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The dynamics in the onset of a Hagen-Poiseuille flow of an incompressible liquid in a channel of circular
cross section is well-studied theoretically. We use an eigenfunction expansion in a Hilbert space formalism to
generalize the results to channels of an arbitrary cross section. We find that the steady state is reached after a
characteristic time scale �= �A /P�2�1/��, where A and P are the cross-sectional area and perimeter, respec-
tively, and � is the kinematic viscosity of the liquid. For the initial dynamics of the flow rate Q for t�� we find
a universal linear dependence, Q�t�=Q��� /C��t /��, where Q� is the asymptotic steady-state flow rate, � is the
geometrical correction factor, and C=P2 /A is the compactness parameter. For the long-time dynamics Q�t�
approaches Q� exponentially on the time scale �, but with a weakly geometry-dependent prefactor of order
unity, determined by the lowest eigenvalue of the Helmholz equation.
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I. INTRODUCTION

Hagen-Poiseuille flow �or simply Poiseuille flow� is im-
portant to a variety of applications ranging from macroscopic
pipes in chemical plants to the flow of blood in veins. How-
ever, the rapid development in the field of lab-on-a-chip sys-
tems during the past decade has put even more emphasis on
pressure driven laminar flow. Traditionally, capillary tubes
would have circular cross sections, but today microfabricated
channels come with a variety of shapes depending on the
fabrication technique in use. The list of examples includes
rectangular channels obtained by hot embossing in polymer
wafers, semicircular channels in isotropically etched
surfaces, triangular channels in potassium hydroxide
�KOH�-etched silicon crystals, Gaussian-shaped channels in
laser-ablated polymer films, and elliptic channels in stretched
polydimethylsiloxane �PDMS� devices, see, e.g., Ref. �1�.

This development has naturally led to more emphasis on
theoretical studies of shape dependence in microfluidic chan-
nels. Recently, we therefore revisited the problem of Poi-
seuille flow and its shape dependence and we have also ad-
dressed mass diffusion in microchannels �2,3�. In the present
work we combine the two former studies and address the
dynamics caused by the abrupt onset of a pressure gradient at
time t=0 in an incompressible liquid of viscosity � and den-
sity � situated in a long, straight, and rigid channel of length
L and some constant cross-sectional shape 	. The solution is
well-known for the case of a cylindrical channel, see, e.g.,
Ref. �4�, but in this paper we generalize the results to a cross
section of arbitrary shape. The similarity between mass and
momentum diffusion, and the existence of a characteristic
diffusion time-scale �diff= �
 /4��A /P�2 /D for mass diffu-
sion �3� have led us to introduce the momentum diffusion
time-scale � defined by

� = �A
P �21

�
, �1�

where �=� /� is the kinematic viscosity �having dimensions
of a diffusion constant�, while A and P is the area and pe-
rimeter of the cross section 	, respectively. In this paper we

show that the dynamics of the flow rate Q�t� is universal with
� as the characteristic time scale.

As shown in Ref. �2� the shape parameters A and P also
play an important role in the steady-state Poiseuille flow. The
hydraulic resistance Rhyd can be expressed as

Rhyd = �
�L

A2 � �Rhyd
* , �2�

where � is a dimensionless geometrical correction factor and
Rhyd

* =�L /A2 is a characteristic resistance. Remarkably, � is
simply �linearly� related to the dimensionless compactness
parameter C=P2 /A.

Above we have emphasized microfluidic flows because of
the variety of shapes frequently encountered in lab-on-a-chip
systems. However, our results are generally valid for laminar
flows at any length scale.

II. DIFFUSION OF MOMENTUM

We consider a long, straight channel of length L, aligned
with the z axis, having a constant cross section 	 with the
boundary �	 in the xy plane. The fluid flow is driven by a
pressure gradient of �p=−��p /L�ex which is turned on
abruptly at time t=0. We note that strictly speaking the pres-
sure gradient is not established instantaneously, but rather on
a time scale set by L /c where c is the speed of sound. For
typical liquids c�103m/s which for microfluidic systems
and practical purposes makes the pressure gradient appear
almost instantaneously. From the symmetry of the problem it
follows that the velocity field is of the form v�r , t�
=v�r� , t�ex where r�=yey +zez. From the Navier-Stokes
equation it then follows that v�r� , t� is governed by, see, e.g.,
Refs. �4� or �5�,

1

�
�tv�r�,t� − �2v�r�,t� =

�p

�L
, �3�

which is a diffusion equation for the momentum with the
pressure drop acting as a source term on the right-hand side.
The velocity v is subject to a no-slip boundary condition on
�	 and obviously v is initially zero, while it asymptotically
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approaches the steady-state velocity field v��r�� for t→�.
In the analysis it is natural to write the velocity as a dif-

ference

v�r�,t� = v��r�� − vh�r�,t� �4�

of the asymptotic, static field v�, solving the Poiseuille prob-
lem

− �2v��r�� =
�p

�L
, �5�

and a time-dependent field vh�r� , t� satisfying the homoge-
neous diffusion equation,

1

�
�tvh�r�,t� − �2vh�r�,t� = 0. �6�

From Ref. �3� it is known that rescaling the Helmholz equa-
tion by �A /P�2 leads to a lowest eigenvalue a1 that is of
order unity and only weakly geometry dependent. We there-
fore perform this rescaling, which naturally implies the time-
scale � of Eq. �1� and the following form of the diffusion
equation;

��tvh�r�,t� − L̂vh�r�,t� = 0. �7�

Here we have introduced the rescaled Laplacian L̂,

L̂ � �A
P �2

�2. �8�

We note that by the rescaling the Navier-Stokes equation �3�
becomes

��tv − L̂v = �A
P �2

�p

�L
=

�Q�

P2 , �9�

where we have introduced the steady-state flow rate Q�

=�p /Rhyd and used Eq. �2�.

III. HILBERT SPACE FORMULATION

In order to solve Eq. �9� we will take advantage of the
Hilbert space formulation �6�, often employed in quantum
mechanics �7�. The Hilbert space of real functions f�r�� is
defined by the inner product

	f 
g� � �
	

dr�f�r��g�r�� �10�

and a complete set 

�n�� of orthonormal basis functions,

	�m
�n� = 
nm. �11�

Above, we have used the Dirac bra-ket notation and 
nm is
the Kronecker delta. We choose the eigenfunctions 

�n�� of
the rescaled Helmholz equation �with a zero Dirichlet bound-
ary condition on �	� as our basis functions,

− L̂
�n� = an
�n� . �12�

With this complete basis any function in the Hilbert space
can be written as a linear combination of basis functions.

Using the bra-ket notation Eq. �9� becomes

��t
v� − L̂
v� =
�Q�

P2 
1� . �13�

The full solution Eq. �4� is written as follows:


v� = 
v�� − 
vh� , �14�

where 
v�� satisfies the Poiseuille problem Eq. �5�,

− L̂
v�� =
�Q�

P2 
1� , �15�

and the homogeneous solution 
vh� solves the diffusion prob-
lem Eq. �7�

���t − L̂�
vh� = 0. �16�

In the complete basis 

�n�� we have


vh� = �
n=1

�

bne−ant/�
�n� , �17�


v�� = �
n=1

�

cn
�n� , �18�

and since limt→0
vh�= 
v�� we have bn=cn. Multiplying Eq.
�18� by 	�m
 yields

bm = cm = 	�m
v�� = 	�m
L̂−1L̂
v�� =
�Q�

P2 am
−1	�m
1� .

�19�

In the second-last equality we have introduced the unit op-

erator 1= L̂−1L̂ and in the last equality we used the Hermit-

ian property of the inverse Laplacian operator to let L̂−1 act

to the left, 	�m
L̂−1=−	�m
am
−1 from Eq. �12�, while L̂ acts to

the right, see Eq. �15�. Substituting Eqs. �17� and �19� into
Eq. �14� we finally obtain


v� = 
v�� −
�Q�

P2 �
n=1

�


�n�	�n
1�an
−1e−ant/�. �20�

IV. FLOW RATE

Using the bra-ket notation, the flow rate Q�t� at any time
is conveniently written as Q= 	1 
v�, and thus in steady state
Q�= 	1 
v��. Multiplying Eq. �20� from the left by 	1
 yields

Q�t� = 	1
v� = Q� −
�Q�

P2 �
n=1

�

	1
�n�	�n
1�an
−1e−ant/�.

�21�

The factor 	1 
�n�	�n 
1� is recognized as the effective area
An covered by the nth eigenfunction 
�n�,
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An �

	1
�n�
2

	�n
�n�
= 
	1
�n�
2 = 	1
�n�	�n
1� . �22�

The effective areas fulfil the sum-rule �n=1
� An=A, as seen by

completeness of the basis 

�n��. We can find the geometrical
correction factor � from Eq. �21� by using that Q�0�=0,

� = P2��
n=1

� An

an
�−1

, �23�

and substituting into Eq. �21� we finally get

Q�t�
Q�

= 1 − ��
n=1

� An

an
�−1

�
n=1

� An

an
e−ant/�. �24�

V. SHORT-TIME DYNAMICS

The short-time dynamics is found by Taylor expanding
Eq. �24� to first order,

Q�t�
Q�

� ��
n=1

� An

an
�−1

A t

�
=

�A
P2

t

�
=

�

C
t

�
, t � � , �25�

where we have used the sum-rule for An as well as Eq. �23�.
The short time dynamics can also be inferred directly by
integration of the Navier-Stokes equation �13�, since at time
t=0 we have 
v�=0 and consequently the vanishing of veloc-

ity gradients and viscous friction, L̂
v�=0. Thus we arrive at

��t
v� =
�Q�

P2 
1�, t → 0, �26�

corresponding to a constant initial acceleration throughout
the fluid. Integration with respect to t is straightforward and
multiplying the resulting 
v� by 
1� yields Q�t�,

Q�t�
Q�

�
�

P2 	1
1�
t

�
=

�A
P2

t

�
=

�

C
t

�
, t � � . �27�

Thus initially, the fluid responds to the pressure gradient in
the same way as a rigid body responds to a constant force.

VI. LONG-TIME DYNAMICS

As the flow rate increases, friction sets in, and in the
long-time limit t�� the flow rate saturates at the value Q�,
where there is a balance between the pressure gradient and
frictional forces. For the long-time saturation dynamics the
lowest eigenstate plays the dominating role and taking only
the n=1 term in Eq. �24� we obtain

Q�t�
Q�

� 1 − e−a1t/�, t � �/a2, �28�

where we have used that the lowest eigenvalue a1 is nonde-
generate to truncate the summation.

The time it takes to reach steady state is denoted ��. A
lower bound �1 for �� can be obtained from Eq. �27� by

TABLE I. Central parameters for the lowest eigenfunction for different cross-sectional shapes. Note how
the different numbers converge when going through the regular polygons starting from the triangle �1:1:1�
through the square, the pentagon, and the hexagon to the circle. Here, �0,1 denotes the first root of the zeroth
Bessel function of the first kind.

Shape a1 A1 /A � /C

Circle �0,1
2 /4�1.45a 4 /�0,1

2 �0.69a 2b

Quarter-circle 1.27c 0.65c 1.85c

Half-circle 1.38c 0.64c 1.97c

Ellipse�1:2� 1.50c 0.67c 2.10c

Ellipse�1:3� 1.54c 0.62c 2.21c

Ellipse�1:4� 1.57c 0.58c 2.28c

Triangle�1:1:1� 
2 /9�1.10d 6/
2�0.61d 5/3b

Triangle�1:1 :�2� 5
2

4�2+�2�2
�1.06a 512/9
4�0.58a 1.64c

Square 
2 /8�1.23a 64/
4�0.66a 1.78c

Rectangle�1:2� 5
2 /36�1.37a 64/
4�0.66a 1.94c

Rectangle�1:3� 5
2 /32�1.54a 64/
4�0.66a 2.14c

Rectangle�1:4� 17
2 /100�1.68a 64/
4�0.66a 2.28c

Rectangle�1:�� �
2 /4�2.47a 64/
4�0.66a �3e

Pentagon 1.30a 0.67c 1.84c

Hexagon 1.34c 0.68c 1.88c

aSee e.g., Ref. �6� for the eigenmodes and eigenspectrum.
bSee Ref. �2�.
cData obtained by finite-element simulations.
dSee, e.g., Ref. �8� for the eigenmodes and eigenspectrum.
eSee, e.g., Ref. �4� for a solution of the Poisson equation.
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assuming that the initial acceleration is maintained until
Q��1� /Q�=1 is reached,

�� � �1 =
C
�

� . �29�

A better estimate �2 for �� is obtained from Eq. �28� by
demanding Q��2� /Q�=1−e−3.

�� � �2 =
3

a1
� . �30�

Using the parameter values for the circle listed in Table I we
find the values

�1 = 0.5� � �2 = 2.1� � ��. �31�

VII. NUMERICAL RESULTS

Only a few geometries allow analytical solutions of both
the Helmholz equation and the Poisson equation. The circle
is of course the most well-known example, but the equilat-
eral triangle is another exception. However, in general the
equations have to be solved numerically, and for this purpose
we have used the commercially available finite-element soft-
ware COMSOL 3.2 �see Ref. �9��. Numbers for a selection of
geometries are tabulated in Table I.

The circle is the most compact shape and consequently it
has the largest value for A1 /A, i.e., the mode has the rela-
tively largest spatial occupation of the total area. The eigen-
value a1 is of the order unity for compact shapes and in
general it tends to increase slightly with increasing values of
C. The modest variation from geometry to geometry in both
a1 and the other parameters suggests that the dynamics of
Q�t� will appear almost universal.

In order to illustrate the validity of our two asymptotic
expressions, Eqs. �27� and �28�, we have compared them
using the values for a circular shape to time-dependent finite-
element simulations of Eq. �3�. As illustrated in Fig. 1 we
find a perfect agreement between the asymptotic expressions
Eqs. �27� and �28� and the numerically exact data for a circle,
a square, and an equilateral triangle. Comparing the corre-

sponding parameters in Table I we would expect all data to
almost coincide, which is indeed also observed in Fig. 1. The
small spread in eigenvalues and other parameters thus gives
rise to close-to-universal dynamics. From the plot it is also
clear that � is indeed a good estimate for the time it takes to
reach the steady state.

VIII. CONCLUSIONS

In conclusion, by using a compact Hilbert space formal-
ism we have shown how the initial dynamics in the onset of
Poiseuille flow is governed by a universal linear raise in flow
rate Q�t� over a universal time-scale � above which it satu-
rates exponentially to the steady-state value Q�. The steady
state is reached after a time ���C� /�. Apart from being a
fascinating example of universal dynamics for a complex
problem our results may have important applications in the
design of real-time programmable pressure-driven microflu-
idic networks.
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FIG. 1. A log-log plot of the flow rate Q�t� /Q� as a function of
time t /�. The dashed line is the short-time approximation Eq. �27�,
while the dashed-dotted line is the long-time approximation Eq.
�28�, both for the case of a circle, i.e., using C /�=2 and a1=1.45 as
listed in Table I. The data points are the results of time-dependent
finite-element simulations for the cases of the cross section being a
circle �white circles�, a square �gray squares�, and an equilateral
triangle �black triangles�.
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