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Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamen-
tal questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles,
which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily
accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we
perform full-scale, discrete-element simulations in realistic geometries, with up to 440 000 frictional, viscoelas-
tic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5 m and height 10 m with bottom funnels
angled at 30° or 60°. We also simulate a bidisperse core with a dynamic central column of smaller graphite
moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean
velocity, diffusion and mixing, local ordering and porosity �from Voronoi volumes�, the residence-time distri-
bution, and the effects of wall friction and discuss implications for reactor design and the basic physics of
granular flow.
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I. INTRODUCTION

A. Background

A worldwide effort is underway to develop more eco-
nomical, efficient, proliferation resistant, and safer nuclear
power �1�. A promising generation IV reactor design is the
uranium-based, graphite-moderated, helium-cooled very-
high-temperature reactor �2�, which offers meltdown-proof
passive safety, convenient long-term waste storage, modular
construction, and a means of nuclear-assisted hydrogen pro-
duction and desalination. In one embodiment, uranium diox-
ide is contained in microspheres dispersed in spherical
graphite pebbles, the size of billiard balls, which are very
slowly cycled through the core in a dense granular flow
�3,4�. Control rods are inserted in graphite bricks of the core
vessel, so there are no obstacles to pebble flow.

The pebble-bed reactor �PBR� concept, which originated
in Germany in the 1950s, is being revisited by several coun-
tries, notably China �5� �HTR-10 �6�� and South Africa �3�
�PBMR �7��, which plan large-scale deployment. In the
United States, the Modular Pebble Bed Reactor �MPBR�
�4,8� is a candidate for the next generation nuclear plant of
the Department of Energy. A notable feature of MPBR �also
present in the original South African design� is the introduc-
tion of graphite moderator pebbles, identical to the fuel
pebbles but without the uranium microspheres. The modera-
tor pebbles form a dynamic central column, which serves to
flatten the neutron flux across the annular fuel region without
placing any fixed structures inside the core vessel. The an-
nular fuel region increases the power output and efficiency,
while preserving passive safety. In the bidisperse MPBR, the
moderator pebbles are smaller to reduce the permeability of
the central column and thus focus helium gas on the outer
fuel annulus. The continuous refueling process is a major
advantage of pebble-bed reactors over other core designs,
which typically require shutting down for a costly disman-
tling and reconstruction. The random cycling of pebbles

through a flowing core also greatly improves the uniformity
of fuel burnup.

In spite of these advantages, however, the dynamic core
of a PBR is also a cause for concern among designers and
regulators, since the basic physics of dense granular flow is
not fully understood. Indeed, no reliable continuum model is
available to predict the mean velocity in silos of different
shapes �9�, although the empirical kinematic model �10–12�
provides a reasonable fit near the orifice in a wide silo
�13–16�. A microscopic model for random-packing dynamics
has also been proposed �17� and fitted to reproduce drainage
in a wide silo �18�, but a complete statistical theory of dense
granular flow is still lacking. The classical kinetic theory of
gases has been successfully applied to dilute granular flows
�19–21�, in spite of problems with inelastic collisions �22�,
but it clearly breaks down in dense flows with long-lasting,
frictional contacts �16,23�, as in pebble-bed reactors. Plastic-
ity theories from soil mechanics might seem more appropri-
ate �12�, but they cannot describe flows in silos of arbitrary
shape and often lead to violent instabilities �24,25�, although
a stochastic flow rule �26� may resolve these difficulties and
eventually lead to a general theory.

For now, experiments provide important, although lim-
ited, information about dense granular flows. Many experi-
ments have been done on drainage flows in quasi-two-
dimensional �quasi-2D� silos where particles are tracked
accurately at a transparent wall �9,14–16,27�. Some three-
dimensional particle tracking in granular materials and col-
loids has also been done with magnetic resonance imaging
�28�, confocal microscopy �29�, index matching with an in-
terstitial fluid �30�, and diffusing-wave spectroscopy �31�,
although these systems are quite different from a pebble-bed
reactor core. Experimental studies of more realistic geom-
etries for PBR have mostly focused on the porosity distribu-
tion of static packings of spheres �32,33�, which affects
helium gas flow through the core �34–36�.

As a first attempt to observe pebble dynamics experimen-
tally in a reactor model, the slow flow of plastic beads has
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recently been studied in 1:10 scale models of MPBR in two
different ways �37�: The trajectories of colored pebbles were
recorded �by hand� along a Plexiglas wall in a half-core
model, and a single radioactive tracer pebble in the bulk was
tracked in three dimensions in a full-core model. Very slow
flow was achieved using a screw mechanism at the orifice to
approximate the mean exit rate of one pebble per minute in
MPBR. These experiments demonstrate the feasibility of the
dynamic central column and confirm that pebbles diffuse less
than one diameter away from streamlines of the mean flow.
However, it is important to gain a more detailed understand-
ing of pebble flow in the entire core to reliably predict reac-
tor power output, fuel efficiency, power peaking, accident
scenarios using existing nuclear engineering codes �38,39�.

B. Discrete-element simulations

Simulations are ideally suited to provide complete, three-
dimensional information in a granular flow. Some simula-
tions of the static random packing of fuel pebbles in a PBR
core have been reported �40,41�, but in the last few years,
large-scale, parallel computing technology has advanced to
the stage where it is now possible to carry out simulations of
continuous pebble flow in a full-sized reactor geometry using
the discrete element method �DEM�. In such simulations,
each particle is accurately modeled as a sphere undergoing
realistic frictional interactions with other particles �42,43�. In
this paper, we present DEM simulations which address vari-
ous outstanding issues in reactor design, such as the sharp-
ness of the interface between fuel and moderator pebbles �in
both monodisperse and bidisperse cores�, the horizontal dif-
fusion of the pebbles, the geometry dependence of the mean
streamlines, the porosity distribution, wall effects, and the
distribution of “residence times” for pebbles starting at a
given height before exiting the core.

Our simulations are based on the MPBR geometry �4,8�,
consisting of spherical pebbles with diameter d=6 cm in a
cylindrical container approximately 10 m high and 3.5 m
across. In this design there is a central column of moderating
reflector pebbles, surrounded by an annulus of fuel pebbles.
The two pebble types are physically identical except that the
fuel pebbles contain sand-sized uranium fuel particles. Par-
ticles are continuously cycled, so that those exiting the
container are reintroduced at the top of the packing. In order
to efficiently maintain the central column, a cylindrical guide
ring of radius rin=14.5d extends into the packing to
z=140d. Reflector pebbles are poured inside, while fuel
pebbles are poured outside, and the guide ring ensures that
two types do not mix together at the surface. Figure 1 shows
the two main geometries that were considered; for much of
this analysis, we have concentrated on the case when the exit
funnel is sloped at 30°, but since this angle can have a large
effect on the pebble flow, we also consider the case of the
when the funnel is sloped at 60°. In both cases the radius of
the opening at the bottom of the funnel is rexit=5d.

In MPBR, as in most pebble-bed reactors, the drainage
process takes place extremely slowly. Pebbles are individu-
ally removed from the base of the reactor using a screw
mechanism, at a typical rate of one pebble per minute, and

the mean residence time of a pebble is 77 days. Carrying out
a DEM simulation at this flow rate would make it infeasible
to collect enough meaningful data. However, previous ex-
perimental work by Choi et al. �16� has shown that the re-
gime of slow, dense granular flow is governed by a distinctly
nonthermal picture, where particles undergo long-lasting
contacts with their neighbors, and the features of the flow are
predominately governed by geometry and packing con-
straints. In particular, they observed that for a large range of
hopper drainage experiments, altering the orifice size re-
sulted in a change in the overall flow rate, but did not alter
the geometry of the flow profile—the flow velocities were
scaled by a constant factor. Furthermore, geometric proper-
ties of the flow, such as particle diffusion, were unaffected by
the overall flow rate. We therefore chose to study a faster
flow regime in which pebbles drain from the reactor exit pipe
under gravity. Our results can be related directly to the
reactor design by rescaling the time by an appropriate factor.

As well as the two full-scale simulations described above,
we also considered a half-size geometry in order to investi-
gate how various alterations in the makeup of the reactor
would affect the flow. In particular, we examined a series
of bidisperse simulations, in which the diameter of modera-
tor particles in the central column was reduced. As explained
in Sec. VIII, this has the effect of reducing the gas perme-
ability of the central column, thus focusing the helium

FIG. 1. �Color online� Snapshots of vertical cross sections of the
simulations for the two geometries considered in this report. We
make use of a cylindrical coordinate system �r ,� ,z� where z=0 at
the orifice. At the base of the container there is a small exit pipe of
radius rexit=5d that extends upwards to z=10d. This connects to a
conical funnel region, which has slope 30° �left� or 60° �right�. The
conical wall connects to a cylindrical wall of radius rout=29d, at
z=23.86d and z=51.57d for the 30° and 60° reactor geometries,
respectively. Particles are poured into the container up to a height of
approximately z=160d. A cylindrical wall at rin=14.5d extends
down into the packing to a height of z=140d to keep the two types
of pebbles mixing at the surface.
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coolant flow on the hottest region of the reactor core, in and
around the fuel annulus. The purpose of the simulations is to
test the feasibility of the bidisperse PBR concept, as a func-
tion of the size ratio of moderator and fuel pebbles, with
regard to the granular flow. It is not clear a priori under what
conditions the dynamic column will remain stable with little
interdiffusion of moderator and graphite pebbles.

To study this issue, we made a sequence of three runs
using a half-size reactor geometry. �The smaller core size is
needed since the number of smaller pebbles increases as the
inverse cube of the diameter ratio.� The geometry is similar
to that used above, except that the radius of the cylindrical
container is decreased to 15d, with the guide ring at
rin=7.5d. The radius of the exit pipe is decreased to
rexit=4d. In the experiments, we keep the diameter of the fuel
pebbles fixed at d and use d, 0.8d, and 0.5d for the diameters
of the moderator pebbles. The same geometry was also used
to study the effect of wall friction by making an additional
run with the particle/wall friction coefficient �w=0.

The paper is organized as follows. In Sec. II, we discuss
the simulation technique that was used and briefly describe
its implementation. This is followed with some basic analy-
sis of the velocity profiles and a comparison to the kinematic
model in Sec. III. We study diffusion around streamlines in
Sec. IV and the distribution of porosity and local ordering in
Sec. V. Next, in Sec. VI we examine the residence-time dis-
tribution of pebbles in the reactor, which is related to fuel
burnup, and in Sec. VII we show that wall friction plays an
important role. In Sec. VIII we analyze the bidisperse PBR
concept with half-size reactor simulations for a range of
pebble-diameter ratios, focusing on the mean flow, diffusion,
and mixing. We conclude in Sec. IX by summarizing impli-
cations of our study for reactor design and the basic physics
of granular flow.

II. MODELS AND METHODS

The DEM simulations are based on a modified version of
the model developed by Cundall and Strack �44� to model
cohesionless particulates �42,43�. Monodisperse spheres with
diameter d interact according to Hertzian, history-dependent
contact forces. For a distance r between a particle and its
neighbor, when the particles are in compression, so that
�=d− �r � �0, then the two particles experience a force
F=Fn+Ft, where the normal and tangential components are
given by

Fn = ��/d�kn�n −
�nvn

2
� , �1�

Ft = ��/d�− kt�st −
�tvt

2
� . �2�

Here, n=r / �r�. vn and vt are the normal and tangential com-
ponents of the relative surface velocity, and kn,t and �n,t are
the elastic and viscoelastic constants, respectively. �st is
the elastic tangential displacement between spheres, obtained
by integrating tangential relative velocities during elastic
deformation for the lifetime of the contact, and is truncated

as necessary to satisfy a local Coulomb yield criterion
�Ft � �� �Fn�. Particle-wall interactions are treated identically,
though the particle-wall friction coefficient �w is set
independently.

For the monodispersed system, the spheres have diameter
d=6 cm, mass m=210 g, and interparticle friction coeffi-
cient �=0.7, flowing under the influence of gravity
g=9.81 ms−1. For the bidispersed systems, the moderator
particles have diameter 0.8d or 0.5d. The particle-wall
friction coefficient �w=0.7 except in one case where we
model a frictionless wall, �w=0.0. For the current simula-
tions we set kt=

2
7kn and choose kn=2�105 gm /d. While

this is significantly less than would be realistic for graphite
pebbles, where we expect kn�1010 gm /d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as �t	kn

−1/2 for collisions to be mod-
eled effectively. Previous simulations have shown that
increasing kn does not significantly alter physical results
�43�. We use a time step of �t=1.0�10−4
 and damping
coefficients �n=50
−1 and �t=0.0, where 
=�d /g=0.078 s.
All measurements are expressed in terms of d, m, and 
.

The initial configurations are made by extending the inner
cylinder from 140d to the bottom of the container, adding a
wall at the bottom of the container to stop particles from
draining and pouring in moderator pebbles into the inner
cylinder and fuel pebbles between the inner and outer cylin-
ders until the reactor was loaded. The bottom wall is then
removed, the inner cylinder is raised to 140d, and particles
are allowed to drain out of the container. As noted above,
particles are recycled with moderator particles reinserted
within the inner cylinder and fuel particles between the inner
and outer cylinders. All results presented here are after all the
particles have cycled through the reactor at least once. The
number of moderator and fuel particles was adjusted slightly
from the initial filling so that the level at the top of the
reactor is approximately equal. For the full-scale simulation
with a 30° outlet, the total number of pebbles is 440 000 with
105 011 moderator pebbles and 334 989 fuel pebbles, while
for the 60° outlet, the total number of pebbles is 406 405
with 97 463 moderator, and 308 942 fuel pebbles. For the
former case, 1�106 steps took approximately 13 h on 60
processors on Sandia’s Intel Xenon cluster.

For the bidispersed simulations the total number of
pebbles is 130 044, 160 423, and 337 715 for the diameter of
the moderator particles equal to d, 0.8d, and 0.5d, respec-
tively. As the diameter of the moderator pebbles is decreased
the number of particles required rapidly increases, since it
scales according to the inverse of the diameter cubed.

A snapshot of all the particle positions is recorded every
5
=0.39 s. For the 30° reactor geometry we collected 1087
successive snapshots, totaling 24.9 Gb of data, while for the
60° reactor geometry, we collected 881 successive snapshots,
totaling 18.7 Gb of data. A variety of analysis codes written
in PERL and C++ were used to sequentially parse the snapshot
files to investigate different aspects of the flow. We also cre-
ated extended data sets, with an additional 440 snapshots for
the 30° geometry and 368 snapshots for the 60° geometry,
for examining long residence times in Sec. VI.
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III. MEAN-VELOCITY PROFILES

A. Simulation results

Since we have a massive amount of precise data about the
positions of the pebbles, it is possible to reconstruct the mean
flow in the reactor with great accuracy. However, care must
be taken when calculating velocity profiles to ensure the
highest accuracy. Initial studies of the data showed that crys-
tallization effects near the wall can create features in the
velocity profile at a subparticle level, and we therefore chose
a method that could resolve this.

By exploiting the axial symmetry of the system, one only
needs to find the velocity profile as a function of r and z only.
The container is divided into bins, and the mean velocity is
determined within each. A particle which is at xn at the nth
time step and at xn+1 at the �n+1�th time step makes a ve-
locity contribution of �xn+1−xn� /�t in the bin which contains
its midpoint, �xn+1+xn� /2.

In the z direction, we divide the container into strips 1d
across. However, in the r direction we take an alternative
approach. Since the number of pebbles between a radius of r
and r+�r is proportional to r�r, dividing the container into
bins of a fixed width is unsatisfactory, since the amount of
data in bins with high r would be disproportionately large.
We therefore introduce a new coordinate s=r2. The coordi-
nate s covers the range 0�s�rout

2 , and we divide the con-
tainer into regions that are equally spaced in s, of width 1d2.
The number of pebbles in each bin is therefore roughly
equal, allowing for accurate averaging in the bulk and high
resolution at the boundary.

This result yields extremely accurate velocity profiles
in the cylindrical region of the tank. However, it fails to
capture crystallization effects in the conical region: since the
particles are aligned with the slope of the walls are averaged
over a strip in z of width 1d, any effects are smeared out
across several bins. We therefore scaled the radial coordinate
to what it would be if the particle was in the center of the
strip. Specifically, if the radius of the container is given by
R�z�, a particle at �rn ,zn� is recorded as having radial coor-
dinate rnR�z� /R�zn�. In the cylindrical region of the tank this
has no effect, while in the conical region, it effectively
creates trapezoid-shaped bins from which it is easy to see
crystallization effects which are aligned with the wall.

The streamlines of the mean flow are shown in Fig. 2 in
the two geometries. Streamlines are computed by Lagrangian
integration of the DEM velocity field, starting from points at
a given height, equally spaced in radius. In each geometry,
there is a transition from a nonuniform converging flow in
the lower funnel region to a nearly uniform plug flow in the
upper cylindrical region, consistent with the standard engi-
neering picture of silo drainage �12�. In the wider funnel,
there is a region of much slower flow near the sharp corner at
the upper edge of the funnel. Our results for both geometries
are quite consistent with particle-tracking data for quasi-2D
silos of similar shapes �9� and half-cylinder models of the
MPBR core �37�, which provide an important validation of
our simulations.

We now look more closely at horizontal slices of the ve-
locity field. Figure 3�a� shows several velocity profiles for

the 30° case in the narrowing section of the container. As
expected, we see a widening of the velocity profile as z in-
creases. We can also see lattice effects, spaced at �3d apart,
due to particles crystallizing on the conical wall section.

Figure 3�b� shows similar plots for several heights in the
upper region of the container. At these heights, the velocity
profile is roughly uniform across the container. However, a
boundary layer of slower velocities, several particle diam-
eters wide, still persists. The average velocities of particles
touching the boundary is between one-half and two-thirds
that of particles in the bulk; it is expected that this behavior

FIG. 2. �Color online� Computed streamlines of the mean flow
in the 30° �left� and 60° reactor geometries. Arrows are proportional
to the velocity vectors in selected horizontal slices.

FIG. 3. �Color online� Velocity profiles for the 30° reactor ge-
ometry for several low cross sections �a� and several high cross
sections �b�.
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is very dependent on particle-wall friction; this issue is
studied in more detail in Sec. VII.

High in the container, results for the 60° geometry are
very similar to the 30° case �and thus are not shown�. How-
ever, as would be expected, a significantly different cross-
over from parabolic flow to pluglike flow in the lower part of
the tank is observed, as shown in Fig. 5.

B. Comparison with the kinematic model

Perhaps the only continuum theory available for the
mean flow profile in a slowly draining silo is the kinematic
model �10–12,45�, which postulates that horizontal velocity
vector u is proportional to the horizontal gradient �� of the
downward velocity component v �i.e., the local shear rate�,

u = b��v , �3�

where b is the “diffusion length,” a material parameter typi-
cally in the range of one to three particle diameters. The idea
behind Eq. �3� is that particles drift from regions of low to
high downward velocity, where there are more local rear-
rangements �and more free volume� to accommodate their
collective motion. The approximation of incompressibility,
� · �u ,−v�=0, applied to Eq. �3� yields a diffusion equation
for the downward velocity,

�v
�z

= b��
2 v , �4�

where the vertical coordinate z acts like “time.” Boundary
conditions on Eq. �4� require no normal velocity component
at the container walls, except at the orifice, where v is speci-
fied �effectively an “initial condition”�. As described in the
Appendix, this boundary-value problem can be accurately
solved using a standard Crank-Nicholson scheme for the
diffusion equation.

The kinematic parameter b can be understood as a diffu-
sion length for free volume, which is introduced at the orifice

and diffuses upward, causing downward diffusion of par-
ticles. It was originally proposed that free volume is carried
by voids �10,45�, which displace single particles as they
move, but a more realistic mechanism involves cooperative
particle motion due to diffusing “spots” of delocalized free
volume �17�. The spot model can produce accurate flowing
packings in wide silos �18�, and the kinematic model can be
derived as the continuum limit of the simplest case where
spots drift upward at constant velocity �due to gravity� while
undergoing independent random walks, although more gen-
eral continuum equations are also possible for different spot
dynamics. A first-principles mechanical theory of spot dy-
namics is still lacking �although it may be based on a sto-
chastic reformulation of Mohr-Coulomb plasticity �26��, so
here we simply try a range of b values and compare to the
DEM flow profiles.

Consistent with a recent experimental study of quasi-2D
silos �9�, we find reasonable agreement between the kine-
matic model predictions and the DEM flow profiles, but the
effect of the container geometry is not fully captured. In the
converging flow of the funnel region, the streamlines are
roughly parabolic, as predicted by the kinematic model and
found in many experiments �9,13–16�. For that region, it is
possible to choose a single value �b=3d� to achieve an ac-
ceptable fit to the DEM flow profiles for both the 30° and 60°
funnel geometries, as shown in Fig. 5.

In spite of the reasonable overall fit, the kinematic
model has some problems describing the DEM results. It
fails to describe the several particle thick boundary layer of
slower velocities seen in the DEM data. In the original
model, b depends only on the properties of the granular ma-
terial, but we find that it seems to depend on the geometry;
the best fit to the 30° DEM data is b	2.5d, while the best fit
for the 60° DEM data is b	3.0d. Such discrepancies may
partly be due to the boundary layers, since in the lower sec-
tion of the container the conical walls may have an appre-
ciable effect on the majority of the flow. We also find that the
kinematic model fails to capture the rapid transition from
converging flow to plug flow seen in the DEM data. This is
shown clearly by comparing the streamlines for the kine-
matic model in Fig. 4 with those for DEM. Streamlines for
the kinematic model are roughly parabolic, and no single
value of b can capture the rapid change from downward

FIG. 4. �Color online� Streamlines of the mean flow in the 30°
�left� and 60° reactor geometries for the numerical solution of the
kinematic model. Arrows are proportional to the velocity vectors in
selected horizontal slices.

FIG. 5. �Color online� Velocity profiles for the 60° reactor ge-
ometry �heavy lines�, with a comparison to the kinematic model for
b=3d �thin lines�.
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streamlines to converging streamlines seen in DEM.
The difficulty in precisely determining b is also a com-

mon theme in experiments, although recent data suggest that
a nonlinear diffusion length may improve the fit �9�. Perhaps
a more fundamental problem with the kinematic model is
that it cannot easily describe the rapid crossover from para-
bolic converging flow to uniform plug flow seen in both
geometries of our DEM simulations; we will return to this
issue in Sec. V.

IV. DIFFUSION AND MIXING

Nuclear engineering codes for PBR core neutronics typi-
cally assume that pebbles flow in a smooth laminar manner
along streamlines, with very little lateral diffusion �38,39�.
Were such significant diffusion to occur across streamlines, it
could alter the core composition in unexpected ways. In the
MPBR design with a dynamic central column �8�, diffusion
leads to the unwanted mixing of graphite pebbles from the
central reflector column with fuel pebbles from the outer
annulus, so it must be quantified. Simulations and experi-
ments are crucial, since diffusion in slow, dense granular
flows is not fully understood �17�.

Particle-tracking experiments on quasi-2D silos �16� and
half-cylinder MPBR models �37� have demonstrated very
little pebble diffusion in slow, dense flows, but the observa-
tions were made near transparent walls, which could affect
the flow—e.g., due to ordering �see below�. Three-
dimensional tracking of a radioactive tracer in a cylindrical
MPBR model has also shown very little diffusion, at the
scale of a single pebble diameter for the duration of the flow
�37�. Here, we take advantage of the complete information
on pebble positions in our DEM simulations to study core
diffusion and mixing with great accuracy.

We collected extensive statistics on how much pebbles
deviate from the mean-flow streamlines during drainage.
Consistent with theoretical concepts �17�, experiments have
demonstrated that the dynamics is strongly governed by the
packing geometry, so that diffusion can most accurately be
described by looking at the mean-squared horizontal dis-
placement away from the streamline, as a function of the
distance dropped by the pebble �not time, as in molecular
diffusion�, regardless of the flow rate. Motivated by the im-
portance of quantifying mixing at the fuel/moderator inter-
face in the dynamic central column of MPBR, we focus on
tracking pebbles passing through z=110d with �r−15d �
�0.16d. The variance of the r coordinate of the particles as
they fall to different heights in z can be calculated. From this,
we can determine the amount of radial diffusion, defined as
the increase in the variance of r of the tracked particles from
the variance at the initial height.

The diffusion data for both reactor geometries are shown
in Fig. 6. We see that for large values of z in the cylindrical
part of the container, the pebbles undergo essentially no dif-
fusion; this is to be expected, since we have seen that in this
area the packing is essentially plug like, and particles are
locked in position with their neighbors. However, for lower
values of z the amount of radial spreading begins to increase,
as the particles experience some rearrangement in the region

corresponding to converging flow. Note, however, that the
scale of this mixing is very small and is much less than a
pebble diameter. The height where the amount of diffusion
begins to increase is approximately z=35d in the 30° geom-
etry and z=50d in the 60° geometry. In the 30° geometry,
this transition is significantly above the height of the inter-
face between conical and cylindrical walls, while in the 60°
geometry, the transition is almost level with the interface.
This suggests that while the container geometry may play a
role in diffusion and velocity profiles, it is a lower-order
effect. For very small values of z, there is a decrease in the
variance of the radial coordinate, since the pebbles must con-
verge on the orifice as they exit the container.

We applied a similar analysis for different initial values of
r and found very similar results over the range 0�r�25d.
However, for particles close to the container boundary, very
different behavior is observed, as shown by the third line in
Fig. 6 for particles with �r−25d � �0.10d. In this region, the
particles undergo rearrangement, and this causes a �piece-
wise� linear increase in the mean-squared displacement with
distance dropped, which corresponds to a constant local dif-
fusion length. There is also evidence of a sharp transition in
the boundary-layer diffusion length, which increases signifi-
cantly as pebbles pass the corner into the converging-flow
region of the funnel.

V. PACKING STATISTICS

A. Pebble volume fraction

Pebble-bed experiments �32,33� and simulations �40,41�
of static sphere packings in cylinders have revealed that there
are local variations in porosity near walls, at the scale of
several pebble diameters, but there has been no such study of
flowing packings, averaging over dynamic configurations.
Similar findings would have important implications for he-
lium flow in the core, since the local gas permeability is
related to the porosity �34–36�.

First, we study the distribution of local volume fraction
�% of volume occupied by pebbles� throughout the container,
averaged in time. �The porosity is 1 minus the volume

FIG. 6. �Color online� Radial diffusion of particles about
streamlines of the mean flow as a function of height, z, in both
reactor geometries for pebbles starting at z=110d in an annulus of
radius r=15d, at the edge of the dynamic central column in MPBR.
For the 30° geometry, we also show data for pebbles near the wall
at r=25d.
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fraction.� Random close packing of spheres corresponds to a
volume fraction in the range 55%–63%, while flows occur in
a somewhat more restricted range. The lower bound is ap-
proximately set by random loose packing, where rigidity per-
colation sets �46�, while the upper bound is near the jamming
point �47� or the maximally random jammed state �48�,
where flow cannot occur.

The best way to determine the volume fraction on a local
scale is to use a Voronoi tessellation, which uniquely assigns
a polygonal volume to each pebble, formed by intersecting
the planes bisecting the lines between different pebble cen-
ters. Widely used algorithms �such as the one found in MAT-
LAB� compute Voronoi cells using the dual Delaunay tessel-
lation, but our algorithm efficiently computes the Voronoi
cells directly, plane by plane. One of the advantages of this
direct method �to be described in detail elsewhere� is that it
allows us to approximate the Voronoi cells of particles near
the walls with a high degree of accuracy by cutting the
Voronoi cell with the appropriate planes. The local packing
fraction in a small region can be found by taking the ratio of
the particle volume in that region to the ratio of the Voronoi
volume. Such a method can be used to define local density
even down to the scale of a single particle, but for this work
we compute local density by averaging on a scale of several
particle diameters.

Figure 7 shows density snapshots for cross sections
through the 30° and 60° reactor geometries, based on com-
puting the local density at a particular point by averaging
over the Voronoi densities of particles within a radius of
2.2d. Figure 8 shows density plots over the entire flow of the
data, but using a smaller averaging radius of 0.8d. Many
interesting features are visible, which corroborate our other
results. High in the center of the container, we see that the
local packing fraction is mostly close to 63%, suggesting that
the pluglike region is in a nearly jammed and rigid state. This
is consistent with our earlier data showing nearly uniform
plug flow with no significant diffusion or mixing.

We also observe two annular lines of lower density propa-
gating down from the guide ring, which form due to wall
effects on the guide ring itself �see below� and are advected
downward. The fact that these subtle artifacts of the guide-
ring constraints are felt far down in the flow further demon-
strates that very little diffusion or shearing occurs in the up-
per region. There are also similar lower-density regions
along the walls, related to partial crystallization described in
more detail below.

It is also clear in both geometries, especially the 30°
model, that there is a fairly sharp transition between the up-
per region of nearly rigid plug flow and a less dense lower
region of shear flow in the funnel. Similar features are in the
velocity profiles described above, but the transition is much
more sharp, at the scale of at most a few particles, for the
local packing fraction. These sudden variations in material
properties and velocities are reminiscent of shocklike discon-
tinuities in Mohr-Coulomb plasticity theories of granular ma-
terials �12,24�. It seems no such existing theory can be ap-
plied to the reactor flows, but our results suggest that
plasticity concepts may be useful in developing a continuum
theory of dense granular flow �26�.

FIG. 7. �Color� Plots of local volume fraction �1−porosity� in a
vertical cross section for the 30° reactor geometry �left� and the 60°
reactor geometry �right�, calculated using a Voronoi cell method.
Volume fractions of 50%, 57%, 60%, and 63% are shown using the
colors of red, yellow, dark blue, and cyan, respectively. Colors are
smoothly graded between these four values to show intermediate
volume fractions. High in the bulk of the container, the packing
fraction is approximately 63%, apart from in a small region of
lower density at rin=14.5d, corresponding to packing defects intro-
duced by the guide ring. In both geometries a sharp reduction in
density is observed in a region above the orifice, where particles in
the parabolic flow region are forced to undergo local
rearrangements.

FIG. 8. �Color� Time-averaged plots of the local volume
fraction, using the same color scheme as Fig. 7.
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B. Local ordering and porosity

As noted above, previous simulation studies of local or-
dering near walls have focused on static packings in simpli-
fied cylindrical geometries �without the funnel, outlet pipe,
or guide ring� �40,41�, while we compute average statistics
for slowly flowing packings in realistic full-scale reactor
models. To take a closer look at ordering near walls, we
study the number density profile in horizontal slices at dif-
ferent heights. The container is divided into bins in the same
way as discussed previously and the number density in a bin
is obtained by counting the number of times a particle center
lies within that bin.

Figure 9�a� shows a sequence of number density profiles
for several low values of z in the 30° reactor geometry. At all
four heights, lattice effects are clearly visible and quite simi-
lar to those observed in experiments �32,33� and other simu-
lations �40,41�. For the lowest three heights, these peaks are
roughly �3d apart, corresponding to particles crystallized
against the conical wall, while for the highest value of z,
these effects are roughly 1d apart, due to particles being
crystallized against the cylindrical wall. The graph also
shows that in the middle of the container, no lattice effects
are present.

However, this situation changes dramatically higher up in
the container, as shown in Fig. 9�b�. As z increases from 30d
to 60d, the interior of the packing goes from being disor-
dered to having a strong radial ordering, centered at around
z=12d. The reason for this ordering is due to the presence of
the guide ring high in the container, which keeps the fuel and
moderator pebbles separate. The ring, placed at rin=14.5d in
the container, creates radial crystallization, which can then
propagate very far downward, since the packing is plug like

for most of the cylindrical part of the reactor. At much lower
heights, around z=40d, this radial ordering is broken, as the
particles are forced to reorganize once they enter the
parabolic region of flow.

To make a direct connection with the modeling of gas
flow, we show horizontal slices of the porosity at different
heights in Fig. 10. The porosity is measured here by inter-
secting the spheres with annular cylindrical bins to compute
the fraction of each bin volume not occupied by pebbles. The
features noted above appear in the porosity and alter the local
permeability, which enters continuum descriptions of helium
gas flow in the core �34–36�.

VI. RESIDENCE-TIME DISTRIBUTION

A. Predictions of the kinematic model

The statistical distribution of fuel burn-up is closely re-
lated to the distribution of pebble residence times in the re-
actor core, differing only due to nonuniform sampling of the
neutron flux profile. Since the upper pebble flow is essen-
tially a uniform plug flow, the distribution of residence times
is the same �up to a constant time shift� as the distribution of
waiting times for pebbles starting at a given height in the
core to exit through the orifice, and we concentrate on these
distributions in this section. However, we conclude by exam-
ining the residence times for particles to pass through the
entire container, to investigate the effects of the guide ring
and the outer walls.

We have seen that there is very little pebble diffusion, so
fluctuations in the residence time are primarily due to hydro-
dynamic dispersion in the mean flow. We have also seen that
the kinematic model gives a reasonable description of the
mean flow profile in the conical funnel region, where most of
the shear and hydrodynamic dispersion occur. Therefore, we
can approximate the residence-time distribution by the dis-
tribution of times to travel along different streamlines of the
mean flow, starting from different radial positions r0 at a
given height z0. Below we will compare such predictions,
based on our numerical solutions to the kinematic model, to
our DEM simulations for the two reactor geometries.

B. Analytical formula

We can obtain a simple, exact formula for the residence-
time distribution in a somewhat different geometry using the

FIG. 9. �Color online� Number density plots in the 30° reactor
geometry for several low cross sections �a� and several high cross
sections �b�.

FIG. 10. �Color online� Horizontal profiles of porosity at differ-
ent heights in the 30° reactor geometry.
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kinematic model, as follows. The similarity solution to Eq.
�4� for a wide, flat-bottomed silo draining to a point orifice at
z=0 is

u�r,z� = −
Qr

2bz2e−r2/4bz, �5�

v�r,z� =
Q

bz
e−r2/4bz, �6�

where u and v are the radial �horizontal� and downward ve-
locity components and Q is a constant proportional to the
total flow rate through the orifice. �This is just the classical
Green function for the diffusion equation in two dimensions,
where z acts like “time.”� A slightly more complicated solu-
tion is also possible for a parabolic silo, but let us focus on
the simplest case of Eqs. �5� and �6�, which is a good ap-
proximation for a wide parabolic funnel, where the velocity
near the walls is small—i.e., R��4bz0. A more detailed
analysis is not appropriate here, since a simple analytical
solution does not exist for the actual reactor geometry of a
conical funnel attached to straight cylinder.

For the flow field in Eqs. �5� and �6�, the trajectory of a
Lagrangian tracer particle along a streamline is given by

dr

dt
= u�r,z�, r�t = 0� = r0, �7�

dz

dt
= − v�r,z�, z�t = 0� = z0. �8�

Combining these equations and integrating, we find that
the streamlines are parabolas, z /z0= �r /r0�2, and that the
residence time for a pebble starting at �r0 ,z0� is


0�r0,z0� =
bz0

2

2Q
er0

2/4bz0. �9�

Now we consider pebbles that are uniformly distributed at
a height z0 in a circular cross section of radius R in the flow
field Eqs. �5� and �6�. The probability distribution for the
residence time of those pebbles is

p�
�z0,R� = 

0

R

�„
 − 
0�r0,z0�…
2�r0dr0

�R2 �10�

=�0 for 
 � 
min�z0� ,

4bz0/R2
 for 
min � 
 � 
max,

0 for 
 � 
max�z0,R� ,

�11�

where


min = 
0�0,z0� =
bz0

2

2Q
, �12�


max = 
0�R,z0� =
bz0

2

2Q
eR2/4bz0. �13�

Once again, this solution is strictly valid for an infinitely
wide and tall silo draining to a point orifice, and it is roughly
valid for a parabolic funnel, z /z0= �r /R�2, as an approxima-
tion of a conical funnel in the actual reactor geometry. We
can further approximate the effect of a nearly uniform flow
of speed v0 to describe the upper cylindrical region by sim-
ply adding �z−z0� /v0 to the residence time for a starting
point z�z0.

Although this analysis is for a modified geometry, we will
see that it captures the basic shape of the residence-time
distributions from the DEM simulations in a simple formula
�11�. The probability density is sharply peaked near the
shortest residence time 
min, corresponding to pebbles near
the central axis traveling the shortest distance at the largest
velocity. The longer distance and �more importantly� the
smaller velocity at larger radial positions cause strong hydro-
dynamic dispersion, resulting a fat-tailed residence-time
density which decays like 1/ t, up to a cutoff 
max.

C. Simulation results

For the DEM reactor simulations, we calculate the distri-
bution of times it takes for particles to drop from several
different values of z0, adding in a weighting factor to take
into account that shorter residence times are preferentially
observed in the data set.

Since we are primarily interested in the radioactive burn-
up, we concentrate on the residence times for the fuel
pebbles, but for comparison, we also report results for the
moderator pebbles. Figure 11�a� shows the residence-time
probability densities for pebbles starting at z=40d ,55d ,70d
to exit the container for the 30° reactor geometry. The distri-
butions for the moderator pebbles are quite narrow, showing
that all particles exit over a short time window. In contrast,
the distributions for the fuel pebbles exhibit fat tails, as ex-
pected qualitatively from the kinematic model approximation
�11� for a parabolic geometry. A closer analysis of the data
confirms that the longest waiting times are associated with
pebbles passing close to the walls, especially near the corner
between the conical and cylindrical wall sections, although
there are no completely stagnant regions.

Figure 11�b� shows corresponding plots for the 60° reac-
tor geometry. In general, the residence-time densities have
similar shapes as for the 30° geometry, but they are much
narrower and exhibit a small secondary peak far into the tail.
Examining movies shows that this extra peak is due to a
boundary layer of particles, roughly one-pebble thick, touch-
ing the 60° conical wall sliding down at a speed lower than
the nearby bulk. This extra source of hydrodynamic disper-
sion could not be easily captured by a continuum model for
the mean flow. A simple way to eliminate it would be to
replace add an outer annulus of moderator pebbles �con-
trolled by another guide ring at the top�, which would flow
more slowly along the walls, leaving the fuel pebbles in a
more uniform flow with smaller fluctuations. Another possi-
bility would be to reduce the wall friction, which makes the
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flow more uniform, as discussed in the following section.
Figure 12 investigates the accuracy of the kinematic

model in predicting the DEM residence-time distribution.
The total residence-time distribution for both fuel and mod-
erator pebbles to exit the reactor from z=40d in the 30°
geometry is shown and is compared with two predictions
from the kinematic model, one making use of the analytic
formula �11� and one making use of the numerical solution
of the velocity profile. We use of the value b=2.5d and cali-
brate the total flow to match the total flow from the DEM
data. Both the numerical solution and the analytic formula
can roughly capture the overall shape of the DEM distribu-
tion, although neither achieves a good quantitative agree-
ment, particularly in the tails. Since the analytic formula as-
sumes all streamlines are parabolic, it fails to take into

account the slow-moving particles that stay close to the wall,
and it therefore predicts a cutoff in the residence-time distri-
bution which is much shorter than some of the observed
residence times in the DEM simulation. The numerical solu-
tion of the kinematic model accounts for this and provides a
better match, although it is clear that a model correctly ac-
counting for the flow of pebbles near the container walls may
be required in order to achieve high accuracy.

D. Residence times for the entire container

We also considered the distribution of times for the par-
ticles to pass through the entire container. While the flow in
the upper part of the reactor is essentially plug like, boundary
effects near the container walls and on the guide ring can
have an appreciable effect on the pebble residence times,
which we study here. Since it takes a long time for particles
to pass through the entire container, we made use of the two
extended data sets, consisting of 1427 snapshots for the 30°
geometry and 1249 snapshots for the 60° geometry.

Figure 13 shows the time distributions for pebbles to pass
through the entire container. Apart from a large positive time
shift, the curves are similar in form to those in Fig. 11. How-
ever, for both geometries, we see second small peaks in the
distributions for the moderator pebbles, corresponding to a
slow-moving boundary layer of pebbles touching the guide
ring. The 60° curve for the fuel pebbles also exhibits several
undulations corresponding to multiple layers of pebbles crys-
tallized against the outer wall, each moving at different
speeds.

VII. WALL FRICTION

The behavior of pebbles near the walls is of significant
interest to reactor design, and to look into this further, we
investigated the effect of wall friction by comparing two
simulation runs in the half-size geometry, with wall friction
coefficients �w=0 and �w=0.7. All other aspects of the
simulation, including the interparticle interactions, were kept
the same.

Figures 14 and 15 show comparisons of flow streamlines
and velocity profiles, respectively, for the two simulations.
We see that the �w=0 simulation results in a significantly
larger flow speed, with a mass flow rate of 104
−1m, as

FIG. 11. �Color online� Residence-time probability densities for
the time it takes particles to drop from a specific height z out of the
container, for the 30° reactor geometry �a� and 60° reactor geometry
�b� for fuel pebbles �heavy lines� and for moderator pebbles �thin
lines�.

FIG. 12. �Color online� Comparison of the residence time dis-
tributions between DEM simulation, numerical solution of the
kinematic model, and the analytic formula.

FIG. 13. �Color online� Distribution of times to pass through the
entire container for fuel pebbles �heavy lines� and moderator
pebbles �thin lines�.
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opposed to 59.6
−1m for �w=0.7. As would be expected,
removing wall friction also removes the boundary layer of
slower velocities at the wall, creating an almost perfectly
uniform velocity profile high in the reactor. This also has the
effect of increasing radial ordering effects, and we can see
from Fig. 16 that the number density profile is more peaked
close to the wall. Figure 16 also shows that the radial order-
ing created by the guide ring is also significantly enhanced.
While this is due in part to the more pluglike flow allowing
packing effects to propagate further down, it is also due to
the frictionless guide ring initially creating radial ordering.
Thus it may be possible to tune the material properties of the
guide ring �or the roughness of its walls� to enhance or
reduce the radial ordering effects.

Removing wall friction also has the effect of increasing
radial ordering effects near the wall. Perhaps most surpris-
ingly, removing wall friction results in a significant alteration
of the flow in the interior of the packing, as shown by the
two velocity profiles in Fig. 15 for z=18d. While both ve-
locity profiles must converge upon the orifice, we see that the
velocity profile for the �w=0.7 case is significantly more
curved than that for �w=0. This also has the effect of

preferentially speeding up the relative flux of fuel pebbles:
with wall friction, the fuel pebbles make up 71.5% of the
total mass flux, but without wall friction, this increases to
74.7%.

VIII. BIDISPERSITY

A. Bidisperse PBR concept

The two-pebble design of MPBR with a dynamic central
moderator column has various advantages over a solid
graphite central column �as in the revised PBMR design�.
For example, it flattens the neutron flux profile, while pre-
serving a very simple core vessel without any internal struc-
tures, which would be subjected to extreme radiation and
would complicate the granular flow. It also allows the widths
of the moderator column and fuel annulus to be set “on the
fly” during reactor operation, simply by adjusting the guide
ring at the top.

A drawback of the dynamic moderator column, however,
is its porosity, which allows the passage of the helium gas
coolant, at the highest velocity �along the central axis�. In
most PBR designs, high-pressure helium gas is introduced
from a reservoir above the core, through holes in the graphite
bricks which make up the core vessel. The gas then flows
through the core and exits through holes in the graphite
bricks of the conical funnel to another reservoir at high tem-
perature. To improve the thermal efficiency and power out-
put, it would be preferable to focus the gas flow on the fuel
annulus and the interface with the moderator column, where
the most heat is generated. This is automatically achieved
with a solid graphite column, but there is a very simple way
to shape the gas flow in a similar way with a dynamic
column, while preserving its unique advantages.

The idea is to make the graphite moderator pebbles in the
central column smaller than the fuel pebbles in the outer
annulus, as shown in Fig. 17. �This also helps with sorting of
fuel and moderator pebbles as they exit the core.� In standard
continuum models of flow in porous media �34–36�, the per-
meability of the packing scales with the square of the pebble
diameter �or pore size�, so reducing the diameter of the mod-
erator pebbles can greatly reduce the gas flow �e.g., by a
factor of 4 for half-diameter pebbles�. This argument holds
everywhere that the packing is statistically the same, in the
monodisperse packings of the fuel annulus and the modera-

FIG. 14. �Color online� Streamlines for the half-size, monodis-
perse geometries with wall friction �left� and without wall friction
�right�. Arrows are proportional to the velocity vectors in selected
horizontal slices.

FIG. 15. �Color online� Comparison of velocity profiles for
simulations with and without wall friction for two different heights.

FIG. 16. �Color online� Comparison of number density profiles
at z=60d for simulations with and without wall friction.

ANALYSIS OF GRANULAR FLOW IN A PEBBLE-BED¼ PHYSICAL REVIEW E 74, 021306 �2006�

021306-11



tor column, which have the same porosity. At the interface
between the two regions, we have seen in Figs. 7 and 10 that
the porosity is enhanced for a monodisperse core due to the
guide ring, although a bidisperse interface will have different
structure. In summary, if helium gas is introduced outside the
guide ring in a bidisperse core, it can be made to pass almost
entirely through the fuel annulus and the interface with the
moderator column.

B. Simulation results

The only question regarding the feasibility of the bidis-
perse core is the stability of the central column over time and
the possibility of enhanced diffusion of the small moderator
pebbles into the annulus of larger fuel pebbles. In other sys-
tems, such as rotating drums �49–51�, vibrated buckets
�52,53�, and draining silos �15�, bidisperse granular materials
display a tendency to segregate �rather than mix� during dy-
namics, but there is currently no general theory which could
be applied to our reactor geometry. Therefore, our DEM
simulations provide a useful means to address this important
question.

Figure 18 shows snapshots of vertical cross sections for
the three different bidisperse simulations that were run in the
half-size geometry. As shown in the diagram, the central col-
umn remains stable and coherent in all three cases, and very
little mixing between the two types of pebbles is visible.
Figure 19 shows a comparison of the velocity profiles from
the three simulations for two different heights. It is reassur-
ing to see that the bidisperse simulations do not significantly
differ from the monodisperse simulation, although we do see

a slightly higher overall flow rate in the bidisperse systems:
we see total mass flow rates of 59.6
−1m, 60.8
−1m, and
65.0
−1m for the monodisperse, 0.8:1, and 0.5:1 simulations,
respectively.

The velocity profiles are slightly more curved in the
bidisperse central core; this is particularly apparent in the
0.5:1 simulation. This leads to a small cusp in the velocity
profile near the interface between the two types of particles
which may lead to adverse mixing effects. The faster flow
also leads to a significantly larger turnaround of the modera-

FIG. 17. Schematic diagram of the pebble flow in a bidisperse
MPBR design.

FIG. 18. �Color online� Snapshots of vertical cross sections for
the bidisperse simulations. From left to right, the moderator pebbles
have diameters 1d, 0.8d, and 0.5d while the fuel pebbles are of
constant size 1d.

FIG. 19. �Color online� Comparison of velocity profiles for the
three bidisperse simulations. The three flatter curves are calculated
at z=30d in the pluglike flow region while the other three were
taken at z=22d in the parabolic flow region.
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tor pebbles. In the monodisperse system, the moderator
pebbles comprise 28.5% of the total mass flux, but this is
increased to 31.7% in the 0.8:1 bidisperse simulation and
42.6% in the 0.5:1 bidisperse simulation.

To investigate the amount of mixing of the central col-
umn, we used a technique similar to that described in Sec.
IV. At z=110d all moderator particles with r�8d are marked
and their radial diffusion is then calculated as a function of z.
The results are shown in Fig. 20: in the cylindrical section of
the packing, there is very little difference between the three
simulations, but in the area of convergent flow, we see that
bidispersity leads to significantly more mixing. However,
even for the 0.5:1 simulation, the scale of diffusion is still
smaller than a single particle diameter and essentially the
central column remains stable.

Due to computational limitations, we were unable to in-
vestigate smaller size ratios in the reactor geometries, so we
carried out simulations in a smaller container with a 0.3:1
size ratio and found dramatically different behavior: During
drainage, the central column became unstable and the small
particles penetrated many particle diameters into the packing
of larger particles. We expect that there is a fundamental
crossover in behavior simply due to geometry of amorphous
packings, when the moderator pebbles become small enough
to pass through the gaps between the densely packed fuel
pebbles. An in-depth study of this phenomenon remains a
subject of future work. For now, we can safely recommend a
diameter ratio of 0.5:1, which reduces the dynamic central
column’s permeability by a factor of 4 without introducing
any significant diffusion of moderator pebbles into the fuel
annulus.

IX. CONCLUSIONS

A. Pebble-bed reactor core design

Using DEM simulations, we have analyzed many aspects
of granular flow in pebble-bed reactor cores of direct rel-
evance for design and testing. We close by summarizing
some key conclusions.

The mean flow profile exhibits a smooth transition from a
nearly uniform plug flow in the upper cylindrical region to a
nonuniform, converging flow in the lower funnel region,
consistent with recent experiments �9,37�. There are no stag-
nant regions in the 30° and 60° conical funnels considered in

this study, although the flow is slower near the corner at the
top of the funnel, especially in the former case. Moreover,
the wider 30° funnel has a boundary monolayer of slower
pebbles partially crystallized on the wall.

The only available continuum theory for such flows, the
simple kinematic model �10–12,45�, gives a reasonable
qualitative picture of the flow profiles, although it cannot
capture discrete boundary-layer effects. As in other experi-
ments on similar geometries �9�, the kinematic model does
not quantitatively predict the dependence of the flow profile
on geometry. We suggest that it be used to get a rough sense
of the flow profile for a given core geometry prior to �much
more computationally expensive� DEM simulations and/or
experiments.

We have quantified the degree of pebble mixing in the
core. Although there is some horizontal diffusion in the fun-
nel region, pebbles depart from the streamlines of the mean
flow by less than one pebble diameter prior to exiting the
core.

We have demonstrated that the “mixing layer” between
the central moderator column and the outer fuel annulus,
which appears in prior models �39�, can be reduced to the
thickness of one pebble diameter by separating moderator
and fuel pebbles with a guide ring at the ceiling �to eliminate
mixing by surface avalanches�, consistent with experiments
on MPBR models �37�. We conclude that the dynamic cen-
tral column of moderator pebbles is a sound concept, which
should not concern regulators.

We have constructed Voronoi tessellations of our flowing
packings to measure the profile of volume fraction �or poros-
ity� and found some unexpected features which would affect
coolant gas flow through the core. The bulk of the core, in
the plug-flow region of the upper cylinder, has a volume
fraction near the jamming point �63%�, but there is a sharp
transition to less dense packings �55%–60%� in the funnel
region, due to shear dilation. We also observe lower volume
fractions in this range at the moderator/fuel interface in the
upper cylinder, below the guide ring, and lower volume frac-
tions �50%–55%� against the walls. These narrow regions of
increased porosity �and thus, increased permeability� would
allow faster helium gas flow.

We have also studied local ordering in the flowing pack-
ings and find evidence for partial crystallization within sev-
eral pebble diameters of the walls, consistent with previous
experiments �32,33� and simulations �40,41�. Such ordering
on the walls of the guide ring, then advected down through
the core, is responsible for the increased porosity of the
moderator/fuel interface.

We have varied the wall friction in our DEM simulations
and observe that it can affect the mean flow, even deep into
the bulk. Reducing the wall friction increases radial ordering
near the walls and makes the flow profile more uniform.

Since diffusion is minimal, the probability distribution of
pebble residence times is dominated by advection in the
mean flow. Therefore, we have made predictions using the
kinematic model, numerically for the conical-funnel reactor
geometries and analytically for a wide parabolic funnel. The
model predicts a fat-tailed ��1/ t� decay of the residence-
time density due to hydrodynamic dispersion in the funnel
region.

FIG. 20. �Color online� Comparison of particle diffusion for the
three bidisperse simulations.
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Our DEM simulations predict that the 60° conical funnel
results in a narrower residence-time distribution than the 30°
funnel, which has more hydrodynamic dispersion. The
steeper 60° funnel also exhibits a boundary layer of slower,
partially crystallized pebbles near the wall which lead to an
anomalous bump far in the tail of residence-time distribution.
These results have important implications for nonuniformity
in the burn-up of fuel pebbles.

We have introduced the concept of a bidisperse core with
smaller moderator pebbles in the dynamic central column
than in the outer fuel annulus, in order to focus the helium
gas flow on the fuel. Our DEM simulations demonstrate that
there is negligible pebble mixing at the interface for diameter
ratios as small as 0.5:1, for which the permeability of the
moderator column is reduced by a factor of 4. We conclude
that the bidisperse MPBR design is sound and will produce a
stable moderator-pebble column of greatly reduced gas
permeability.

A natural next step would be to combine our full-scale
DEM model for the pebble flow with existing computational
approaches to reactor core physics �38,39�, which rely on
pebble flow as an empirical input. More accurate studies of
gas flow in the core could also be done, starting from our
complete pebble packings or the average quantities such as
the porosity. With such computational tools, one should be
able to reliably test and develop new reactor designs.

B. Basic physics of dense granular flow

We have noted a number of favorable comparisons be-
tween our simulations and experiments in similar geometries
�9,32,33,37�, which provides further validation of the
discrete-element method as a realistic means of simulating
granular materials. As such, it is interesting to consider vari-
ous implications of our results for the theories of dense
granular flow, since the simulations probe the system at a
level of detail not easily attained in experiments.

Our conclusions about the kinematic model are similar to
those of a recent experimental study �9�: The model de-
scribes the basic shape of the flow field in the converging
region, but fails to predict the nearly uniform plug flow in
the upper region with vertical walls or the precise depen-
dence on the funnel geometry. It also cannot describe bound-
ary layers due to partial crystallization near walls or incor-
porate wall friction, which we have shown to influence the
entire flow profile.

On the other hand, there is no other continuum model
available for dense silo drainage, except for Mohr-Coulomb
plasticity solutions for special 2D geometries, such as a
straight 2D wedge without any corners �12�, so it is worth
trying to understand the relative success of the kinematic
model for our 3D reactor geometries and how it might be
improved. A cooperative microscopic mechanism for
random-packing dynamics, based on “spots” of diffusing free
volume, has recently been proposed, which yields the mean
flow of the kinematic model as the special case of indepen-
dent spot random walks with uniform upward drift from the
orifice �due to gravity� �17�. Under the same assumptions,
the spot model has also been shown to produce rather real-

istic simulations of flowing packings in wide silos �compared
to DEM simulations� �18�, where the kinematic model is
known to perform well �13–16�. This suggests that some
modification of the spot dynamics, such as spot interactions
and/or nonuniform properties coupled to mechanical stresses
and an associated modification of the kinematic model in the
continuum limit, may be possible to better describe general
situations.

From a fundamental point of view, perhaps the most in-
teresting result is the profile of Voronoi volume fraction �or
porosity� in our flowing random packings in Fig. 7. Although
the mean velocity in Fig. 2 shows a fairly smooth transition
from the upper plug flow to the lower converging flow, the
volume fraction reveals a sharp transition �at the scale of one
to three particles� from nearly jammed “solid” material in the
upper region �63%� to dilated, sheared “liquid” material in
the lower region �57%–60%�. The transition line emanated
from the corners between the upper cylinder and the conical
funnel. We are not aware of any theory to predict the shape
�or existence� of this line, although it is reminiscent of a
“shock” in the hyperbolic equations of 2D Mohr-Coulomb
plasticity �12�.

Our measurements of diffusion and mixing provide some
insights into statistical fluctuations far from equilibrium.
Consistent with the experiments in wide quasi-2D silos �16�,
we find that diffusion is well described geometrically as a
function of the distance dropped, not time �as in the case of
thermal molecular diffusion�. As a clear demonstration, there
is essentially no diffusion as pebbles pass through the upper
core, until they cross the transition to the funnel region,
where the diffusion remains small �at the scale of one pebble
diameter� and cooperative in nature. The behavior in the fun-
nel is consistent with the basic spot model �17�, but a sub-
stantial generalization would be needed to describe the tran-
sition to the upper region of solidlike plug flow, perhaps
using concepts from plasticity theory �26�.

We view silo drainage as a fundamental unsolved
problem, as interesting and important as shear flow, which
has received much more attention in physics. The challenge
will be to find a single theory which can describe both shear
cells and draining silos. Our results for pebble-bed reactor
geometries may provide some useful clues.
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APPENDIX: NUMERICAL SOLUTION OF THE
KINEMATIC MODEL

In the kinematic model for drainage the vertical down-
ward velocity u in the container is assumed to follow a
diffusion equation of the form
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�v
�z

= b��
2 v ,

where ��
2 is the horizontal Laplacian. By exploiting the axial

symmetry, v can be treated as a function of z and r only. In
cylindrical coordinates the Laplacian is
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= b
1

r

�

�r
�r
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�

=b
�2v
�r2 + b

1

r

�v
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.

The radial velocity component is given by

u = b
�v
�r

,

and by enforcing that the velocity field at the wall must be
tangential to the wall, we can obtain boundary conditions for
solving v.

To solve the above equation in a cylinder is straightfor-
ward, since we can make use of a rectangular grid. The
boundary condition reduces to vr=0 at the wall. However, to
solve this equation in the reactor geometry, we must also
consider the complication of the radius of the wall, R, being
a function of z. To ensure accurate resolution in the numeri-
cal solution of v at the wall, we introduce a new coordinate

=r /R�z� ,�=z, which then allows us to solve for u over the
range 0�
�1. Under this change of variables, the partial
derivatives transform according to

�

�r
=

1

R���
�

�

,

�

�z
=

�

�y
−


R����
R���

�

�

.

In the transformed coordinates,

R2v� =
b



v
 + bv

 + 
RR�v
.

To ensure differentiability at r=0, we use the boundary
condition


 �v
�





=0
= 0, �A1�

and by ensuring zero normal velocity at the wall we find that


 �v
�





=1
= −

vR�R

b
. �A2�

To numerically solve this partial differential equation, we
make use of the implicit Crank-Nicholson integration
scheme. We write v j

n=v�j�
 ,n��� and solve in the range
j=0,1 , . . . ,N where N=�
−1. Away from the end points, the
Crank-Nicholson scheme tells us that

v j
n+1 − v j

n

��
=

b

2�
2R2 �v j+1
n+1 − 2v j

n+1 + v j−1
n+1 + v j+1

n − 2v j
n + v j−1

n �

+ � b

4j�
2R2 +
jR�

4R
��v j+1

n+1 − v j−1
n+1 + v j+1

n − v j−1
n � ,

where all references to R and R� are evaluated at
�=���j+ 1

2
�. If j=0, then by reference to Eq. �A1�, we find

that

v0
n+1 − v0

n

��
=

b

�
2R2 �v1
n+1 − v0

n+1 + v1
n − v0

n� .

Similarly, for j=N, by reference to Eq. �A2�, we see that
effectively

vN+1
n − vN−1

n

2�

= −

vN
n R�R

b

and hence

vN
n+1 − vN

n

��
=

b

�
2R2 �vN−1
n+1 − vN

n+1 + vN−1
n − vN

n �

− � �2N + 1�R�

2R
+

R�2

2b
��vN
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n � .

If we write vn= �v0
n ,v1

n , . . . ,vN
n �T, then the above numerical

scheme can be written in the form Svn+1=Tvn where S and T
are tridiagonal matrices; this system can be efficiently solved
by recursion in O�N� time. The above scheme was imple-
mented in C++ and gives extremely satisfactory results, even
with a relatively small number of grid points.
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