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Drift velocity for a chain of beads in one dimension
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The one-dimensional motion of a chain of N beads is studied to determine its drift velocity when an external
field is applied. The dependences of the drift velocity with the chain length and field strength are addressed.
Two cases are considered, chains with all their beads charged and chains having an end bead charged. In the

last case, an analytical expression for the drift velocity is proposed for all N. Results are tested with the help

of Monte Carlo simulations.
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I. INTRODUCTION

A chain in one dimension can move by contracting and
stretching in a wormlike fashion. This mechanism, named
reptation in polymer physics, plays a key role in the dynam-
ics of entangled polymer melts and in many chemical, bio-
logical, and industrial processes. In the dynamics of en-
tangled polymers, neighboring chains constrain a given chain
to diffuse only along a confining tube and then the chain
executes a one-dimensional random walk [1,2]. Thus, a chain
can progress by leaving part of the initial tube and creating a
new part as it reptates.

The idea of reptation was originally introduced by de
Gennes [3]. Later, Rubinstein presented a unidimensional
model (the repton model) to analyze the chain dynamics un-
der reptation [4]. This model was adapted by Duke to study
electrophoresis of DNA chains in a gel [5] and then the con-
sequences of applying an external field was addressed for a
variety of cases [6-12]. Electrophoresis is a very important
tool in molecular biology that is regularly used for separating
long chain macromolecules according to their size.

Recently, Guidoni et al. introduced a slightly modified
repton model with hardcore reptons in one dimension
[13,14]. The dynamics diffusion of both repton models are
identical. However, the hardcore reptons model is more flex-
ible regarding the jump probabilities of particles at the ends
of chains relative to those for the central ones allowing the
study of cases that cannot be addressed with the original
repton model [4]. In this work we focus on the drift velocity
as a function of the chain length for the hardcore reptons
model. We deduced exact analytical expressions for some
cases of interest using an approach that simplifies the calcu-
lations respect to the standard methods used in the literature
[15]. We also verified the Einstein relation comparing the
present results with the chain diffusivity as a function of the
chain length recently derived [16,17].

II. MODEL

Let us consider a chain in a one-dimensional lattice con-
sisting of N particles that can hop to the nearest site only if
this site is empty. There can be only one particle per lattice
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site. Particles can hop to the right or left but no more than
one site can be empty between two of them [13,14]. When
external force are not applied, the jumping rules of the model
are as follows:

(i) If the particle is located at the end of the chain and its
nearest site is occupied by another particle, the end particle
jumps with a probability per unit time p,, see Fig. 1(a).

(i) If the particle is located at the end of the chain and its
nearest site is empty, the end particle jumps with a probabil-
ity per unit time p,, see Fig. 1(b).

(iii) If the particle is not an end particle (i.e., it is a middle
particle) and one of its nearest site is occupied and the other
one is empty, the middle particle jumps to the empty site
with a probability per unit time p,, see Fig. 1(c).

(iv) If the particle is a middle particle with both nearest
sites occupied, or both nearest sites empty, the middle par-
ticle does not jump and remains at its original position, see
Figs. 1(d) and 1(e).

Hence, p,, p;,, and p, are the free parameters of the model.
Every time a particle jumps, the center of mass of the chain
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FIG. 1. Jumping probabilities per unit time for end [(a), (b)] and
middle [(c), (d), (e)] particles. In cases (d) and () the middle par-
ticle, the shaded one, cannot jump.
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moves 1/N of the distance a between adjacent lattice sites.
In the following we use a=1.

An empty site in the chain is named a hole. A hole is
created or annihilated every time an end particle jumps mov-
ing away from the chain or towards the chain. With no ex-
ternal fields, an end particle jumping attempt that creates a
hole is successful with frequency p,(1—-P,), where P, is the
hole probability. Similarly, an end particle jumping attempt
that annihilates a hole succeeds with frequency p,P;,. In
equilibrium we expect the same frequency for creation and
annihilation. Then, P, can be expressed as

Pa

Ph= .
PatPo

(1)

Note that P, is independent of p..

When a force is applied to a particle, say to the right, the
jumping frequencies per unit time of the particle to the right
and to the left will be considered to be (1+ &)k and k, respec-
tively. k is the jumping frequency, to the right or to the left
when no field is applied (i.e., k=p,, pp, p.) and 6>0. In
what follows we will refer to 6 as the applied “force” to a
particle of the chain.

We will start considering the case named the uniform
force case when a force 6 to the right is applied to every
particle of the chain. We discuss next the case when a force
6 to the right is only applied to the right end particle of the
chain. This case will be called the pull case. Similarly, one
can obtain the drift velocity for the case in which a force 6 to
the right is only applied on the left end particle of the chain
(the push case).

III. RESULTS AND DISCUSSIONS
A. Uniform force case

Exact analytical expression for the drift velocity, in the
uniform force case, for a chain with small values of N, can
be derived as follows. We will focus on N=3. In Fig. 2
different configurations for a chain with three beads and its
evolution are presented. The scheme also shows the prob-
abilities for the possible transitions among configurations.

It is important to note that we consider that the system is
formed by a large number of noninteracting chains. It is then
assumed that, after some time, the system will be in steady
state in which the number of chains n; in every configuration
“i” and the number of chains per unit time evolving among
configurations remain constant. Possible configurations of
the chains have been grouped together in cells that take into
account the symmetry of the system, see Fig. 2. Note that in
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FIG. 2. Representation of the possible configurations for a chain
with three beads, transitions among configurations, and jumping
probabilities per unit time when a force & to the right is applied to
each particle of the chain. Different positions for the center of mass
are indicated. In the analytical expressions the value a=1 was used.

Fig. 2, ny=ny, ny=ns, n,=ng, and ny=n,. Therefore, we can
write the following:

[”0(1 + 5) + n3]pb = nlpa(z + 5)’ (2)
[1no(1 + 6) + n3lp, = nypy(2 + 9), (3)
(nlpa + n2pb)(1 + 5) +nop.= n3[pu + Py +pc(l + 5)]’ (4)

nlpa+n2pb+n3pc(l + 5) :nO[@a+pb)(1 + 5) +pc]- (5)

From this set of equations, the average number of chains #;
in each configuration 7 in cells 1 and 2 can be determined.
From Egs. (2)—(5), it follows

no_ &{pc(l + 8+ (patpp+p)(1+8)(2+9) +Pc]
ny  Pa [Pa+Pb+Pc(1+5)(2+5)](2+5) ’

ny _ @{pc(l + 8+ (patpp+p)(1+8)(2+9) +pc]
ny Py [pa+pp+pc(1+0)(2+6)](2+0) '

ny  (pa+pp)(1+0°+p(2+9)
ny  Patpptpl+82+6)

(6)

We expect that, in presence of an external field, charged
chains move with a drift velocity v. Then the resulting flux is
Jarip=cv, where c=ng+n;+n,+ns is the total number of
chains per cell. Furthermore, the net flux of particles between
cells 1 and 2 is given by [see Fig. 2]

Jaripe = [n3(1 + 6) = ngp... (7)

From Egs. (6) and (7), after some algebra, the drift velocity
can be found to be

Un=3 =

5. (8)

(PatPp— 1) | (Pat ) (1 + )+ pp,6°

(Pa+ PP+

(pa +pb)

3435+ 8
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FIG. 3. Dirift velocity of chains consisting of three beads as a
function of the “external force” & applied to every bead. The Monte
Carlo results were obtained using p,7=0.05 and p,7=p.7=0.001
(open squares), and p,7=0.0001, p,7=0.001, and p.7=0.1 (open
circles), where 7 is the unit time. Lines correspond to theoretical
results according to Eq. (8).

This result is valid for all values of 8. In Fig. 3, numerically
calculated drift velocity and theoretical results, using Eq. (8)
are shown. Note that for p,+p,=p,. the drift velocity adopts
the value p,p,d/(p,+p,). Under this condition, the jumping
probability per unit time is the same for every particle of the
chain (i.e., the mobilities of all beads are the same, see Ref.
[16]).

Using the same procedure as the one used above, the drift
velocity for a chain of two particles can be obtained to be

PaPb
v -2 = —59 (9)
=2 (pa+pb)

which is also valid for all é.

We will analyze now the correlations between holes in a
chain with three particles. For example, we will show the
calculations of the correlation for the configuration named
“0” in Fig. 2. Remember that n; is the average number of
chains in the configuration i. Let P be the probability of
finding a hole between the right end and the central particle.
Similarly, let O be the probability of finding a hole between
the central and the left end particle. Then, with no force
applied, P and Q adopt the value given by Eq. (1).

The probability of finding the chain in the O configuration
is Prob(0)=ng/(ng+n,+n,+n3). Then, the correlation C can
be expressed as

C=Prob(0) - (1 - P), (10)
where

n2+n3
p=—32 23—
n0+n1+n2+n3

(11)

n0+n2
g=—20"2 (12)
n0+n1+n2+n3

Then, with the help of Egs. (6), the correlation can be found
to be
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C=(p,+pp=pc) , (13)

where

F=p2+pppe+ 02+ pD (o + py) + 2pppp ) (1 + 6)
+[(P2+ PPPe+ Palo(Pa+ Py + P11 + ). (14)

Equation (13) shows, first, that for all values of p,, p,, and
P.» the correlation vanishes at order &, and second, for p,
+p,=p, the correlation vanishes for all values of . We ex-
pect that both properties, verified for N=3, are also valid for
all values of N.

When p,+p,=p., we found that the mobilities of all the
beads for a chain of any length are the same. Thus, chains are
dragged without deforming, the Einstein relation is always
valid (for any N and §), and no correlation is found (see Ref.
[16] for details). Assuming that the above-mentioned first
property is valid for all N, one can use the mean field ap-
proach and write a set of equations corresponding to the
average velocity of each bead of a chain. Then, one can
obtain the following diffusion coefficient valid for N=2 that
was derived through a different method and also numerically
verified in Ref. [16]

PaPvPc
(pa +pb)[(N_ 2)(pa +pb) + 2Pc] ‘

Using the second property, if p,+p,=p., one can obtain

Dy= (15)
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FIG. 4. (a) Drift velocity of chains with N particles as a function
of the external force &, when a force &'to the right is only applied on
the right end particle of the chain (i.e., the pull case). (b) Linear
dependence between drift velocity and the applied force & for dif-
ferent N, in the uniform force case when p,+p,=p.. The parameters
of the model are p,7=0.01, p,,7=0.02, and p.7=0.03, where 7is the
unit time. Open squares correspond to N=3, open circles to N=5,
and open triangles to N=10. Numerical results were obtained using
Monte Carlo simulations. Lines correspond to theoretical results of
Egs. (16) and (24).
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PaPp S
(Pa+pp)
for N=2 and all values of 8. Figure 4 (b) illustrates the
linear dependence between drift velocity and the applied

force o, for different N, when p,+p,=p.. The numerical re-
sults are obtained from Monte Carlo simulations.

(16)

UN=

B. Pull and push cases

We will study now the pull case for a chain of three beads.
Using the same argument that in the uniform force case, we
analyze the four configurations shown in Fig. 2 but consid-
ering that the force 6 to the right is only applied on the right
end particle. Then, we can write the following set of equa-
tions:

(ng+n3)p,=np,(2+9), (17)
[no(1 + ) + n3lp, = 2n,py, (18)

np 1+ 6) +nop, +nop.=ns3(p,+pp+p.),  (19)

PaPvPc
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npa+nopp+nsp.=no[p,(1+ ) +p,+p.].  (20)

Note that the flux is given by J,.;,=cv, where c=ny+n,
+n,+n5. Furthermore, the net flux between cells can be writ-
ten as

Jarifr= (n3 = ng)p... (21)
Using the same procedure as those used for the uniform force

case, we can obtain

Uney = PaPvPc 5’
= [pd2+ ) +2plpe+ (pa+ pp)pa(1 + 6) + py]
(22)

valid for all 6. Similarly, for N=2 we can easily deduce

Palp

T2+ +2p, (23)

Un=2

By comparing these last two equations, the general expres-
sion for any N can be proposed to be

UN=

which is valid for all J.

(a2 + ) + 2slpe+ (N =2{(pa+ po)paL+ D4 P}

(24)

Let us consider now the push case. Using the same method as above, the expression for the drift velocity for a chain with

N=3 and N=2 can be obtained as

Un=3

and

PaPvPc
- 5. 25
(27, +Pp(2+ O)p.+ (po+ pp)pa+ Pp(1 + 6)] @5)
Uy PPy (26)

- fab 5
2p,+pp(2+6)

Note that exchanging p, by p;, Egs. (22) and (23) become Egs. (25) and (26), respectively. Then, for the push case one infers

that

PaPbPc

N et o2+ Ot (N=2){(pa+ po)lpa+ oL+ D

The validity of Egs. (24) and (27) has been extensively
verified using Monte Carlo simulations for different values
of N and &. In Fig. 4(a) numerically calculated drift velocity
for the pull case, for different N, are presented. These results
are in full agreement with Eq. (24).

It is interesting to note that, depending on the values of p,,
and p,, the drift velocity might result larger for the pull case
than for push case or vice versa. This can be explained as
follows. As seen in describing the model, see Fig. 1, particles
of a chain need holes to move. However, if the number of
holes is very large, internal particles become immobile most

(27)

of the time. We conclude that chains with a very large (or
very small) number of holes present a low mobility. When
we deal with a large P, (p,>>p, [see Eq. (1)]), by pulling
from an end the average number of holes increases what does
not favor mobility. Conversely, if we push one end the num-
ber of holes is reduced and the mobility is favored. Similarly,
the behavior of a chain with a low P, can be understood.

C. Einstein relation

One expects that, in the limit 6— 0, the Einstein relation
will hold for all cases. Indeed, in this limit, from Egs. (8) and

021116-4
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(9) (i.e., the uniform force case) one can verify that (for N
=2.3)

UN=N5DN, (28)

where N is the total force applied to the chain and Dy is the
diffusion coefficient presented in Eq. (15). Similarly, from
Egs. (24) and (27) (the pull and push cases, respectively) it
can be found for N=2 that

v N= 5D N> (29)
where ¢ is the total force applied to the chain.

D. The large field limit

Finally, we will consider the limit of very large fields (&
— ). In the uniform force case, from Egs. (8) and (9), the
drift velocity takes the form

PaPbPc
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Palp

Uy = — 9, (30)
N2 (patpy)
. PaPbPe — 5 G1)
(Pa+ PPt (Patpp—p)—2
b b (pa+ph)

In order to derive the drift velocity for a chain with four
particles, in the limit §— %, we can use the same method
used to obtain Eq. (8). For large fields, some frequencies
become negligible and then the algebra simplifies signifi-
cantly. Thus,

UN=4=
Palb\Pa+ Py = D)

5. 32
(papp)*L (P + p1)* = P2] (32

(Pa+Pp)Pc+
b (Pa+Pp)

2
+ + +—
(Pa+p)7| (Pa+Pp)PC T

With N>4 this method is intractable even for large fields.
From the Eqgs. (24) and (27) (the pull and push cases,
respectively), it is easily obtained

— pbpc
P+ (N=2)(p,+pp)

Uy pull case (33)

_ J
Pe + (N_ 2)(pa +pb)’
Note that in the pull and push cases the velocity (for §— )

does not depend on the field. This behavior is also found in
the Rubinstein-Duke model as described in Ref. [18].

Uy push case. (34)

IV. CONCLUSIONS

In this paper, we have analyzed a discretized model of a
chain consisting of N particles, in the presence of an external
field, in one dimension. Exact analytic results of drift veloc-
ity have been derived by means of an alternative approach
not regularly used in the literature. With this method, the
drift velocity is obtained solving a system of linear equa-

PaPp
> )(pa+pb—pc)

a

tions. This method was successfully used for different cases.
If a force is applied to all particles of the chain, the drift
velocity could be exactly determined for N=2 and N=3. For
Pat+Pp=PD., the mobility becomes independent of the chain
length and the applied force, and the drift velocity is ob-
tained for all o. For the cases in which a force is applied only
to one of the chain ends, an analytical expression for the drift
velocity was proposed for all N and for any value of the
applied force, results that were supported by simulations.

It is verified that the Einstein relation is valid in the limit
of 6— 0. We also found that for fully charged chains under
very large fields, the drift velocity becomes proportional to
the field. Conversely, chains with a single end bead charged,
the drift velocity for large fields presents an asymptotic
value. All these findings were tested with the help of Monte
Carlo simulations.
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