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We present a mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall
and a nonideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension
between the liquid-gas, the liquid-solid, and the gas-solid phases. We study the dependency of the contact angle
on the two free parameters of the model, which determine the interaction between the fluid and the boundaries,
i.e. the equivalent of the wall density and of the wall-fluid potential in molecular dynamics studies. We
compare the analytical results obtained in the hydrodynamical limit for the density profile and for the surface
tension expression with the numerical simulations. We compare also our two-phase approach with some exact
results obtained by E. Lauga and H. Stone �J. Fluid. Mech. 489, 55 �2003�� and J. Philip �Z. Angew. Math.
Phys. 23, 960 �1972�� for a pure hydrodynamical incompressible fluid based on Navier-Stokes equations with
boundary conditions made up of alternating slip and no-slip strips. Finally, we show how to overcome some
theoretical limitations connected with the discretized Boltzmann scheme proposed by X. Shan and H. Chen
�Phys. Rev. E 49, 2941 �1994�� and we discuss the equivalence between the surface tension defined in terms
of the mechanical equilibrium and in terms of the Maxwell construction.
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I. INTRODUCTION

The physics of molecular interactions at fluid-solid inter-
faces is a very active research area with a significant impact
on many emerging applications in material science, chemis-
try, micro and/or nanoengineering, biology, and medicine,
see �1–3�. Many problems require the spreading of a liquid
on a solid that may either be a simple flat and clean surface
or present some degree of roughness contaminated by com-
pounds with different chemical-physical qualities �4�. As for
most problems connected with surface effects, fluid-solid in-
teractions become particularly important for micro- and
nano-devices, where the physical behavior is largely affected
by high surface and/or volume ratios �5,6� whose direct con-
sequence is the enhancement of capillary phenomena with
respect to bulk properties �4,7�. On the theoretical side, very
little is known because of the difficulties to match the clas-
sical infinite-volume thermodynamics description with sur-
face effects. From the experimental side the study of the
surface properties for the flow-solid interactions is much
more difficult than the solid-vacuum case �8–18�.

In most cases, to reach quantitative results on specific
problems, one is forced to rely on numerical simulations,
especially in the presence of complex boundary conditions.
To date, two major approaches dominate this field from the
numerical side. The first one is based on a pure hydrody-
namical description, with the interaction between the flow
and the solid fully renormalized in terms of ad hoc boundary
conditions for the hydrodynamical fields �19–22�. The main
drawback is represented by the difficulty to describe a vari-
ety of different solid properties, with complex roughness
landscape and chemical-physical attributes. The main advan-
tage is that one can directly focus on spatial and frequency
variations up to the typical hydrodynamical scales.

The second approach attacks the problem from an atom-
istic description, by integrating the Newton equations for a
set of molecules interacting via a Lennard-Jones potential.
This is the basic idea behind molecular dynamics �MD�,
which requires an additional ad hoc tuning of the free pa-
rameters entering the potential between liquid-liquid mol-
ecules and between liquid-solid molecules �22–27�. These
parameters are fine tuned by comparison with the experi-
ments and are mainly of two types: the overall strength of the
interactions and the typical interacting distance �fixed by the
relative weight between the attractive and repulsive terms�.
The main drawback is here represented by the congenital
scale separation between this method and continuum phe-
nomena �see �28�� and consequently the inability to describe
spatial fluctuations on scales which are much larger than the
intermolecular interactions and temporal fluctuations larger
than a few milliseconds. The advantage is given by its ap-
parent ab initio nature, although to be of any practical use,
the method needs to be supplemented with experimental data
�29,30�. In this paper we follow a third route, focusing on a
mesoscopic modeling of the solid-liquid interaction based on
the kinetic theory of dense fluids �31,32�.

The method, known as lattice Boltzmann equation �LBE�,
directly accesses spatial and temporal fluctuations at the hy-
drodynamical level with the extra bonus of a large flexibility
in the description of the chemical and physical properties of
the boundary conditions �see �33–35� and for exhaustive re-
views see �36,37��. With respect to the MD approach, one
pays the price to move the matching with the experimental
data to the level of bulk interaction between the Boltzmann
distribution function �the equivalent of liquid-liquid MD po-
tential� and to the boundary conditions imposed on the Bolt-
zmann equation �the equivalent of the solid-liquid potential
in the MD�. Ideally one would supply the infinite
Bogoliubov-Born-Green-Kirkwood-Yvon �BBGKY� hierar-
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chy �38,39� typical of any kinetic description, with atomistic
information, thereby closing the problem without any ap-
proximation. In most cases, a more practical approach is
taken: in order to derive useful kinetic description, some
educated guess on the many-body BBGKY hierarchy are
proposed and tested a posteriori.

In this paper, we shall focus on surface effects in the
presence of phase coexistence between a liquid and its satu-
rated vapor. In particular, we aim at investigating how to
develop an effective mesoscopic description of the surface
tension between the liquid-gas, �lg, the liquid-solid, �ls the
gas-solid �gs phases and, more practically of the contact
angle � �4,7� that can be defined from the above surface
tensions:

cos��� =
�gs − �ls

�lg
. �1�

We will perform an analytical and numerical study within the
mean field method proposed by �40,41�, based on a lattice
Boltzmann equation with an effective two-body potential de-
scribed only in terms of local, single molecule, properties of
the fluid �see the next section for a detailed description of the
method�. The model provides, in our opinion, the simplest
coherent description of the many-body interaction typical of
dense fluids within the lattice Boltzmann equation frame-
work for non-ideal fluids �40–44�. Other important attempts
were already published by �45–47� concerning a lattice tran-
scription of mean field thermodynamic boundary conditions
�48� in the framework of free-energy multiphase methods
�see �42��. Numerical investigations of the contact angle
within a LBE approach were also presented by �44,49� but
without any analytical control on the links with the surface
tension as proposed here.

In this paper, we review first the method as defined by
�40,41� for bulk flows �no boundaries� and we extend it to
include the interaction with a given solid surface by the in-
troduction of suitable boundary conditions. This defines a
theoretical scheme able to incorporate nonideal effects
�phase transitions� triggered by the presence of the solid
boundary and complex fluid properties connected to the ac-
tual density profiles �contact lines, contact angle, capillary
phenomena, surface tensions, etc.�. The main result of the
first part is an exact analytical expression of the contact
angle in terms of the surface tensions derived from the hy-
drodynamical limit of the Boltzmann equations. In the sec-
ond part, we perform a systematic study of the contact angle
dependency on the boundary properties and we compare our
two-phase approach with some exact results obtained for a
pure hydrodynamical single-phase fluid based on Navier-
Stokes equations with suitable boundary conditions �19,20�.
We also show how to overcome some theoretical limitations
connected with the discretized Boltzmann scheme here uti-
lized, proposed in �40�, and we discuss the equivalence be-
tween the surface tension defined in terms of the mechanical
equilibrium or in terms of the thermodynamical “Maxwell
construction” �50,51�. Finally, we discuss the possible appli-
cation of this method to describe non-stationary flows in mi-
crochannels, the apparent slip phenomenon, and the wetting

and/or dewetting transition induced by microcorrugation in
the boundaries.

II. THE SHAN-CHEN (SC) APPROACH TO NONIDEAL
FLUIDS: THE INCLUSION OF BOUNDARIES

As soon as one goes beyond the “ideal gas” description,
allowing for phase transition and for density and temperature
variations inside the flow, the correct way to approach the
kinetic problem is to start from the BBGKY formalism �39�.
Phase transitions are triggered by critical dependency of the
thermodynamic variables on small variations in the local
density, temperature, and pressure fields. In order to describe
such phenomena, one needs to go beyond the description
based on the probability density to observe a single molecule
with a given velocity, v1, at position r1 and at time t,
f1�r1 ,v1 , t�. In particular, one needs to consider at least the
two-particle distribution, f1,2�r1 ,v1 ,r2 ,v2 , t�, which explic-
itly enters in the Boltzmann equation via the collisional term,
�:

�t f1 + v1 · �r1
f1 + K1 · �v1

f1 = � , �2�

where K1 is an external body force and

� = −� dv2dr2�v1
f1,2�r1

V�r12� �3�

with V�r12�=V��r1−r2�� being the interparticle potential. The
BBGKY hierarchy prescribes the evolution of f1,2 in terms of
the three-particle densities, f1,2,3, the evolution of f1,2,3 in
terms of the four-particles density and so on. The simplest
closure which takes into account the two-particles interaction
consists in adopting a “mean-field” approach for the colli-
sional terms. This approach starts by rewriting f1,2 in the
equivalent form:

f1,2�r1,v1,r2,v2� = f1�r1,v1�f2�r2,v2�g�r1,r2,v1,v2� ,

where we have introduced the two-particles correlation func-
tion, g�r1 ,r2 ,v1 ,v2�. To proceed further one needs to make
some approximation on the two-body correlation function
g�r1 ,r2 ,v1 ,v2�. The celebrated “molecular chaos” assump-
tion of Boltzmann gives g=1, i.e., absence of both velocity
and spatial correlations �32�. In the less restrictive case
where only velocity correlations vanish, one has

g�r1,r2,v1,v2� = g�r1,r2�

and the collisional term can be �see also �52�� rewritten as

� = − �v1
f1� dr2��r2�g�r1,r2��r1

V�r12� , �4�

where we have used the definition of the local density as

��r,t� =� dv f�r,v,t� . �5�

The approximation �4� is at the core of many lattice Boltz-
mann descriptions of nonideal fluids because now the
collisional term has the form of a body force term,
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��K1 ·�v1
f1, and may be seen as a renormalization of the

local pressure tensor via the introduction of nonideal terms in
the equation of state �36,53�.

More quantitatively, if we start from Eq. �2� and together
with Eq. �5� we define the local momentum as

�u�r,t� =� dv f�r,v,t�v �6�

we obtain �see �39,52�� conservative equations for the two
local fields:

�t� + � · ��u� = 0, �7�

�t��u� + � · �� dv fvv� =� dv �v = − �WJ , �8�

where the tensor WJ is directly related to the interaction po-
tential V�r12�:

Wi,j = −
1

2
� dr1dv1dv2dr2f1f2g

���r − r1�V��r12�r12
−1�r12�i�r12� j . �9�

The previous equations are clearly locally conservative for
density and globally conservative for momentum �39�.

In the realm of Boltzmann equations, a popular way to
simplify the collisional integral is to write it as a simple
relaxation term �with characteristic time �� towards a suitable
local equilibrium. This is the celebrated BGK approximation
given by �54� and one may wonder which is the simplest
BGK description consistent with Eqs. �7� and �8�. By consis-
tent BGK description, we mean a single time relaxation col-
lisional term of the form

�BGK = −
1

�
�f − f �M�� , �10�

where the equilibrium distribution f �M� is the local Maxwell-
ian in D dimensions:

f �M� =
��

�2	KT��D/2 exp	 �v − u��2

2KT�

 �11�

and the parameters ���r , t�, u��r , t�, T��r , t� can be chosen in
such a way to be consistent with global balance equations. In
particular, straightforward Gaussian integration yields to
���r , t�=��r , t� and

u��r,t� = u�r,t� −
1

��
� WJ �r,t� �12�

which means a space-time dependent shift of the mean value
of the local Maxwellian. The Shan-Chen model �40,41� is
precisely equivalent to such an approach with the assumption

�WJ �r,t� = − Gb�
0

smax

ds� d�v
�r,t�
�r + v̂s,t�v̂ , �13�

where with d�v we denote the integration over the angular
dependency of the unit vector, v̂ and where 
�r , t� is a mean-
field potential which depends on r and t only through the

local density, i.e., 
�r , t��
(��r , t�). In the above, �smaxv̂�
represents the range of the interactions and Gb a coupling
constant, something like an inverse temperature for the
model.

In principle, the temperature T��r , t� in �11� should also be
changed on account of thermodynamics consistency and total
energy conserving dynamics �potential plus kinetic�. How-
ever, being interested in isothermal phenomena, we keep
KT�=cs

2, cs
2 being the sound speed velocity �for a possible

extension of the model to include also temperature fluctua-
tions see �52��.

Upon discretization of the approximation described be-
fore, we derive immediately the �lattice� Boltzmann equa-
tions �55,56� as follows:

f��x + ci�t,t + �t� − f��x,t�

= −
�t

�
�f��x,t� − f�

�eq����x,t�,u��x,t��
 , �14�

where x runs on a two- �or three-� dimensional lattice and
�t=1 is the time stepping in the numerical scheme. The LHS
of �14� is the molecular free streeming of a discrete set
�c� ,�=0, . . . ,N� of velocities whereas the right-hand side
represents molecular collisions via a simple relaxation to-
wards the local equilibrium f�

�eq� �the local Maxwellian ex-
panded to second order in the Mach number� in a time lapse
of the order of �. This relaxation time fixes the fluid kine-
matic viscosity as 
=cs

2��− 1
2

� where cs=1/�3 in the present
work �see �56��. The fluid density and momentum are given
by

� = �
�

f�, u =
1

�
�
�

f�c�

and can be shown to evolve according to the Navier-Stokes
equations of fluid-dynamics, �56�:

���tu + �u · ��u� = − �P0
I + F + � · �
� � u� ,

�t� + � · ��u� = 0, �15�

being PJ0 the ideal pressure tensor given by the perfect-gas

equation of state: PJ0= IJcs
2�, where IJ is the unit tensor. Non-

ideal effects are modeled through the self-consistent body
force term �13� that can be discretized as

F�x,t� = − Gb
�x,t��
�

w�
�x + c��t,t�c�, �16�

where 
�x , t� is the lattice version of the mean-field potential
previously used and w� are normalization weights �see Ap-
pendix A for more technical details�. Due to this body force
at each time step we consistently redefine the velocity u� in
the equilibrium distribution f �eq� as

u� =
1

�
�
�

c�f� −
1

��
Gb
�x,t��

�


�x + c��t,t�c�

which in turns implies a nondiagonal pressure tensor PJ de-
duced from the condition:
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− �PJ + �P0
I = F . �17�

By expanding in Taylor series the interparticle potential one
gets �see Appendix A� in the case �t=1:

Pij = �cs
2� +

1

2
cs

2Gb
2 +
1

2
cs

4Gb
�
 +
Gbcs

4

4
��
�2��ij

− 1
2cs

4Gb�i
� j
 . �18�

Let us note that there is always a certain degree of arbitrari-
ness in deriving the full expression of the pressure tensor in
the continuum limit �17�. The most reasonable way to do it is
to impose that the constraint �17� is verified up to the second
order in the Taylor expansion of both pressure and forcing
expression. We stop at second order because Navier-Stokes
equations are obtained from the LBE at the second order in
the Chapman Enskog expansion. The above expression for
the pressure tensor is different from the one proposed in Eq.
�19� of �40�. The reason is that in �40� the constraint �17� is
verified only up to the first order in Taylor expansion. This
difference is important for the thermodynamic consistency of
isothermal flow as it will be described in Sec. II D, see also
�43�.

The first two terms in the diagonal part of �18� describe
the bulk homogeneous phase transition by the nonideal equa-
tion of state:

Pb��� = cs
2� + 1

2cs
2Gb
2��� . �19�

with a typically used functional form:


��� = �1 − e−�/�0� �20�

with �0 a reference density.
Now, we will consider a general background that is inde-

pendent of the functional forms of 
, given for granted that,
for a quantitative agreement with MD and experiments, one
can choose different functional forms and/or different inter-
particle interactions. We will be back on the importance of
the functional form later on in Sec. II D, where we investi-
gate the Maxwell construction in the �P ,V� diagram of the
model. Let us only discuss for the moment the qualitative
behavior imposed on the �, dependency of 
��� by two
physical constraints. First, for small densities � we need to
recover the equation of state of an ideal gas, which requires
that


��� � �, � → 0.

Second, for large local densities, the interacting potential
must saturate:


��� → const., � � �0

a requirement meant to mimic the hard-core properties of
real molecules which prevent unphysical density accumula-
tions. Any smooth functional form which satisfies the two
previous requirements leads to a phase transition as soon as
Gb becomes smaller than a critical value Gc �with Gc being
negative�, where the fluid starts to exhibit two coexisting
phases with the same pressure. All the other terms in Eq.
�18�, which depend explicitly on the density variations, de-

scribe the development of an interface profile with its own
surface tension �as soon as the isotropy of the pressure tensor
is violated�.

A. SC model without boundaries

For the sake of completeness, let us summarize again the
steps needed to calculate the density profile in presence of a
liquid-gas interface in an unbounded domain as shown for
the first time by �40�. This calculation will be used later on to
implement the expression of the contact angle in presence of
boundaries. In order to calculate the density profile we need
to use the general expression of the pressure tensor �18� and
insert it into the mechanical equilibrium condition:

�PJ�x� = 0, �21�

with the appropriate boundary conditions ��−��=�g and
��+��=�l for a planar interface between liquid and gas. Let
us suppose that the interface develops along the y coordinate.
Under this geometry, the pressure tensor becomes anisotropic
with a mismatch between the transverse components Pxx�y�
= Pzz�y� and the normal component Pyy�y�. The condition
that the interface does not move, �21�, implies that the nor-
mal component remains constant and equal to the value in
the bulk, Pbulk, throughout the interface:

Pyy�y� � Pbulk = cs
2� +

1

2
cs

2Gb
2 +
1

2
cs

4Gb
�yy
 −
Gbcs

4

4
��y
�2.

�22�

The density shape is now fully determined by solving �22�
with the requirement that the liquid and gas phase share the
same value of the bulk pressure:

Pbulk = cs
2�g + 1

2cs
2Gb
2��g� = cs

2�l + 1
2cs

2Gb
2��l� . �23�

By making the change of variables �d� /dy�2=z, one may
rewrite the mechanical equilibrium as an ordinary differen-
tial equation for the interparticle potential where only deriva-
tives with respect to the density � appear:

Pbulk = cs
2� +

Gb

2
cs

2
2 +
Gbcs

4

2
	1

2


2


�

d

d�
��d�

dy
�2�d


d�
�2 1



�
 .

�24�

The above differential equation can be integrated explicitly
to give

z��� =
4


Gbcs
4�
��2�

�g

� �Pbulk − cs
2� −

Gb

2
cs

2
2�
�


2 d� �25�

with 
�=�
 /��. If the two extremes of the integral are cho-
sen inside the bulk phases we get z���=0 for �=�l and �
=�g. It is easy to realize that in order to be compatible with
the latter boundary conditions, we must require

�
�l

�g �Pbulk − cs
2� −

cs
2Gb

2

���2�
�


2 d� = 0 �26�

which fixes, together with �23�, the two densities �l and �g as
shown by �40�.
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The whole profile can be obtained by inverting �25� or by
directly numerically solving �24� starting from the inside of
one bulk phase and making a small initial spatial perturba-
tion on the constant density profile. Let us note that Eqs.
�22�, �25�, and �26� are different from Eqs. �21�, �24�, and
�25� of �40� because of the different requirements imposed
here in the derivation of the pressure tensor as discussed after
Eq. �18�.

B. Surface tension and contact angle

Following �7�, we define the liquid-gas surface tension �lg
as the integral along the coordinate normal to the interface of
the mismatch between normal and transverse components of
the above tensor. More precisely, assuming that the only de-
pendence is in the y coordinate, the local increment of the
surface tension is

Pyy − Pxx =
d�lg

dy
= −

1

2
cs

4Gb��y
�2. �27�

Upon integration from −� to +�, the surface tension is
readily calculated:

�lg = −
1

2
cs

4Gb�
−�

+�

��y
�2dy . �28�

This implies the existence of transverse stresses that would
result in a pressure drop for spherical interfaces and in the
most general Laplace law for a curved surface:

�p = �lg� 1

R1
+

1

R2
� �29�

being R1 and R2 the local principal radii of curvature of the
surface, see �4,7,40�. Let us now discuss how to generalize
the previous results to the case of a solid boundary. In our
language, mechanical equilibrium between multiphase sys-
tems �say liquid, gas, and solid� can be formulated as a more
general problem. We want to study the mechanical equilib-
rium by imposing that the density profile must match some
given value at the boundary position:

�PJ�x� = 0,


„��xw�… = 
��w� , �30�

where the solid wall is at position xw. Equation �30� is noth-
ing but the mechanical equilibrium of a multiphase system in
the presence of a boundary condition. The value of the inter-
particle potential at the wall, 
��w�, is a free parameter in the
model, and it is not meant to be related with the “true” den-
sity of the solid phase. It will be used here to tune different
wall properties.

Focusing, for the sake of simplicity, on two-dimensional
systems �see Fig. 12 in Appendix B� the mechanical equilib-
rium equation translates into

�xPxx + �yPxy = 0 �31�

or equivalently ��xPxy +�yPyy =0�, whose meaning is that the
flux over an arbitrary contour �Green’s theorem� of the vec-

tor �Pxx , Pxy� is zero. With reference to Fig. 12 in Appendix
B we note that for such a calculation we need to specify the
pressure tensor along a solid-gas interface and liquid-solid
interface. If we choose the rectangular contour shown in Fig.
12 and impose the flux of the above vector exactly to zero
�details are given in Appendix B� we obtain:

cos��� =

�
sg

��y
�2dy − �
sl

��y
�2dy

�
lg

��y
�2dy

, �32�

where �sl��y
�2dy, �sg��y
�2dy, �lg��y
�2dy indicate the posi-
tive integrals calculated along the solid-liquid, solid-gas, and
liquid-gas interfaces.

From the above relation �32�, which fully determines the
contact angle in our LBE scheme, one naturally extracts the
definition of the surface tensions:

��,� = −
1

2
cs

4Gb�
�,�

��y
�2dy , �33�

where with � ,� we mean any two among the liquid, gas, and
solid phases. Note that, rigorously speaking, the surface ten-
sions between liquid-solid and between gas-solid are defined
only modulo as an additive constant, being operationally de-
fined in terms of the contact angle which depends only on
their difference �4�. The above definition is consistent with
the requirement to have �ls=0 when the wall has the same
density of the liquid �perfect wetting�. Correspondingly, one
may also imagine a situation when the gas phase perfectly
matches the wall properties, �g=�w, where we have �sg=0
and consequently a complete dewetting.

C. Analytical and numerical results

From the mechanical equilibrium condition �30�, we may
calculate the density variation along an interface between
any two of the three phases, generalizing the calculation
made by �40� for the gas-liquid interface only. To accomplish
this, we must integrate the equation for the normal compo-
nent of the pressure tensor �22� imposing the boundary con-
ditions at the solid, ��y=yw�=�w, and ����=�� where with �
we denote either the liquid or the gas phase �see also Sec.
II D for more details�. In Fig. 1 we show two such profiles.
In our first case at the center of the channel there is only
liquid and the gas phase cannot develop, i.e., the averaged
density is larger than the liquid density at coexistence, while
in the second case the averaged density is chosen such that a
gas phase can develop between the liquid and the wall.

Once the density profile is known, it is easy to obtain the
corresponding surface tension by plugging the density profile
into the expression �33�. For example, in Fig. 2, we show the
surface tensions, �ls ,�lg ,�sg at a given temperature �Gb� and
by changing �w, i.e., by varying the wetting properties of the
surface. Of course, only the first two will depend on �w and,
accordingly to our previous discussion, they must satisfy
�ls=0 for �w=�l �perfect wetting� and �gs=0 for �w=�g.

Given the surface tensions for a fixed temperature one
may readily calculate the contact angle which describes the
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macroscopic properties of the surface as a function of the
mesoscopic boundary condition imposed on 
�xw�=
��w�.
This is an important methodological result of this paper, i.e.,
we provide a mesoscopic way to parametrize the hydrody-
namical behavior of fluid in the proximity of a surface �with
different contact angles� as a function of the tunable free
parameter 
��w�.

In figure 3 we show the analytical results obtained by
inserting the density profile from �24� into �32� and �33�. In
the same figure we also show the numerical results obtained
by running the LBE code and with the estimate of the contact
angle obtained with a goniometer as shown in Fig. 4. As one
can see from Fig. 3, the method is able to reproduce very
hydrophobic material, ��180° and perfectly wetted surface
��0o, the latter case is obtained when �w is chosen equal to
the liquid density at the given temperature. All numerical
results are obtained by using the shape �20� for the interpar-
ticle potential. This is the first study, to our knowledge,
where a systematic analytical procedure to derive the contact
angle in lattice Boltzmann models with interparticle poten-
tials has been proposed.

The production of a rarefaction zone close to the wall is
also important to determine the slippage properties in the
case when a constant external pressure drop is applied on the
system �Poiseuille flow�. For instance, the formation of a gas
layer is believed to be the most probable cause of the appar-
ent slip length measured in many experimental microchan-
nels �see �57��. The idea is that the rarefaction layer leads to
two feedback on the bulk fluid velocity. First, it allows for
the fluid to slide on it without touching the boundary. Sec-
ond, it gives an effective reduction on the channel width seen
by the fluid, leading to an overall increase of the mass
throughput for a given pressure drop. Once the density pro-
file is determined, one may solve the equations for the
stream-wise velocity �15� profile in presence of a unitary
external pressure gradient, �Pext, and a unitary kinematic
viscosity, 
, in the Stokes approximation:

�y���yux� =
�Pext



= 1. �34�

In Fig. 5 we show a few examples of the velocity profile at
changing the contact angle. All data have been obtained by
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FIG. 1. The stationary state configuration for the density field as
a function of the relative distance from the wall. We present the
density field normalized to the center channel density for two dif-
ferent values of the average density of the system: ���=1.1�l ���
and ���=0.7�l ���. In both cases we integrate numerically the lat-
tice Boltzmann equation with �=1 in a 2d channel with two walls
�bottom and lower� and a periodic boundary condition in the
stream-wise direction. The dimensions of the channel are Lx�Ly

=80�45 and Gb=−6.0, being Gc=−4.0 the critical point of the
system. The liquid and gas density for this value are, respectively,
�l=2.65 and �g=0.07 in lattice Boltzmann units. Note that the den-
sity tends to match a given value at the wall �for y /Ly =0� which is
different from both liquid and gas values; this is because of the
chosen boundary condition, 
��w=0.5�.
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FIG. 2. Surface tensions in a three phase system for Gb=−6.0 as
a function of �w. The horizontal line represents the surface tension
between liquid and gas ��lg�. The surface tension between solid and
gas ��sg� is zero for �w=�g=0.07 and equal to �lg for �w=�l

=2.65. The surface tension between liquid and solid ��ls� reflects
the opposite behavior.
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FIG. 3. Contact angle for the case Gb=−6.0 as a function of �w.
The analytical estimate is compared to the numerical results of lat-
tice Boltzmann simulations ���. The lattice Boltzmann simulations
are carried out in a 2d domain periodic along the stream-wise di-
rection and with two walls �upper and lower wall�. The grid mesh
used is Lx�Ly =80�45 and the relaxation time chosen is �=1. To
produce the steady state with a drop of liquid the system has been
initialized with a nonhomogeneous condition with a square spot of
liquid on the lower wall.
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imposing that the flow has the fluid density ��l� at the center
of the channel and that it ends with a density ��w� at the
boundary. Note that, by increasing the hydrophobic property
of the surface �increasing ��, the rarefaction layer becomes
more and more singular, i.e., the velocity profile develops
higher and higher shear rates at the boundary.

To quantify this effect, one usually introduces an apparent
slip length, �s defined as the length were the bulk, Poiseuille-
like, velocity profile extrapolates to zero away from the wall,
see Fig. 6. A simple phenomenological estimate of �s for
small density variations has been proposed previously in �58�
where the authors show that the apparent slip length can be
estimated as
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FIG. 4. �Color online� Left: typical density profile from which we extract the contact angle. The contact angle in the numeric is extracted
by estimating the angle made by the surface where the density profile is equal to the average value ��l−�g� /2 being �l=2.65 and �g

=0.07 for the present case with Gb=−6.0. The computational parameters are the same used as for Fig. 3. To produce the three phases
equilibrium the system has been initialized to a nonhomogeneous condition with a square spot of liquid in contact with the lower wall. Right:
a vertical snapshot of the left panel for x=45.
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FIG. 5. Velocity profiles for pressure driven Stokes flow. Pro-
files are obtained integrating numerically the Stokes equation for
unit pressure drop and kinematic viscosity �34� in a homogeneous
�in the stream-wise direction� channel with a height L=50 grid
points. The profiles are then normalized with respect to the center
channel velocity of the Poiseuille flow �uc

p� for the same geometry.
From top to bottom we show different values of �w corresponding
to different contact angles: �w=0.13 ��=166° �, �w=0.27 ��
=145° �, �w=0.49 ��=110° �.
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FIG. 6. Slip length for the profiles in the Stokes approximation.
In the top panel we show an extrapolation of the profiles shown in
the previous figure. The slip length is obtained extrapolating to zero
the parabolic profile obtained as a best fit in the bulk region of the
channel. In the bottom panel we show the slip length estimated
indirectly from the mass flow rate gain with respect to the Poiseuille
profile for different contact angles ��� and compare to the phenom-
enological result �35�, solid line. The good agreement is obtained
with a prefactor in �35� fixed to be 1.2.
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�s �
��

�w
� , �35�

where with �� we mean the density jump from the bulk to
the wall values and with � is proportional to the rarefaction
layer, for a similar study see also �59�. Another important
quantity is the mass flow rate gain, i.e., the ratio between the
actual mass flow rate and the mass flow rate obtained assum-
ing a perfect Poiseuille-like profile in the whole channel sec-
tion:

� =
� dy��ux�

L3 � Pext/�12
�
, �36�

where L is the total channel height. The mass flow rate is the
only quantity which can be easily measured in microdevices
experiments. It therefore plays an important role as a bench-
mark for many modeling methods. In Fig. 6 we show the
results for the mass flow rate gain of our mesoscopic model
as a function of the contact angle. Note that one can easily
gain a factor of the order of 4÷5 times larger for the case of
high hydrophobic boundaries. In the same figure �bottom
panel� we also show the phenomenological estimate for the
mass flow rate gain obtained by using the expression �35�
with �� /�= ��l−�w� /�w and � estimated as the distance
�starting from the wall� needed to reach the 98% of the cen-
ter channel density �again �l�.

D. Consistency with thermodynamics

In this section, we want to discuss a few issues on the
thermodynamics consistency of the SC model here studied.
Let us first start from the simple case of a liquid-gas interface
in absence of boundaries. Up to now, in order to get the
whole density profile, we have used the mechanical equilib-
rium condition supplied with the appropriate boundary con-
ditions for the densities in the two phases, see Eqs.
�22�–�26�. Next, we investigate the relation between this me-
chanical condition and the thermodynamic conditions on
both the density values and on the density profile �i.e., on the
surface tension expression�. The Maxwell construction
which determines the thermodynamics consistency �see also
�60�� in the �P ,V� diagram of the liquid-gas interfaces is
built in terms of the requirement that ��g

�l �Pbulk− Pb����dV
=0 where V�1/�. It is easy to realize that this condition
leads to the following integral constraint for the two densi-
ties, �l ,�g, at phase coexistence:

�
�l

�g �Pbulk − cs
2� −

cs
2Gb

2

2���� 1

�2d� = 0 �37�

which coincides with �26� only if 
�����. This is the indi-
cation that the SC choice 
���= �1−exp�−� /�0�� is thermo-
dynamically inconsistent, although one may note that the dis-
crepancy is extremely small in all realistic cases. For
instance, in Fig. 7 we show the good agreement of the liquid
and gas density values obtained by using the mechanical
equilibrium equation �26� and the Maxwell construction �37�
for different temperatures �Gb�.

Another problem using the SC approach to describe the
interface shape consists in the expression for the surface ten-
sion �28� which is proportional to ��y
�2 instead of being
proportional to ��y��2 as required by thermodynamical argu-
ments �see �7��. Also in this case, however, the situation is
quite encouraging. In fact, let us note that starting from �20�
and the expression of the bulk pressure �19�, the critical point
of the system is identified by the relations

�Pb���
��

= 0;
�2Pb���

��2 = 0. �38�

These are equivalent to

�
��2 = − 

�; 

� = −
1

Gb
. �39�

Using the functional form 
���= �1−exp�−� /�0�� it is readily
checked that



� = −
1

�0


�. �40�

Now, using �38�–�40� we obtain

�
��2 = − 

� =
1

�0


� = −

1

�0Gb
. �41�

Since 
�=�
 /��, this suggests the following scaling rela-
tion:

��y
�2 � −
1

Gb�0
��y��2 �42�

which in turn would imply that the correct matching
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FIG. 7. Results obtained from the mechanical stability condi-
tions �26�, �, and thermodynamic coexistence curve �37�, �, for
liquid and gas densities. The results of numerical simulation are
also reported ���. The numerical simulations are carried out in a
fully periodic 2d setup with grid mesh Lx�Ly =90�90 and a re-
laxation time �=1. The system is then initiated to have a flat inter-
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�lg = −
1

2
cs

4Gb�
−�

+�

��y
�2dy �
cs

4

2�0
�

−�

+�

��y��2dy . �43�

The previous argument, although exact at the critical point
�Gb=Gc�, is semiquantitatively correct for �Gb�� �Gc�. In fact,
in Fig. 8 we show the comparison between the surface ten-
sion measured in our LBE approach and the one defined by
�43�. The agreement is quite satisfactory for all values of
temperature, showing that the model is not far from being
consistent also on that side.

E. Two-phase mesoscopic model vs Navier-Stokes equations

In this section we discuss the interplay between the me-
soscopic two-phase approach here proposed in the presence
of boundaries and the most traditional “fully macroscopic”
description at the hydrodynamical level with ad hoc bound-
ary conditions. A similar study has already been proposed by
�22� where a comparison between microscopic MD and mac-
roscopic Stokes flows with slip boundary conditions was pre-
sented. In our case, we focus on two analytical results ob-
tained for Navier-Stokes equations in a channel with
longitudinal or transverse �with respect to the flow direction�
free-slip strips, i.e., the case when some inhomogeneous ma-
terial is deposited at the surface so as to drastically change
the boundary conditions of the Navier-Stokes field from no-
slip, u� =0, to free-slip, �nu� =0 �see Fig. 9�. Here u� stands
for the velocity component along the surface and �n is the
derivative along the surface normal direction.

This problem can be attacked at a purely hydrodynamical
level, bypassing completely the chemical-physical reactions
at the wall that generates these two different boundary con-
ditions and focusing only on the bulk liquid incompressible
phase. Using conformal mapping on plane surfaces made up
of longitudinal strips �2� proposed an exact analytical solu-
tion for the Stokes problem and only very recently a similar

calculation has been proposed for transverse strips �20�. In a
previous paper we have shown that the same analytical re-
sults can be obtained within the realm of LBE for single
flows, but with properly modified boundary conditions �61�.
The motivations were very close to the Navier-Stokes con-
tinuum approach: neglect microscopic details very close to
the boundary, including the possible presence of a rarefaction
layer and try to mimic the bulk profile by renormalizing the
fluid-wall interactions into a suitable wall function. Next we
show that indeed one can recover both the analytical results
of �19,20� and the numeric of the single-phase LBE, by using
the present two-phase model. In this way, we fill the gap
between the bulk physics and the boundary layer physics in
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FIG. 8. Surface tension as a function of the interaction param-
eter Gb. The surface tension calculated using both expressions in
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 ���. To show
the importance of the normalization factor �42� we also show the
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FIG. 9. �Color online� Schematic configurations for the simula-
tions of laminar flows with boundary conditions of free shear and
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�bottom� strips of free shear is produced by varying the boundary
density from complete wetting ��w=�l, contact angle 0°, no slip�
and perfect dewetting in a strip H ��w=�g, contact angle 180°, free
shear�. With these setups the “slip” probability is �=H /L being L
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merical simulations are given in Fig. 10.
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the proximity of a chemically active wall and we are able to
follow also the dynamics inside this latter layer. To accom-
plish this goal, we performed LBE simulations of the SC
model in a channel where 
��w� had a periodic structure with
alternating strips of hydrophobic ��w=�g, local contact angle
180°� and hydrophilic ��w=�l, local contact angle 0°� mate-
rials. In Fig. 10 �top panel� we show the analytical results for
the effective slip length �s obtained �for both longitudinal
and transverse strips� by means of the Navier-Stokes �NS�
approach and by the present LBE-SC method. The agree-
ment between the two is very good. In the bottom panel, in
order to capture the meaning of local boundary conditions
obtained using alternating patterns of wetting and nonwetting
strips, we compare our multiphase mesoscopic approach to
the integration of the incompressible lattice Boltzmann equa-
tion with alternating strips of no-slip and free shear �61�. As
we can see, while the nonwetting strips simply reduce to a
parabolic Poiseuille profile, the presence of the nonwetting
strips acts as a free-shear zone where, due to the presence of
the gas, the liquid can slide away producing the local free-
shear condition.

F. Interaction with the wall: The role of the density gradient

Up to now we have modeled the wall properties using a
single parameter, 
��w�, which fixes the density of the flow
at the boundary. These parameters can be intended as the
counterpart of the interaction energy between solid-liquid
molecules in an atomistic approach. In principle, also the
typical interaction length may play a crucial role, the exis-
tence of a characteristic distance is the result of the interplay
between attractive and repulsive terms in the Lennard-Jones
potential. In order to mimic this effect, it has been proposed
to enrich the mesoscopic LBE by assuming that the interac-
tion with the wall is supplemented by another external force
Fw normal to the wall and decaying exponentially �43,62�:

Fw�x� = Gw��x�e−�x−xw�/�, �44�

where xw is a vector running along the wall location and �
the typical length scale of the fluid-wall interaction, also
known as the Kac range parameter �62�. Equation �44� has
been previously used in literature in connection with a
slightly different LBE scheme, to show numerically how the
wetting angle depends on the ratio Gw /Gb in the presence of
phase coexistence between vapor and liquid �44�.

The introduction of an external force, exponentially
damped in the bulk of the flow, allows the model to control
also the gradient of the density profile at the wall. This is a
two parameter model able to fit with high accuracy the value
of the density at the wall, through �w, and the derivative of
the density at the wall, �y�, through the Gw term in �44�.

For the case with Gw, one must modify the structure of the
pressure tensor as follows:

Pij = �cs
2� + 1

2cs
2Gb
2 + 1

2cs
4Gb
�
 + 1

4Gbcs
4��
�2��ij

− 1
2cs

4Gb�i
� j
 − �iy� jyGw�
0

y

��s�e−s/�ds . �45�

The off diagonal term, Pxy, remains the same, while the mis-
match between the pressure tensor parallel to the interface,
Pxx and the pressure term perpendicular to the interface, Pyy
is changed to
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FIG. 10. Effective slip length as a function of the free shear
percentage ��� in a multiphase approach with alternating strips of
wetting and nonwetting properties. The numerical simulations are
carried out in 3D setups with Lx�Ly �Lz=64�64�200 with pe-
riodic boundary conditions in the stream-wise �x� and span-wise
directions �y�. The interaction parameter is Gb=−6.0 and the relax-
ation time is �=1. The corresponding liquid and gas densities ��l

=2.65,�g=0.07� are used to mimic no slip and free shear, respec-
tively. Then, the steady state effective slip lengths for transverse
��� and longitudinal ��� strips normalized to the pattern dimension
�Lx for transverse and Ly for longitudinal� are compared with exact
analytical estimates given for stokes flow with alternating non slip
and free shear �lines�. Bottom panel: The velocity profile in the inlet
of the channel and in the middle of a free shear strip from the
integration of the incompressible lattice Boltzmann equation with
mixed boundary conditions �straight lines� are compared with the
results of the mesoscopic multiphase approach �� in the inlet and
� in the middle of free shear strip�. The incompressible lattice
Boltzmann equation has been used with the same relaxation time
and an average density equal to the one of the mesoscopic ap-
proach. Both simulations have been forced with a constant pressure
gradient so as to reproduce a center channel velocity equal to uc

=0.04 in LB units.
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Pxx = Pyy +
cs

4

4
Gb
�y�y
 + Gw�

0

y

��s�e−s/�ds . �46�

This implies that the previous estimate �32� of the contact angle must be replaced by

cos��� =

�
sg
���y
�2 +

2Gw

Gbcs
4�

0

y

��s�e−s/�ds�dy − �
sl
���y
�2 +

2Gw

Gbcs
4�

0

y

��s�e−s/�ds�dy

�
lg

��y
�2dy

. �47�

The physics at the boundary now depends on two param-
eters, which may change the contact angle and the density
profile independently. Unfortunately it is very difficult to
make any quantitative measurement of the density profile in
experiments or MD simulations. It is, therefore, difficult to
assess in a systematic way the potential of the LBE model. In
Fig. 11 we show the contact angle that can be measured and
calculated using �47� in our LBE approach. In the same fig-
ure �bottom panel� we also show the variation in the density
profile for a few values of the couple �Gw ,�w� leading to the
same contact angle. As one can see, the model is very sen-
sitive to different choices of the two free parameters, which
makes it potentially useful to describe physical situations
with large variations in the density profiles in the proximity
of the boundaries.

III. CONCLUSIONS AND PERSPECTIVES

We have presented a mesoscopic model, based on the
Boltzmann equations, for the interaction between a solid wall
and a nonideal fluid. The model is an extension of the SC
model for dense fluids in unbounded domains. We have first
derived an analytical expression for the contact angle and for
the surface energy between any two of the liquid, solid, and
vapor phases, by introducing a parameter, 
��w� which fixes
the density value of the Boltzmann molecules at the solid
wall. We have shown how in this way one can cover the
whole range of contact angles, from a superhydrophobic sur-
face ��180° to a condition of perfect wettability ��0°.
Concerning the thermodynamic consistency of the model we
have shown that although not formally verified it does not
introduce any systematic error in the results for the surface
tension and for the liquid-gas density variations at changing
the system temperature �Maxwell construction�. We have
discussed the connection between the rarefaction layer in the
proximity of the wall and the production of an apparent slip
phenomenon. We have also presented a comparison between
the results obtained within the realm of our two-phase me-
soscopic model and some analytical expression for the slip
length calculated within a Navier-Stokes approach of a single
phase fluid with alternating boundary conditions formed of
free-shear and no-slip strips. We have shown that the LBE
approach is able to reproduce quantitatively the analytical
results, supporting the statement that slip phenomena at the

macroscopic Navier-Stokes level can be interpreted by an
apparent slip induced by gas accumulation close to the
boundary.
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FIG. 11. Contact angle for a two parameter model. Top panel:
for a given value of �w we show the contact angle for different
values of Gw: �w=1.3 ���, �w=0.6 ���. The analytical estimate
using the mechanical stability is compared with lattice Boltzmann
simulations. The details of the numerical simulations are the same
for Fig. 3 with the introduction of a wall-fluid force as in �44�.
Bottom panel: for the same contact angle �130°� we report different
profiles obtained for different choices of the parameters ��w ,Gw�. In
particular, the value of �w chosen is �w=1.3 ��� �w=0.85 ��� �w

=0.3 �x� and the corresponding value of Gw has been chosen to
reproduce the same contact angle of 130° estimated from �47�.
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We have also studied the effects on the contact angle and
on the density profiles of the use of a second free parameter,
Gw connected to the wallforce decaying exponentially inside
the bulk of the flow. This second parameter plays an impor-
tant role if one wants to control both the value of the density
at the wall and its gradient.

An important outcome of this study is the possibility to
fully integrate the two-phase approach with complex geom-
etries �see also �46��. For instance, recent MD studies �21�
have demonstrated the existence of a wetting and/or dewet-
ting transition in microchannels with grooves. The effect is
driven by capillarity forces which may expel the liquid out of
the corrugation leading to an increase of the effective slip
length and of the mass flow rate. The mesoscopic model here
presented is fully capable to reproduce the same effects.
Moreover, it may also implement more complex surface pat-
terns �different corrugations� than those possible with MD
simulations maintaining a control on the spatial and temporal
fluctuations at the macroscopic scale. Results on this direc-
tion will be reported elsewhere �63�.
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APPENDIX A

In this Appendix we detail the calculation needed to per-
form the continuum limit for the nonideal pressure term. Let
us first note that the value of �t just enters the discretized
LBE equation �14� as a normalizing factor with respect to the
relaxation time �. Changing �t just means to redefine �.

Now, if we start from the expression for the i component
of the interparticle force

Fi�x,t� = − Gb
�x��
�

w�
�x + c��t,t�c�
i �A1�

assuming a stationary state �F�x , t�=F�x�� and Taylor ex-
panding up to the third order we obtain

Fi�x� = − Gb
�x���
�

w�c�
i 
�x� + �t�

�,j
w�c�

i c�
j � j
�x�

+
��t�2

2 �
�,j,k

w�c�
i c�

j c�
k � j�k
�x�

+
��t�3

6 �
�,j,k,l

w�c�
i c�

j c�
k c�

l � j�k�l
�x�� .

If we choose the weights w� to satisfy the following ten-
sor relations:

�
�

w�c�
i = 0,

�
�

w�c�
i c�

j = cs
2�ij ,

�
�

w�c�
i c�

j c�
k = 0,

�
�

w�c�
i c�

j c�
k c�

l = cs
4��ij�kl + �ik� jl + �il� jk� ,

we end up with the following expression for the i component
of F:

Fi = − Gb
�tcs
2�i
 − Gb


��t�3

2
cs

4�i�
 . �A2�

being � the Laplacian operator. The above expression for the
interparticle force can be easily translated into an excess
pressure with respect to the ideal gas expression �cs

2�� using
the definition

− � jPij + �i�cs
2�� = Fi �A3�

and, therefore, we end up with a pressure tensor of the form:

Pij = �cs
2� +

�t

2
cs

2Gb
2 +
��t�3

2
cs

4Gb
�


+
Gbcs

4��t�3

4
��
�2��ij −

��t�3

2
cs

4Gb�i
� j
 . �A4�

An important remark is now in order. The continuum expres-
sion just derived depends explicitly on the interparticle po-
tential range, here of the order of cs�t. The limit �t→0
would, therefore, imply a vanishing interaction range, i.e.,
the ideal gas limit Pij =cs

2��ij.

APPENDIX B

In this Appendix we will detail the calculation of the con-
tact angle used throughout the text. Starting from the pres-
sure tensor �for �t=1�

Pij = �cs
2� + 1

2cs
2Gb
2 + 1

2cs
4Gb
�
 + 1

4Gbcs
4��
�2��ij

− 1
2cs

4Gb�i
� j
 . �B1�

In the coordinate system of Fig. 12 we make the following
change of variables:

x� = + x sin��� + y cos���

y� = − x cos��� + y sin��� �B2�

being y� aligned with the separation line between liquid and
gas.

�

�x
=

�x�

�x

�

�x�
+

�y�

�x

�

�y�
= sin���

�

�x�
− cos���

�

�y�
,

�

�y
=

�x�

�y

�

�x�
+

�y�

�y

�

�y�
= cos���

�

�x�
+ sin���

�

�y�
. �B3�

If we assume only the x� dependence we can write


�x,y� = 
�x�� , �B4�
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�

�x
= sin���

�

�x�
,

�

�y
= cos���

�

�x�
, �B5�

� dx →
1

sin��� � dx�, �B6�

which clearly imply

� ��x
���y
�dx =
1

sin��� � dx� sin���cos�����x�
���x�
�

=� dx� cos�����x�
���x�
� . �B7�

By imposing a zero flux out of the boundaries of the vec-
tor �Pxx , Pxy� we obtain the mechanical definition of the con-
tact angle. To this purpose, let us note that based on the
definition of the pressure tensor, we can write

Pxx = Pyy +
cs

4

2
Gb�y
�y
 , �B8�

Pxy =
cs

4

2
Gb�x
�y
 , �B9�

with Pyy constant along the solid-liquid and solid-gas inter-
face �segments A ,B of Fig. 12�. This, together with �58�
implies

− �
sl

cs
4

2
Gb�y
�y
dy + �

sg

cs
4

2
Gb�y
�y
 dy

− cos����
lg

cs
4

2
Gb�x�
�x�
dx� = 0 �B10�

and

cos��� =

�
sg

��y
�2dy − �
sl

��y
�2dy

�
lg

��x�
�2dx�

. �B11�

For the case with Gw, the previously used pressure tensor
must be slightly modified due to the presence of a normal
�say along the y direction� force between the fluid and the
wall:

Pij = �cs
2� + 1

2cs
2Gb
2 + 1

2cs
4Gb
�
 + 1

4Gbcs
4��
�2��ij

− 1
2cs

4Gb�i
� j
 − �iy� jyGw�
0

y

��s�e−s/�ds . �B12�

Then relations and �B8� and �B9� should be slightly modified
since Pxy gives the same result but for Pxx we have

Pxx = Pyy +
cs

4

2
Gb�y
�y
 + Gw�

0

y

��s�e−s/�ds �B13�

that imply the following estimate for the contact angle:

cos��� =

�
sg
���y
�2 +

2Gw

Gbcs
4�

0

y

��s�e−s/�ds�dy − �
sl
���y
�2 +

2Gw

Gbcs
4�

0

y

��s�e−s/�ds�dy

�
lg

��y
�2dy

. �B14�

Note that the importance of wall effects appears only in relation to bulk terms in
2Gw

Gbcs
4 .
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