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The self-consistent signal-to-noise analysis �SCSNA� is an alternative to the replica method for deriving the
set of order parameter equations for associative memory neural network models and is closely related with the
Thouless-Anderson-Palmer equation �TAP� approach. In the recent paper by Shiino and Yamana the Onsager
reaction term of the TAP equation has been found to be obtained from the SCSNA for Hopfield neural
networks with two-body interaction. We study the TAP equation for an associative memory stochastic analog
neural network with three-body interaction to investigate the structure of the Onsager reaction term, in con-
nection with the term proportional to the output characteristic to the SCSNA. We report on the SCSNA
framework for analog networks with three-body interactions as well as provide a recipe based on the cavity
concept that involves two cavities and the hybrid use of the SCSNA to obtain the TAP equation.

DOI: 10.1103/PhysRevE.74.017103 PACS number�s�: 84.35.�i, 75.10.Nr, 87.18.Sn

The replica method �1� for random spin systems has been
successfully employed in neural network models of associa-
tive memory �2,3�. However, the replica calculations require
the concept of free energy. On the other hand an alternative
approach to obtain the order parameter equations of the self-
consistent signal-to-noise analysis �SCSNA� �4,5� for deter-
ministic analog neural networks is free from the energy con-
cept and thus applicable to networks with asymmetric
connections. The SCSNA was shown to be closely related to
the Thouless-Anderson-Palmer �TAP� equation approach
�2,6–9� through the cavity concept in the case where systems
have an energy function �10�.

An advantage of dealing with the TAP equation of neural
networks is that equilibrium behaviors of a stochastic neural
network can be studied by investigating the corresponding
TAP equation that is viewed as a deterministic analog net-
work �5�. The set of order parameter equations of the original
stochastic network is obtained by applying the SCSNA to the
TAP equation.

TAP equations, which have recently been attracting
much attention from the viewpoint of applying statistical
mechanics to information theoretic engineering problems
�11,12�, are usually obtained by means of the Plefka method
�13�. A more systematic method of deriving TAP equations
incorporates the cavity concept �2,8� to elucidate the struc-
ture as well as the meaning of TAP equations. Noting that the
SCSNA and the TAP equation approach share a common
idea of the cavity concept, Shiino and Yamana have found
that the Onsager reaction term characteristic to a TAP equa-
tion can be recovered by the SCSNA for stochastic analog
networks with two-body interactions �10�. The aim of the
present paper is studying the SCSNA framework and the
TAP equation of stochastic analog networks with multibody
interaction to elucidate the structure of the Onsager reaction
term in connection with the term proportional to the output
characteristic to the SCSNA.

The Ising spin Hopfield models with p-body connections

�14� which are analogous to p-spin random spin glass models
�15� were studied to explore the statistical behavior of their
retrieval properties. It is well known that the storage capacity
of the network is proportional to Np−1 �14� where N repre-
sents the number of neurons. In the present paper we report
on a method based on the cavity approach �2� to derive the
TAP equations for the p=3 Hopfield model with simulta-
neous use of the SCSNA for this model. Since we deal with
analog neurons, or soft spins in the present paper, we can
choose transfer functions of arbitrary shapes. The TAP equa-
tions for analog networks with multibody interactions have
not been reported.

We deal with a stochastic analog neural network of the
form

dxi

dt
= −

d��xi�
dxi

+ �
j�k��i�

Jijkxjxk + �i�t� , �1�

where xi represents a state of an analog neuron or a soft spin
at site i, ��xi� the potential, �i the Langevin white noise

obeying ��i�t�� j�t���= 2
���t− t���ij for i=1¯ Ñ, � the inten-

sity of externally driven Langevin noise and the synaptic
coupling Jijk is assumed to be given by the Hebb learning
rule extended to the p=3 Hopfield model �14�:

Jijk =
1

Ñ2
�
�=1

p̃

�i
�� j

��k
� �2�

for i� j�k and otherwise Jijk=0 with �i
�= ±1 representing

p̃�=	Ñ2� random memory patterns.
For the p=3 Hopfield model, the local field at site i is

defined as hi=� j�k��i�Jijkxjxk and we have to calculate the
second moments of soft spins �xjxk� to obtain the TAP equa-
tion which is given by expressing the thermal averages of the
local fields in terms of those of soft spins. For this reason the
standard cavity method applied to networks with p=2, where
it suffices to take only one cavity into account, is ineffective*Electronic address: aichiki@mikan.ap.titech.ac.jp
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in the present case. To study the TAP equation for the system
�1� we have to introduce two cavities. Hereafter we will refer
to the sites i=0,−1 as the cavity sites.

The Fokker-Planck equation for the probability density of
soft spins corresponding to the set of Langevin equations �1�
with Ñ=N+2 has the equilibrium probability density
Peq�x−1 ,x0 ,x1 , . . . ,xN�= 1

ZN+2
exp�−�H�N+2��, where ZN+2 is the

partition function of the system including two cavities and
H�N+2� is its Hamiltonian. Noting that the Hamiltonian of
N-body system �x1 , . . . ,xN	 is given as follows:

H�N� = �
i=1

N

��xi� − �
i�j�k=1

N

Jijkxixjxk, �3�

the total Hamiltonian H�N+2� of the system which includes the
effects of cavity neurons is expressed as follows:

H�N+2� = H�N� + ��x0� + ��x−1� − h̃0x0 − h̃−1x−1 − ĥ−10x0x−1,

�4�

where h̃0, h̃−1 and ĥ−10 are, respectively, defined

h̃0 =
1

2

1

�N + 2�2�
�

�
j,k=1
j�k

N

�0
�� j

��k
�xjxk, �5�

h̃−1 =
1

2

1

�N + 2�2�
�

�
j,k=1
j�k

N

�−1
� � j

��k
�xjxk, �6�

ĥ−10 =
1

�N + 2�2�
�

�
k=1

N

�−1
� �0

��k
�xk. �7�

Notice that h̃0 and h̃−1 are the local fields induced by the N

neurons at cavity sites i=0,−1, respectively, and ĥ−10 is the
local field of another type affecting the pair of cavities. Then
using the marginal probability density and noting that the
marginal probability density of the local fields of the N-body
system is expected to be a three-dimensional Gaussian

distribution since h̃0, h̃−1, and ĥ−10 are the sums of indepen-
dent random variables, one can evaluate the �N+2�-body
average of the cavity soft spin x0 as follows:

�x0�N+2 = F��h̃0�N� + ���ĥ−10�N + �2
−10
2 ��G��h̃0�N�

− F2��h̃0�N��F��h̃−1�N� + O�1/N� , �8�

where F is the transfer function which is defined

F�y� 
 � dxx exp�− ���x� + �yx +
�2
2x2

2



��� dx exp�− ���x� + �yx +
�2
2x2

2

�−1

�9�

and

G�y� 
 � dxx2exp�− ���x� + �yx +
�2
2x2

2



� �� dx exp�− ���x� + �yx +
�2
2x2

2

�−1

,

�10�


2 the variance of the local field h̃i, 
−10
2 the covariance

of h̃0 and h̃−1, and �·�N the N-body average. Since

�ĥ−10�N=O�1/�N�, 
−10
2 =O�1/�N�,

�h̃0�N+2 = �h̃0�N + �
2�x0�N+2 + O�1/�N� , �11�

and the true local field h0 is given by h0= h̃0+ ĥ−10x−1, we
have

�x0�N+2 = F��h0�N+2 − �
2�x0�N+2� . �12�

This equation coincides with the one obtained using the stan-
dard cavity method for the Hopfield model where one cavity
is taken.

However, it does not suffice to obtain the TAP equation in
the present case, because �h0�N+2 is simply given in terms of
the second moments of soft spins �xjxk�N+2. In order to find
the expression of the local field �hi�N+2 in terms of the ther-
mal averages of soft spins, it will be necessary to employ a
two-cavity method and we obtain

�x0x−1�N+2 = �x0�N+2�x−1�N+2 + ���ĥ−10�N+2 + �2
−10
2 �

���x0
2�N+2 − �x0�N+2

2 ���x−1
2 �N+2

− �x−1�N+2
2 � + O�1/N� . �13�

Thus the thermal average of the local field �hi�N+2 is given as
follows:

�hi�N+2 = �
j�k��i�

Jijk�xj�N+2�xk�N+2 +
	

2�
�xi�N+2U2 + O�1/�N� ,

�14�

where U is the average of susceptibilities

U =
�

N + 2�
j

��xj
2�N+2 − �xj�N+2

2 � . �15�

Notice that �ĥij�N affects the �N+2�-body average of the local
field �hi�N+2 via the summation with respect to the site index,
on the other hand 
−10

2 does not affect the local field. Equa-
tion �14� together with Eq. �12� yields the pre-TAP equations
�10� for a p=3 Hopfield model;

�xi�N = F� �
j�k��i�

Jijk�xj�N�xk�N − �TAP�xi�N� �i = 1, . . . ,N�

�16�

with
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�TAP = �
2 −
	U2

2�
, �17�

where �xi�N is used instead of �xi�N+2. −�TAP�xi�N is the On-
sager reaction term of the TAP equation. However, �TAP,
especially, 
2 in Eq. �9� has still to be determined to obtain
the TAP equation.

Equation �16� defines a deterministic analog network of
associative memory with the transfer function F correspond-
ing to the original stochastic analog neural network �1�. To
obtain 
2 together with the order parameter equations we
then apply the SCSNA to Eq. �16�. The SCSNA is a self-
consistent method for properly renormalizing the so-called
noise part due to interference of noncondensed patterns in
the local field of a neuron hi

det
� j�k��i�Jijk�xj�N�xk�N in Eq.
�16�, which can be rewritten

hi
det =

1

2 �
�=1

	N2

�i
���m��2 −

1

N
�

j

�xj�N
2

N 

−

�xi�N

N
�
�=1

	N2

m� +
�xi�N

2

N2 �
�=1

	N2

�i
�, �18�

where m� is the overlap of �th pattern defined as
m�
 1

N�i=1
N �i

��xi�N for �=1, . . . ,	N2. To extract the pure
noise obeying a Gaussian distribution, we decompose the
local field hi

det assuming that the first pattern is condensed
and the others are noncondensed, i.e., m1=O�1� and
m�=O�1/�N� ��
2� as follows �4,5�:

hi
det =

1

2
�i

1�m1�2 +
1

2
�i

���m��2 −
C̃

N

 −

�xi�N

N
m� +

�xi�N
2

N2 �i
�

+ zi� + �SCSNA�xi�N, �19�

where

C̃ 

1

N
�
i=1

N

�xi�N
2 , �20�

�SCSNA 
 � − �̃ , �21�

�̃ 

1

N
�
�
2

m�, �22�

zi� + ��xi�N 

1

2 �
��1,�

�i
���m��2 −

C̃

N

 , �23�

and zi� is assumed to be a Gaussian random variable with
mean zero and the variance is to be evaluated self-
consistently.

Substituting the expression of the local field Eq. �19�
into the pre-TAP equation �16� and comparing with

�xi�N=F��h̃i�N−2�, which holds by observing Eq. �8� for
large N, it follows that �SCSNA=�TAP �10�, since

�hi
˜ �N−2− 1

2�i
1�m1�2 obeys a Gaussian random variable. Then

we have

�xi�N = F�1

2
�i

1�m1�2 +
1

2
�i

���m��2 −
C̃

N

 + zi�� �24�

from which it follows �5�:

m� =
1

N
�
i=1

N

�i
�F�1

2
�i

1�m1�2 + zi�� +
1

2
��m��2 −

C̃

N



�
1

N
�
i=1

N

F��1

2
�i

1�m1�2 + zi�� + O�N−5/2� , �25�

where F� denotes the derivative of the transfer function F.
It should be noted that in the present case it is necessary

to obtain m�(=O�1/�N�) up to O�1/N� unlike the case of
p=2 where up to O�1/�N� of m� suffices. We solve this
equation for m� perturbatively by putting m�=m1/2

� +m1
�

+O�N−3/2�, where mk
� represents the part of O�N−k�. Substi-

tuting the solution of Eq. �25� into the definitions of �SCSNA
and zi�, we find �̃=0 in the limit of large N. Furthermore,
�SCSNAwhich determines the form of the transfer function F
by the relation

�SCSNA = �TAP = �
2 −
	U2

2�
�26�

is evaluated using the self-averaging property

�SCSNA = 	U�F2�1

2
�

1
�m1�2 + z��

�
1,z

, �27�

where U is given as follows:

U = �F��1

2
�

1
�m1�2 + z��

�
1,z

�28�

and �·��
1,z represents the average over the random pattern

�
1
= ±1 and the Gaussian random variable z. Notice that U

given by this equation corresponds to that defined by Eq.
�15�, since differentiating Eq. �9� with respect to y yields the
susceptibility and the self-averaging property holds. Simi-
larly the variance of the Gaussian noise z can be calculated
as follows:


z
2 =

	

2
�F2�1

2
�

1
�m1�2 + z��

�
1,z

2

. �29�

Furthermore the overlap of the condensed pattern m1 is given
as follows:

m1 = ��
1
F�1

2
�

1
�m1�2 + z��

�
1,z

. �30�

Equations �27�–�30� constitute the SCSNA framework
in terms of m1, U, 
2, and 
z

2 that yields the order parameter
equations for determining the storage capacity of the analog
network �16� and hence of the stochastic analog neural
network �1�. We note that they coincide with those obtained
by the replica calculation when the replica symmetry is
assumed to hold. Furthermore, in the special case where
exp−���x� /�exp−���x�dx= 1

2 (��x+1�+��x−1�), the result
of the SCSNA recovers that of the Ising spin network studied
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in �14�. Then, from Eqs. �16� and �17� we finally obtain the
TAP equation

�xi�N = F� �
j�k��i�

Jijk�xj�N�xk�N − �SCSNA�xi�N� �31�

with �SCSNA and the form of the transfer function F
self-consistently determined by the above Eqs. �26�–�30�.
Noting that �SCSNA can be expressed in terms of an Edwards-
Anderson order parameter q, the TAP equation �31� can be
further rewritten as �xi�N=F�� j�k��i�Jijk�xj�N�xk�N−	�q�q̂
−q��xi�N�, where the Edward-Anderson order parameter q
and q̂ are defined, respectively, as q= 1

N�i�xi�N
2 and

q̂= 1
N�i�xi

2�N which are easily computed using Eqs. �9� and
�10�.

In conclusion, taking advantage of the close relationship
between the TAP equation and the SCSNA approaches, we
have studied the SCSNA framework and the TAP equation
for the stochastic analog network with three-body interaction
based on the Hebb learning rule. Characteristic to the TAP
equation for the case of such an interaction is that the On-
sager reaction term consists of the two terms, as is shown in
Eq. �17�: the one arising from the variance of the Gaussian
distribution for the local fields that determines the shape of

the transfer function F and the other one due to the two body
correlation of soft spins the computation of which requires
taking two cavities. Without resorting to the Hamiltonian
based on overlap evaluation by adding a memory pattern to
the network, which is usually taken for the Hopfield model
�2,10�, the coefficient of the Onsager reaction term has been
given within the framework of the SCSNA, although apply-
ing the conventional recipe recovers the result. Renormaliza-
tion of the noise part of the local field in the SCSNA scheme
corresponds to the overlap evaluation in the pattern-adding
approach of the cavity method. The framework of the SC-
SNA described in its application to the �pre-�TAP equation of
our stochastic network implies that the set of order parameter
equations obtained there still formally makes sense in the
case of general deterministic analog networks having three-
body interaction and transfer function F of arbitrary shape
irrespective of whether it is monotonic or not. Details of the
analysis including the phase diagram showing the behavior
of the storage capacity will be published elsewhere.
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