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We consider a Markovian jumping process which is defined in terms of the jump-size distribution and the
waiting-time distribution with a position-dependent frequency, in the diffusion limit. We assume the power-law
form for the frequency. For small steps, we derive the Fokker-Planck equation and show the presence of the
normal diffusion, subdiffusion, and superdiffusion. For the Lévy distribution of the step size, we construct a
fractional equation, which possesses a variable coefficient, and solve it in the diffusion limit. Then we calculate
fractional moments and define the fractional diffusion coefficient as a natural extension to the cases with the
divergent variance. We also solve the master equation numerically and demonstrate that there are deviations
from the Lévy stable distribution for large wave numbers.
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I. INTRODUCTION

The diffusion is called anomalous if the mean squared
displacement of the Brownian particle does not rise with
time linearly, as is the case for the usual Brownian motion,
but slower �subdiffusion� or faster �superdiffusion�. There
are many examples of physical systems which exhibit such
anomalous transport; they involve complex systems, disor-
dered systems, semiconductors, polymers, glasses, turbulent
plasma, and many others �for a review, see Refs. �1,2��.
Physical situations in which the deviation of the linear de-
pendence is expected comprise: a porous and inhomoge-
neous environment with traps and barriers, a coupling to a
fractal heat bath via a random matrix interaction �3�, long-
range and/or long-time correlations. Also the transport phe-
nomena in dynamical Hamiltonian systems often exhibit
anomalous behavior because the corresponding phase space
can contain some regular structures which act as dynamical
traps �4,5�. A trajectory sticks to such self-similar hierarchy
of islands in a chaotic environment and abide on regular
paths for a long time. The emergence of the anomalous dif-
fusion means that the traditional approach, involving the
standard Fokker-Planck equation �FPE� with the diffusion
constant, is no longer valid. Usually, the anomalous diffusion
is attributed to memory effects, which are especially pro-
nounced in non-Markovian descriptions, e.g., by means of
the generalized Langevin equation �6� and the continuous-
time random walk models �CTRW� �1,7�. In the diffusive
limit, those approaches resolve themselves to the fractional
equations formalism �1,8,9� which contain the Riemann-
Liouville operator as the fractional time derivative; the step-
size distribution is the Gaussian. As a direct consequence of
the nonlocality in time and therefore of the lack of Markov-
ian property, the uncoupled CTRW predicts subdiffusive so-
lutions in this case �10,11�. However, the anomalous behav-
ior is possible also for the Markovian processes; they are
described by FPE with the position-dependent diffusion term
and physically can correspond, e.g., to the diffusion on frac-
tal objects �12� �this problem has been further developed and
reformulated in terms of the fractional equations in Refs.
�13–15�� and to the Langevin equation with the multiplica-
tive noise �16�. In fact, the enhanced diffusion can emerge

also for the finite mean waiting time if the memory term in
the CTRW is coupled �17�. In this paper we discuss an ex-
ample of the Markovian process which exhibits all kinds of
diffusion.

A more general approach considers the Lévy distribution
which is defined, in its symmetric version, via the character-
istic function ��k�=exp�−��k���, where 0���2. If ��2
the second moment is infinite and the generalized central
limit theorem must be applied. Physically, Lévy processes
can reflect self-similarity: they are the stable solutions of the
renormalization group method and are invariant under the
scaling of position and time. In contrast to the Gaussian dis-
tribution, they include large fluctuations. The Lévy distribu-
tions are present in many problems connected with various
branches of science, including not only physics but also bi-
ology, economy, financial market research, etc. Recent stud-
ies of systems which are characterized by the stable distribu-
tions include stochastic equations with potentials �18� and a
mean first passage time analysis �19�. The diffusion equation
for the Lévy process involves a fractional derivative over the
process value �5,20–23� and for �=2 it resolves itself to the
ordinary FPE. Since the variance diverges for ��2 and the
traditional description of the diffusion process is no longer
valid, one has to introduce new concepts, e.g., to study frac-
tional moments �24� or to restrict the integration in averaging
to a finite box which scales with time in a prescribed way
�25,26�.

Problems related to generalized diffusion equations,
which contain either anomalous behavior of the variance or
infinite fluctuations, are the subject of the present paper. We
deal with a jumping process which is Markovian, defined in
terms of a jump-size distribution Q�x� and the waiting time
distribution PP���. A peculiarity of the distribution PP���
consists in a position-dependent jumping rate. The process is
defined in Sec. II. In Sec. III we derive the FPE as a small
step limit of the master equation. Section IV is devoted to the
fractional diffusion equation which is an approximation of
the master equation in the diffusion limit for Q given by the
Lévy distribution; we solve this equation, discuss its diffu-
sion properties, and compare with numerical solution of the
master equation. The results of our analysis are discussed in
Sec. V.

PHYSICAL REVIEW E 74, 021103 �2006�

1539-3755/2006/74�2�/021103�8� ©2006 The American Physical Society021103-1

http://dx.doi.org/10.1103/PhysRevE.74.021103


II. DEFINITION OF THE PROCESS

The jumping process we are to deal with in this paper is a
stepwise constant stochastic process x�t� defined in terms of
two probability distributions �27�. The waiting time density
distribution determines the time intervals �i between con-
secutive jumps and it is assumed in the Poissonian form:

PP��� = ��x�e−��x��, �1�

where the jumping rate ��x� depends on the process value
�the position�. The size of the jumps is determined by a given
normalized distribution Q�r=x−x��. Then the infinitesimal
transition probability can be easily constructed and the mas-
ter equation derived. It is of the form

�

�t
p�x,t� = − ��x�p�x,t� +� Q�x − x����x��p�x�,t�dx�.

�2�

Because of the variable jumping rate ��x�, the above pro-
cess can be regarded as a version of the kangaroo process
�28,29�. The difference consists in the jump-size dependence
of Q—in the kangaroo process Q depends only on the cur-
rent position. Due to that property, the Eq. �2� can describe
transport phenomena �27�. On the other hand, since the wait-
ing time distribution depends on the position, the process
constitutes a special case of the coupled CTRW. Taking into
account the position dependence of the jumping rate is an
important generalization of traditional random walk ap-
proaches. Such dependence is expected in many phenomena
in which inhomogeneity of the environment cannot be ne-
glected �30�.

The stationary solution of Eq. �2� can be easily obtained:
P�x�=1/��x�. The normalization condition imposes restric-
tions on the function ��x�: it must rise sufficiently fast in the
infinity and sufficiently slow near zero. If, in turn, 1 /��x� has
poles at some x, the stationary solution also exists and it is in
the form of a combination of the delta functions. In the other
cases P�x� does not exist. A special version of the stationary
process, defined on the circle, exhibits long-time correlations
and can serve as a model of the 1/ f noise �31,32�.

The general, time-dependent solution of Eq. �2� can be
obtained by using the Laplace transforms. The formal ex-
pression for the Laplace transform of p�x , t� is the following
�27�:

p̃�x,s� =
p0�x�

s + ��x�
+

1

s + ��x� � ��x0�p0�x0�Q�x − x0�
s + ��x0�

dx0

+
1

s + ��x��k=2

	 � ��x0�p0�x0�
s + ��x0�

Q�x − xk−1�


�	
i=2

k
��xi−1�Q�xi−1 − xi−2�

s + ��xi−1�
dxi−1
dx0, �3�

where p0�x� stands for the initial condition.
By multiplying Eq. �2� by x2 and by integrating over x,

one can obtain the equation which governs the time evolu-
tion of the variance. Assuming that Q has the vanishing mean
and finite second moment, we yield the following result:

��x2�p

�t
= �x2�Q���p. �4�

The simple case ��x�=const can be solved completely and
Eq. �4� predicts the normal diffusion. However, if �x�Q does
not vanish, the diffusion becomes ballistic �27�. For Q with
divergent second moment, in turn, �x2�p is infinite.

III. SMALL JUMPS: THE FOKKER-PLANCK EQUATION

Expression �3� is difficult to handle and one has to resort
to approximations. In the limit of small jumps, the process
becomes continuous both in space and time and FPE may be
a candidate for such approximation. In order to construct it,
we apply the Kramers-Moyal expansion �33� of the master
equation. In that method, one changes the integration vari-
able in Eq. �2� by introducing the step size r=x−x� and, after
the expansion of the function p�x−r , t���x−r� around r=x,
one obtains the master equation in a form of the following
series:

�p�x,t�
�t

= �
n=1

	
�− 1�n

n!
�rn�Q
 �

�x
�n

�p�x,t� · ��x�� �5�

which is still exact. The approximation consists in neglecting
all terms of the order higher than 2. Obviously, all moments
of Q must be finite. Finally, we obtain the FPE:

�p�x,t�
�t

=
�2

2

�2���x�p�x,t��
�x2 , �6�

where �2= �r2�Q. Therefore the jumping rate may be inter-
preted as the position-dependent diffusion coefficient. The
approximation is valid if the jumps are small and the func-
tion ��x� is smooth �34�:

Q�r� � 0 for r � 
 ,

��x + �x� � ��x� for �x � 
 , �7�

where 
 is a small parameter.
For ��x�=const, Eq. �6� takes the form of the ordinary

diffusion equation which describes the Wiener process and is
characterized by the normal diffusion. An interesting case is
the power-law form of the jumping frequency:

��x� = ��x�−�, �8�

where � is a constant parameter and � ensures proper units;
in the following we assume �=1. The above expression for
the jumping frequency will be applied in this paper. The
diffusion coefficient in the form �8� has been used to describe
the diffusion on fractal objects �12�, the transport of fast
electrons in a hot plasma �35�, and turbulent two-particle
diffusion �36�. The FPE with that diffusion coefficient has
been analyzed from the point of view of the first passage
time in Ref. �37�. The FPE �6� with � given by Eq. �8� can be
solved exactly �38�:
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p�x,t� = C�

�x�� exp�− 2�x�2+�/�2�2 + ��2t�
��2t/2��1+��/�2+�� , �9�

where C�= 1
2���1+��/�2+��� �2+���/�2+��. Some values of � must

be excluded. Since for ��−3 Eq. �2� has the stationary so-
lution �in the form of the delta function�, the approximation
by the FPE is not valid; the diffusion in this case is local.
Moreover, for �� �−2,−1� the distribution �9� is not normal-
ized. Therefore we have either �� �−3,−2� or ��−1.

Figure 1 presents the comparison of the FPE solutions
p�x , t�, calculated according to Eq. �9�, with the solutions of
master equation �2�, obtained from Monte Carlo simulations
of the stochastic trajectories. The agreement is good already
for �=0.1.

The diffusion properties of the system follow directly
from solution �9�. The mean squared displacement for ��
−1 is given by the power-law function of time by the follow-
ing formula:

�x2�t�� =
���3 + ��/�2 + ���
���1 + ��/�2 + �����2

2
�2 + ��2t
2/�2+��

�10�

and the diffusion coefficient is

D =
�x2�
2t

� t−�/�2+�� �t → 	� . �11�

Then we can distinguish three cases. For �� �−1,0�, D is
infinite and the superdiffusion emerges. For ��0, D=0 and
we get the subdiffusion. Finally, the normal diffusion takes
place for �=0. Therefore the jumping process involves all
kinds of diffusion.

The observed anomalous behavior can be understood if
we consider the average waiting time interval �̄= ���PP
=1/��x�. The time dependence of that quantity can be esti-
mated by the average ��̄�p�x,t�=��̄�x�p�x , t�dx� t�/2+�. Since
��̄�p�x,t� rises with time for ��0, the waiting times becomes

larger and then the diffusion weakens, compared to the nor-
mal case, in accordance with Eq. �10�. On the other hand,
��̄�p�x,t� diminishes with time for �� �−1,0� which results in
the enhanced diffusion. Since the distribution p�x , t� widens
with time, the large x values are decisive for evaluation of
the average ��̄�p�x,t� in the diffusive limit.

The above observations help us to predict the diffusive
properties of the processes defined by frequencies ��x� other
than the algebraic dependence �8�, for which the FPE cannot
be solved exactly. For example, if ��x�=exp�−c�x��, c�0, the
tails fall faster than any power law; we expect especially
strong trapping of the stochastic trajectories and the diffusion
must be very weak. Indeed, the numerical estimation of the
variance �x2�t�� produces the result �x2�t��� t0.009.

IV. FRACTIONAL DIFFUSION EQUATION

Let us now assume the distribution Q in the form of the
symmetric Lévy distribution, defined by its Fourier trans-
form:

Q̃�k� = exp�− K��k��� �K � 0� , �12�

where 1���2. In contrast to the Gaussian distribution,
Q�x�, corresponding to Eq. �12�, has algebraic tails, Q�x�
��x�−1−���x�→	�, which makes long jumps very probable.

In the diffusion limit k→0, Eq. �12� is given by Q̃�k��1
−K��k��. We wish to derive an equation which could serve as
an approximation to master equation �2� in the diffusion
limit. We take the Fourier transform of Eq. �2� and insert

Q̃�k� in the above form, that yields

�p̃�k,t�
�t

= − K��k��F ���x�p�x,t�� . �13�

Equation �13� can be formally inverted by expressing the
invert Fourier transform by a fractional Weyl-Riesz operator:
F−1�−�k���= ��

��x�� �39�. The resulting equation is the follow-
ing:

�p�x,t�
�t

= K������x�p�x,t��
��x��

. �14�

Technically, the presence of the x-dependent term under the
fractional derivative poses the main difficulty. Nevertheless,
in many physical situations the variability of the coefficient
in the fractional equation is important. It is the case, for
example, in a consistent description of the Lévy flights in
complex systems, involving an external periodic potential
�40�. Recently, properties of human travels have been studied
in terms of the stochastic fractional equations by analyzing
the circulation of bank notes in the United States �41�. The
lack of expected relaxation of probability distributions to the
equilibrium can be caused by the spatial inhomogeneities of
the system and then it could be explained by introducing the
variable diffusion coefficient.

Our aim is to solve Eq. �14� for � given by Eq. �8�, where
��−1, with the initial condition p�x ,0�=
�x�.

FIG. 1. Time evolution of the FPE solutions p�x , t� calculated
from Eq. �9� �solid line� and solutions of master equation �2� for the
Gaussian form of the distribution Q �dots�. Parameters are �=0.5
and �=0.1.
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A. The case �=0

Equation �13� for this case can be easily solved:

p̃�k,t� = exp�− K�t�k��� . �15�

The above expression is the characteristic function of the
Lévy process �5� and its inversion produces the symmetric
Lévy distribution. To handle those distributions, it is conve-
nient to apply Fox functions. In fact, the Lévy distribution in
its most general form can be expressed as a Fox function
�42�. That formalism is useful in describing stable processes
because it reflects scaling properties of the underlying phe-
nomena. The definition and some properties of the Fox func-
tions are presented in the Appendix.

The solution of Eq. �14� can then be expressed in the
following way �1,43�:

p�x,t� =
1

��x�
H2,2

1,1�� �x�
�K�t�1/���1,1/��,�1,1/2�

�1,1�,�1,1/2�

 . �16�

The asymptotics �x�→	 results from the expansion �A3�:
p�x , t�� t / �x�1+� and implies that the variance, as well as all
fractional moments of the order of � or higher, diverge.

B. The general case

Equation �14�, as an approximation to the master equation
in the diffusion limit, has been obtained from Eq. �2� by
dropping all terms of the order higher than �k�� in the expan-
sion of Q�k�. Consequently, solving Eq. �14�, we can neglect
those terms without introducing any additional idealization.
We look for a solution in the form of the Fox function

p�x,t� = NaH2,2
1,1��a�x���a1,A1�,�a2,A2�

�b1,B1�,�b2,B2�

 , �17�

similar to that for the case �=0, where a=a�t� and N is the
normalization constant. We want to determine the coeffi-
cients ai, Ai, bi, and Bi, as well as the function a�t�, by
expansion of both sides of Eq. �13� in consecutive fractional
powers of �k� and neglect the terms which are small for k
→0.

The function p�=x−�p�x , t� on the right-hand side of Eq.
�13� can be expressed as the Fox function due to the multi-
plication rule �A5�. Its Fourier transform, given by Eq. �A6�,
expanded according to the formula �A3�, takes the form

p̃��k,t� = 2��h0
��� + h1

����k�� + O��k���� , �18�

where k�=Kk /a. Deriving explicitly consecutive terms and
utilizing simple properties of the gamma function, one can
find conditions for the coefficients. First, to get the term of
order k0, we introduced the condition 1−a1=A1�1−��. h1

���

=0 identically because the gamma function in the denomina-
tor is infinite. Similarly, for the function p�x , t� we have

p̃�k,t� = 2��h0 + h−��k��−� + h1�k�� + h2�k��2 + h��k���

+ O��k�2�+��� , �19�

where we imposed the condition 2−a1=A1�1+�� to get the

exponent � for the term �k��. Then the above conditions de-
termine the first two coefficients of the Fox function: a1 and
A1. We need also h−�=0; this requirement can be satisfied if
the argument of one of the gamma functions in the denomi-
nator assumes an integer and nonpositive value. The condi-
tion for that is 1−b2−B2�1−��=0 �alternatively, we could
impose a similar condition for a2 and A2�. The same proce-
dure allows us to satisfy the requirement h2=0 and to deter-
mine B2=1/ �2+��. Finally, since the coefficients a2 and A2

enter the above expressions in a similar way as b2 and B2, we
want to preserve this symmetry, present for the case �=0,
and assume a2=b2 and A2=B2.

Then we insert the expansions Eqs. �18� and �19� into Eq.
�13� and separate the time-dependent term: �a /K�−�−�−1ȧ /K
=−�, where � is a constant which scales the time and then it
is not essential. We assume �=1/ ��+��. By taking into ac-
count the initial condition for Eq. �14�, one can write down
the solution for the function a�t� as

a = Kt−1/��+�� �20�

and then reduce the problem to a simple equation:

−
�

� + �
h� = h0

����, �21�

where h0
���

�=a−�h0
���.

After implementing the coefficients we have evaluated,
we obtain for the term h� the following expression: h�

=�−2��+����−����b1+B1�1+���cos��� /2�sin� �+�
2+� ��. Un-

fortunately, the term h0
���

� cannot be obtained directly from
the series expansion because the undetermined expression
emerges. Instead, we proceed as follows. h0

���
� can be ex-

pressed as h0
���

�= �2��−1a−�p̃��k=0�=�−1�0
	z−1W�z�dz, where

we obtained the function

W�z� = H2,2
1,1�� z�


1,
1

� + �
�,
1,

1

2 + �
�

�b1 + B1�1 − ��,B1�,
1,
1

2 + �
� � �22�

by applying the relation �A5�. The required term can now be
easily evaluated as the Mellin transform M�W��s�
=�0

	W�z�zs−1dz:

h0
���� = �−1M�W��s = 0� = �−1��0� = �−1 lim

�→0
����

=
1

�

� + �

2 + �
��b1 + B1�1 − ��� . �23�

Inserting the expressions for h� and h0
���

� into Eq. �21�
yields the relation between b1 and B1. Then, finally, the so-
lution of Eq. �14� reads
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p�x,t�

= NaH2,2
1,1�a� �x��


1 −
1 − �

� + �
,

1

� + �
�,
1 −

1 − �

2 + �
,

1

2 + �
�

�b1,B1�,
1 −
1 − �

2 + �
,

1

2 + �
� �

�24�

with the condition

�

�

2 + �

� + �
��− ����b1 + B1�1 + ���sin
� + �

2 + �
��cos���/2�

+ ��b1 + B1�1 − ��� = 0 �25�

which follows directly from Eq. �21�. The general theory of
the Fox functions implies that p�x , t� is the analytic function
for all x�0 if B1�1/ ��+��. Apart from that—very weak—
condition, one parameter is arbitrary. We will return to this
issue in Sec. IV D. The normalization factor N can be deter-
mined in a simple way by using the Mellin transform: N
= �2��−1��−1, that yields

N = −
�

2
���b1 + B1��
−

�

� + �
�sin
 �

2 + �
��
−1

. �26�

In the k space, the solution �24� is of the form

p̃�k,t� = 1 − ���k�� + . . . � exp�− ���k��� , �27�

where

�� =
K−�

�

�� + ��2

2 + �

��b1 + B1�1 − ����
−
�

2 + �
�

��b1 + B1��
−
�

� + �
� t�/��+��

�28�

and we neglected the terms of the order �k�2�+� ���0� or
�k�2����0�. The formula �27� means that within the scope of
validity of our approximation the solution �24� is equivalent
to the Lévy stable distribution.

The Fox functions can be evaluated from series expan-
sions. Since they are poorly convergent, one needs the series
both for small and large values of the argument. According to
Eq. �A3�, the expansion of p�x , t� for small �x� is of the form

p�x,t� =
Na1+b1/B1

�B1
�x�b1/B1�

i=0

	

�
 1 − �

� + �
+

1

� + �

b1 + i

B1
�


sin�
1 − �

2 + �
+

1

2 + �

b1 + i

B1
��
�− 1�i�a�x��i/B1/i!.

�29�

Using the property �A4�, we obtain the series for large �x�:

p�x,t� = −
Na

�
�� + ���

i=1

	

��b1 + B1�1 − � + i�� + ����


sin
� + �

2 + �
i���− 1�i�a�x��−1+�−i��+��/i!. �30�

The above expression implies that the tail of the distribution
has the same x dependence as for the case �=0: p�x , t�
� t�/��+�� / �x�1+� ��x�→	�.

C. Diffusion

A characteristic feature of the Lévy distributions is the
divergence of moments. In particular, the mean squared dis-
placement is infinite for any time and then the transport phe-
nomena require a modified formalism for the diffusion. One
possibility is to substitute the variance by a moment of the
order 
��.

In order to evaluate the moments of the distribution �24�,
we utilize properties of the Mellin transforms. A simple cal-
culation yields

��x�
� = 2N�
0

	

x
p�x,t�dx

= 2Na−
��− 
 − 1�

= −
2NK−�

�
��b1 + B1�1 + 
���
−

� + 


� + �
�


sin
� + 


2 + �
��t
/��+��. �31�

Applying the above expression, one can compare individual
cases in respect to the speed of transport. However, as long
as the parameter 
 is arbitrary, such formalism seems to be
incomplete. Can it be fixed in some way? Clearly, the value

=� is distinguished. Since that moment is divergent, we
consider 
=�−�, where 0���� and then the case �=0 is
excluded. In the limit �→0, the gamma function can be ex-
panded and Eq. �31� takes the form

��x��−�� �
2NK−�

��
�� + ����b1 + B1�1 + ���


sin
� + �

2 + �
��t�/��+��. �32�

Let us now define the fractional diffusion coefficient
D����t�:

D��� �
1

��1 + ��
1

t
lim

�→0+
���x��−�� �t → 	� , �33�

where 1���2. According to Eq. �32�, the limit is finite and
D���� t−�/��+��.

The interpretation of the above result is straightforward. If
��0 the coefficient D��� rises with time to infinity and we
have the “superdiffusion.” Conversely, for ��0 there is the
“subdiffusion.” Therefore we have obtained formally the
same result as for FPE, Eq. �11�, except the variance has
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been substituted by the fractional moment. The common
conclusion, drawn both from the Gaussian and the fractional
case, is that the sign of � decides which kind of diffusion the
system reveals.

D. Numerical examples

In this section we evaluate the probability distributions for
specific cases. They are compared with the solutions of the
master equation �2�, obtained by the Monte Carlo simula-
tions of stochastic trajectories of the jumping process. The
Lévy-distributed jump-size density has been generated by
using the algorithm from Ref. �44�.

It follows from the expansion �29� that p�x , t���x�b1/B1 for
small �x�. Therefore the ratio of the coefficients b1 and B1
determines the shape of the distribution p�x , t� there. Since
our approximation is suited for large �x�, this ratio remains
undetermined. The analysis of the master equation indicates
that its solutions exhibit the power-law dependence of the
form �x�� for small �x�. We utilize this property and assume
the relation b1=�B1 in the present section; B1 follows from
the numerical solving of Eq. �25�. The Fox functions have
been evaluated from the series �29� and �30� with sufficient
precision for all �x�� �0,	�.

The solutions of the fractional equation �24�, for a nega-
tive and a positive value of �, are presented in Fig. 2. They
correspond to the superdiffusion and subdiffusion, respec-
tively, and display very different shapes. All the distributions
with ��0 rise at small �x� and display a maximum, whereas
those for ��0 fall monotonically. The comparison with the
solutions of the master equation is also presented in Fig. 2.
The curves which represent both equations have similar
shapes and their tails coincide.

Figure 3 presents the comparison of the Fourier trans-
forms for the solution of both equations; the same cases as in
Fig. 2 are shown: �=−0.2 and �=1. For that purpose, the
master equation has been solved for all x up to very large
values, then the numerical integration with the cosine func-

tion has been performed. In the case of the master equation
solutions, the figure reveals substantial deviations from the
straight lines—which represent the shape of the Lévy
distribution—for large k: for ��0 that distribution stabilizes
with k, whereas it falls rapidly to zero for ��0. At small k
both solutions coincide with those of the fractional equation.

V. DISCUSSION

The jumping process we have discussed in this paper is
Markovian because the waiting time probability distribution
has the exponential form. However, since the jumping fre-
quency depends on the process value, the system possesses
some properties which are usually attributed to non-
Markovian processes. In particular, we have demonstrated
the presence of the anomalous diffusion.

If the step size is small, the jumping process can be re-
garded as continuous and described in terms of the FPE. That
approximation has been accomplished by applying the
Kramers-Moyal expansion, on the assumption that all mo-
ments of the step-size distribution are finite. It has been
demonstrated—by solving the FPE exactly for the power-law
frequency ��x�—that both normal and anomalous diffusion
emerges.

On the other hand, we have considered the diffusion limit
of the master equation for the step-size distribution which is
stable and has divergent moments. The resulting equation
�14� is fractional and contains a variable coefficient, in con-
trast to usually studied equations which govern Lévy pro-
cesses. We have demonstrated that in the diffusion limit Eq.
�14� is satisfied by the Fox function if � depends algebra-
ically on the position. The coefficients of the Fox function
have been derived by inserting it to the equation and by
comparing the terms. However, one parameter must remain
undetermined if only the diffusion limit is considered be-
cause it is responsible for the behavior of the solution at
small �x�.

FIG. 2. The solutions of Eq. �2� for �=−0.2 �dots� and �=1
�dashed line�. The corresponding solutions �24� are marked by solid
lines.

FIG. 3. Logarithm of the Fourier transform from the solution of
Eq. �2� for �=−0.2 �dots� and �=1 �dashed line�. The same quantity
for the solution �24� which corresponds to both cases, calculated
according to Eq. �27�, is marked by solid lines; �=k /a.
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The solution, since it is expressed as the Fox function,
depends on time in the scaling form. Due to that property,
simple conclusions about the transport can be drawn. The
fractional moments are given by complicated expressions but
the time dependence factorizes and it obeys a simple power
law. We have defined the fractional diffusion coefficient D���

which allows us to establish a correspondence with the stan-
dard description in terms of the FPE. Both approaches pre-
dict the diffusion coefficient, either D or D���, in the form
�t−�/��+��, i.e., the subdiffusion ���0� and the superdiffu-
sion ���0�. We would like to emphasize that the above con-
clusions are independent of a specific choice of the free pa-
rameter in the solution.

An independent numerical analysis of the master equation
�2� provides additional information about the jumping pro-
cess. We can learn that it is not the Lévy stable process:
substantial deviations from the Lévy distribution at large k
are clearly visible. They become meaningless in the diffusion
limit.

The comparison of the solutions of both diffusion equa-
tions we have discussed in this paper with the results of the
numerical analysis of the master equation shows a reasonable
agreement not only in the asymptotic limit of large �x�. Since
the expressions �9� and �24� are relatively simple, compared
to Eq. �3�, both diffusion equations could serve as convenient
approximations to the master equation �2�.

APPENDIX

The Fox function �45–47� �for a review of the most im-
portant properties, see Refs. �21,42�� is defined as an inverse
Mellin transform in the following way:

Hpq
mn�� z��ap,Ap�

�bq,Bq�



= Hpq
mn�� z��a1,A1�,�a2,A2�, . . . ,�ap,Ap�

�b1,B1�,�b2,B2�, . . . ,�bq,Bq�



=
1

2�i
�

L

��s�zsds , �A1�

where

��s� =

	
1

m

��bj − Bjs�	
1

n

��1 − aj + Ajs�

	
m+1

q

��1 − bj + Bjs�	
n+1

p

��aj − Ajs�

. �A2�

Coefficients Ai and Bi are positive. The contour L is a
straight line parallel to the imaginary axis which separates
the poles of both gamma functions in Eq. �A2�. If those poles
are simple, the Fox function can be expressed in the form of
the following series:

Hpq
mn�� z��ap,Ap�

�bq,Bq�

 = �

h=1

m

�
�=0

	 	
j=1,j�h

m

�
bj − Bj
bj + �

Bh
�	

j=1

n

�
1 − aj + Aj
bh + �

Bh
�

	
j=m+1

q

�
1 − bj + Bj
bj + �

Bh
� 	

j=n+1

p

�
aj − Aj
bh + �

Bh
�

�− 1��z�bh+��/Bh

�!Bh
. �A3�

A similar expansion can be obtained for z→	 by using the
property

Hpq
mn�� z��ap,Ap�

�bq,Bq�

 = Hpq

mn��1

z
��1 − bq,Bq�

�1 − ap,Ap�

 . �A4�

Another useful property is the multiplication rule:

z�Hpq
mn�� z��ap,Ap�

�bq,Bq�

 = Hpq

mn�� z��ap + �Ap,Ap�

�bq + �Bq,Bq�

 .

�A5�

The Fourier cosine transform of the Fox function yields

�
0

	

Hpq
mn�� x��ap,Ap�

�bq,Bq�

cos�kx�dx

=
�

k
Hq+1,p+2

n+1,m �� k��1 − bq,Bq�,�1,1/2�

�1,1�,�1 − ap,Ap�,�1,1/2�

 .

�A6�
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