudinal displacement of the
defect is unchanged while the direction of the latitudinal one is
inverted.
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