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Localized structures in a nonlinear wave equation stabilized by negative global feedback: One-
dimensional and quasi-two-dimensional kinks
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We study the evolution of fronts in a nonlinear wave equation with global feedback. This equation gener-
alizes the Klein-Gordon and sine-Gordon equations. Extending previous work, we describe the derivation of an
equation governing the front motion, which is strongly nonlinear, and, for the two-dimensional case, general-
izes the damped Born-Infeld equation. We study the motion of one- and two-dimensional fronts, finding a
much richer dynamics than for the classical case (with no global feedback), leading in most cases to a localized
solution; i.e., the stabilization of one phase inside the other. The nature of the localized solution depends on the
strength of the global feedback as well as on other parameters of the model.
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I. INTRODUCTION

In this paper we study the existence of localized one-
dimensional fronts and two-dimensional frontlike structures
in the following nonlinear wave equation with global cou-
pling for the order parameter ¢:

bu+ 1 =DAG+ o f(¢) + h] + Yg()), (1)

defined on a bounded domain  in R or R% In (1) %, D, and
v are the dissipation (damping), diffusion (local coupling),
and global coupling parameters, respectively. The function f
is bistable (the derivative of a double well potential function
having two equal minima); i.e., a real odd function vanishing
at three points in the closed interval [a_,a,] located at a_, a,
and a, with f'(a.)<0 and f’(ay)>0. The constant h,
assumed to be small in absolute value, specifies the
difference of the potential minima of the system; i.e.,
f(p)+h is the derivative of a double well potential function
with one local minimum and one global minimum. The pa-
rameter « is proportional to the height of the barrier of the
double well potential or to the slope of f(¢) at its unstable
fixed point. The prototype examples for h=7y=0 are the
damped Klein-Gordon and sine-Gordon equations where
f(@)=(¢~¢")/2(a,=x1) and f(¢)=sin ¢(a,==m), respec-
tively. The function g is assumed to be an odd, continuously
differentiable function and

1

(g() = all,

glp(x)]dx, 2)

where |()] is the size of the domain (). Note that linear global
coupling is obtained when g(¢)=¢. We consider Neumann
boundary conditions.
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Equation (1) with y=0 has been extensively studied [1]
(see also references therein). It has been used to model the
propagation of crystal defects, propagation of domain walls
in ferromagnetic and ferroelectric materials, propagation of
splay waves on a biological (lipid) membrane, self-induced
transparency of short optical pulses [1] (and references
therein) and solid-liquid phase transitions in systems with
memory [2,3].

Of particular, interest has been the study of evolution of
fronts or interfaces for the Klein-Gordon equation [1,4—6]
and oscillations of eccentric pulsons in the sine-Gordon
equation [1,7]. Probably the most important application of
the sine-Gordon equation is as a model for the propagation
of transverse electromagnetic (TEM) waves in a supercon-
ducting strip line transmission system [1]. In this model the
order parameter ¢ represents the change in phase of the su-
perconducting wave function across a barrier, and its time
derivative is proportional to the voltage. In this case 1/D is
equal to the product of the inductance per unit length of the
strip line and the capacitance per unit length, and
a=2el,/ (V’Bh) where e is the electronic charge, # is
Planck’s constant divided by 27 and I, sin(¢) is the Joseph-
son tunneling of superconducting electrons through the
insulating barrier.

In the one-dimensional case, when 7=0 (no dissipation),
h=0, @=1, and y=0 (no global coupling), Eq. (1) has a kink
(soliton) traveling with a velocity ¢ that can be calculated
from the parameters of the model. A kink is a solution that
connects the two local minima of the double well potential
(phases of the system); i.e., a monotonic level change of
magnitude a,—a_ as x—ct moves across the interval
(=o0,0) [1,8]. In the case of the prototype Klein-Gordon and
sine-Gordon equations these solutions for D=1 are given by

_ =1/ (x=ct)/ \E _ 'x_—CI
¢(x,1) =4 tan™ (e ) and ¢(x,1) = tanh( vrcz ,

respectively.
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The one-dimensional case corresponds to a situation in
which one of the transverse directions is smaller than a
characteristic length.

When both transverse directions are larger than this char-
acteristic length, Josephson junctions are essentially two di-
mensional [4,6,7,9-11]. It is possible to find two-dimensional
solutions for Eq. (1) that locally look like kinks in a direction
normal to a curve separating the two phases [1,7,12]. We call
these solutions quasi-two-dimensional (Q2D) kinks. In par-
ticular, if the curve is a closed circle, then this Q2D kink
soliton represents a fluxon loop [1,7,12,13]. This circular
fluxon loop becomes a metastable pulson, since its radius
will increase until it reaches a maximum. Then the circular
fluxon collapses, shrinking to a minimum side before being
reflected again.

If h#0 and y=0 (no global coupling) in Eq. (1), only
one-phase solutions are stable; i.e., initially heterogeneous
front or frontlike solutions (Q2D kinks in the two-
dimensional case) evolve towards homogeneity. The discrete
and semidiscrete versions of Eq. (1) (with y=0 and 7 #0)
display a richer behavior. There one can find localized solu-
tions in which one phase is stabilized inside the other
[13-15] (and see references therein).

In this paper we study the role of global coupling in cre-
ating localized solutions for (1); i.e., in stabilizing one phase
inside the other. The effect of global coupling or interactions
has been studied in many chemical [16-30], physical
[31-37], and biological [38—40] systems. In particular in
Ref. [34] (see also Ref. [37]) the dynamics of an over-
damped, discrete, globally coupled Josephson junction array
with no local coupling is studied. In general, the global cou-
pling term has been taken as the integral over the whole
domain (or the sum over all the elements of the discrete
system) either of the order parameter or of other variables
(usually concentration) according to the physical situation.
Here, we follow Ref. [34] and take the global coupling over
the order parameter ¢.

In order to set Eq. (1) into dimensionless form we call L
the size of () in the one-dimensional case, the size of the
largest size of () in the rectangular case, or the diameter of
the minimal circle that surrounds () in other two-dimensional
domains. Next we define the following dimensionless
variables and parameters:

N ST (3)
_x=_’ =_’ =
r 7TL L
and
D1 nL yL .~ h
e=\"7 == == h=t. @
al 7 \/B \J'E €

Substituting (3) and (4) into (1), dropping the “hat” sign
from the variables and parameters and rearranging terms we
get

Edut Eng=EAP+[(P) + eh+ eXg(@).  (5)

We will consider the case 0 <<e<<1.
When y=0 (no global coupling), Eq. (5) possesses a front
(traveling kink) solution in which the transition between the
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two minima of f(¢) takes place in a region of order of mag-
nitude €< 1; i.e., the kinks have rapid spatial variation be-
tween the two ground states (phases) [6]. The point on the
line (for n=1) or the set of points in the plane (for n=2) for
which the order parameter ¢ vanishes is called the interface
of the front. Points in ) that are at least O(e) away from
the interface can be approximated by ¢(z)=a,+0O(e) or
¢(z)=a_+0(e) according to whether they are on one or the
other side of the interface. One can study the motion of the
front by studying the motion of its interface. We use the
functions s=s(x,7) and p=p(6,1) to describe the interface in
Cartesian and polar coordinates, respectively. Note that
s=s(t) and p=p(r) describe one-dimensional and circular
two-dimensional interfaces, respectively.

For Eq. (5) with y=0 (no global coupling) fronts move
according to an extended version of the Born-Infeld equation
[5.6]

(1- Srz)sxx +25,8,8,— (1 + si)s” = ms (1 + szc - Szz)
—h,(1+5>=sH)3=0, (6)

where h,, proportional to A, will be defined later. Planar
fronts moving according to (6) with 7=h,=0 (no dissipation
and both phases with equal potential) move with a constant
velocity equal to their initial velocity. For other values of 7
or h,, fronts move with a velocity that asymptotically ap-
proaches —h,/(77+h?)""> as long as the initial velocity is
bounded from above by 1 in absolute value [6]. Linear per-
turbations to these planar fronts decay, in either a monotonic
or an oscillatory way, to zero as t—  [6]. Circular interfaces
moving according to (6) with 2>0 shrink to a point in finite
time [5,6]. If 2<<0, there exists a value A such that circles
shrink to points for values of &> h, and if 7 <h, fronts grow
unboundedly. Neu [5] showed that for 7=h=0, closed kinks
can be stabilized against collapse by the appearance of short
wavelength, small amplitude waves. For the more general
case, perturbations to a circle may decay or not. If they do,
the perturbed circles shrink to a point in finite time. Note that
Eq. (6) expressed in terms of its kinematic and geometric
properties reads [6]

d
;‘; + (1 =0) = k(1 =0 +h,(1=0)=0, (7)

where « is the curvature of the front and dv/dr is the “La-
grangian” time derivative of v which is calculated along the
trajectory of the interfacial point moving with the normal
velocity v [6].

The outline of the paper is as follows. In Sec. II we
present an equation (leading order term approximation) de-
scribing the evolution of fronts for (5) that includes the effect
of global feedback (y=0) on the dynamics, and we briefly
describe its derivation from (5). In Sec. III we study the
evolution of one-dimensional fronts. We find that, due to the
effect of global coupling, one phase can be stabilized inside
the other, and we present an expression for the fraction of the
one-dimensional domain () in each phase as a function of v,
L, and h. The dynamics of two-dimensional fronts with radial
symmetry is analyzed in Sec. IV. As in the one-dimensional
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case, we find that, due to the effect of global coupling
and depending on the values of the parameters vy, h, 7, and L,
one phase can be stabilized inside the other. In Sec. V we
show that localized circular fronts are linearly stable. Our
conclusions appear in Sec. VL.

II. FRONT DYNAMICS: THE EQUATION OF MOTION

For (5) the motion of a front is governed by the
Born-Infeld equation with global coupling, an equation that
generalizes (6),

(1= 5750+ 2585 — (1 + 525, — 75,1 + 52 = 57)
—ho (1457 =) = (L + 57 =57 Xg () =0,
()

where y=s(x,7) is the Cartesian description of the interface
and h, and vy, are proportional to /2 and v, respectively, as
will be explained later. The function ¢ (independent of e)
satisfies ¢=y+O(e€) in a small enough neighborhood of the
interface.

For the study of closed convex fronts we will use the
polar coordinate version of (8) which is given by

(1= p)poa+ 2peip0— (0° + Pp)pu— mpLp*(1 = p}) + pi]

2
Py he
- p(1=p}) - 2;0 - ;[pzu —p?) + a2

- %wu —p2) + PP g() =0, )

where p=p(0,1) represents the interface and h, and vy, are
defined below as in the Cartesian case.

Equation (8) is obtained by carrying out a nonrigorous but
self-consistent singular perturbation analysis for e<<1, treat-
ing the interfaces as a moving internal layer of width O(e).
We focus on the dynamics of the fully developed layer, and
not on the process by which it is generated. The derivation,
which we sketch below, is similar to that used in Ref. [6] for
the study of the evolution of kinks in the nonlinear wave
equation (5) with y=0. The basic assumptions made are

(i) For small e=0 and all r € [0, T], the domain () can be
divided into two open regions ),(r;€) and Q_(r,€) by a
curve I'(t;€), which does not intersect d€). This interface,
defined by I'(¢;€):={x € Q: p(x,t;€)=0}, is assumed to be
smooth, which implies that its curvature and its velocity are
bounded independently of e.

(ii) There exists a solution ¢(x,t;€) of (5), defined
for small €, for all xeQ and for all t[0,7] with an
internal layer. As e— 0 this solution is assumed to vary con-
tinuously through the interface, taking the value 1 when
xeQ,(t;€), =1 when x e Q_(t,€), and varying rapidly but
smoothly through the interface.

(iii) The curvature of the front is small compared to its
width.

By setting e=0, one obtains that the zeroth order approxi-
mation of (5) is ¢y=a, [the two stable solutions of f(¢$)=0]
for points on ) in ),. For points on () in a O(e€) neighbor-
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hood of I'(r), we define near the interface a new variable
z=[y—s(x,1)]/€, which is O(1) as e—, and then express
Eq. (5) in terms of this new variable. After equating the
coefficients of corresponding powers of €, we obtain two
equations describing the evolution of the first and second
order approximations. A rescaling ¢=z/(1+s>—s?) reduces
the first equation to Wg+f(W)=0, which must satisfy
WV (0)=0 and W(x)=+a, giving a kink solution (see Sec. I).
Here W represents the leading order term of the order param-
eter ¢ as a function of &. The second equation, describing the
evolution of the first order approximation to ¢ (in a neigh-
borhood of the interface), is a linear nonhomogeneous sec-
ond order ODE (in £). Its homogeneous part has W’ (£) has a
solution. The solvability condition (Fredholm alternative) re-
quires that the integral of the nonhomogeneous part multi-
plied by W’ (&) over the real numbers [or equivalently over
the O(e) width of the interface] must be zero. Equation (8)
results from applying the solvability conditions after rear-
ranging terms and defining

. h[‘I’(+Oc00) - W(- )] - 2ah (10)
f (¥')°d¢ (V')%dé
and
W (+0) —P(-c0 a
70:«/[ (+90) =W ( )]: 2ay (11)

f (W')%dé f (W')%aé
We refer to Ref. [6] for details in the procedure. Equation (9)
can be obtained from Eq. (5), expressed in polar coordinates,
following the same procedure as for Eq. (8).

In this way the first order approximation of ¢ is given by

a,, xe(,,
p=9a., xe (), (12)
V(x/e), xel.

For an odd function g(¢),
1
Q) or

1
= — o) |d. —oo)ldx |.
|Q|( fmg[w( e + fﬂ_g[w( ) x>

() ~ 8l (x)]dx

(13)
It can be easily seen that
0] -2|Q|
W) ~g()——5—,
(o
since |Q] ~|Q,|+|Q_|. Calling
1
)= %08(1) (14)

(o1
Egs. (8) and (9) become
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(1 _stz)sxx"' 2sttsxt_ (] +S§)stt_ 77St(1 +s)26_sl‘2)
~ [+ 70 =210 D)1 +s;-5)¥=0  (19)

and

(1= p))poo+ 2peipa— (0° + Pp)pu— mpLp*(1 = p}) + pi]
2
h,+ v,(]Q —2|Q_
(12 e 7.9 -2|Q))
p p
X[p*(1 = p;) + pyl*=0. (16)

Note that for f(¢)=(¢p-¢’)/2 (the Ginzburg-Landau
case), V(¢)=tanh &/2, h,:=3 h and 7y,=37, whereas for
f(p)=sinp, W(&)=4tan'eé—m,  h,:=(w/4)h  and
Yei=(/4)y.

III. DYNAMICS OF ONE-DIMENSIONAL FRONTS

The evolution of one-dimensional fronts in a domain
0=[0,1] is given by

S+ 77St(1 - S[Z) + (he + 76)(1 - S[2)3/2 - 2%5(1 - Stz)3/2 = 0’
(17)

which has been obtained from (15) by taking |Q|=1 and
|Q_|=s. Calling v=s,, Eq. (17) becomes

§,=0,

v, == (1 =v?) = (h+ 7)1 = v*)* + 29,5(1 - v?)*2.

(18)

For every h, and every v,, system (18) has one equilibrium
point,

(5,5)=(M,o). (19)

The trace and determinant of the matrix of the coefficients of
the linearization of system (18) are —# and —2v,, respec-
tively. Thus, (5,0) is stable for y,<0 and >0, a center for
v,<0 and 7=0, and a saddle point for y,>0. That means
that in order to get coexistence of two phases the global
feedback must be inhibitory (y<0). Note that when %,=0
(no difference of potential between the two phases), 5=1/2;
i.e., the two phases will coexist, with one-half the domain in
each phase. When h,>0(<0), 5<1/2(>1/2). From the fact
that 0=5=<1 we get the following constraint for the exis-
tence of a stable front:

h

<

Ve

<1. (20)

For =0 (no damping) the solution of (18), for an arbitrary
constant c, is

v =1 =[5 = (he + y)s +c] . (21)

In Fig. 1 we illustrate the evolution of one-dimensional
fronts for different values of y,, h,, and 7. (All numerical
simulations presented in this paper have been performed us-
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FIG. 1. Evolution of one-dimensional fronts for various values
of 7, h,, and 7,. (a) »=0 and 7,=0. (b) h,=0 and y,=-1. (¢)
7=0 and y,=-1.

ing a Runge-Kutta method of order four [41].) Initially
5;=0 1in all cases. As stated in the introduction, in the absence
of global coupling (y,=0) fronts move with a velocity that
asymptotically approaches —h,/ (72 +h?)""? [6], and no local-
ized structures exist. We show this in Fig. 1(a) for various
values of i, and 7=0 (no dissipation). We ended the simu-
lations at s=1, since this is the upper bound of the dimen-
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FIG. 2. Radii of the equilibrium fronts, p,,, as a function of v, for (a) h,=2, (b) h,=0, (¢) h,==-2, (d) h,=-2.5, (e) h,=—4. Full lines
correspond to stable fronts and dashed lines correspond to unstable fronts.

sionless interval on which the dynamics is defined.

Fronts moving under inhibitory global feedback (7y,<0)
with dissipation (7>0) evolve to a localized solution where
the position of the front is given by (19), and they do so in a
damped oscillatory way as we illustrate in Fig. 1(b). The
larger 7, the smaller the amplitude of the oscillations. When
7=0 (no dissipation) fronts oscillate with no damping. In
this case the two phases coexist but there is no stabilization

of one phase within the other. In Fig. 1(c) we show that the
amplitude of these oscillations increases as h, decreases.
Note that in all cases illustrated here, oscillatory fronts do
not move below their initial position. Note as well that in
order to constrain oscillatory fronts to the dimensionless in-
terval [0,1] one may need to impose additional constraints on
the values of the parameters (1, and v,) or, alternatively, end
the simulations when the front s(¢) reaches either 0 or 1.
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IV. DYNAMICS OF TWO-DIMENSIONAL FRONTS WITH
RADIAL SYMMETRY

The evolution of two-dimensional fronts with radial sym-
metry in a square domain is given by

1
P+ (ﬂpz“‘ ;)(1 =p)) + (h,+ v, = 2y,7mpH)(1 - p))¥* =0,

(22)

which has been obtained from (16) by taking () to be a
square of side 1 and |Q_|=mp?. Writing v for p,, Eq. (22)
becomes

pP=0,

v,= = (u + 1/p)(1 =0%) = (h + 7)) (1 = 0v*)*?

+2y,mp* (1 -v)**=0. (23)

The equilibrium solutions of (23) are given by v=0 and p a
solution of

2y, 7P’ = (he+ ¥)p—1=0. (24)

Note that the steady state solutions of (24); i.e., the radii p,
of the equilibrium circular fronts, are independent of 7.

The trace and determinant of the matrix of the
coefficients of the linearization of system (23) are —# and
—(1/p*+4+y,mp), respectively. Thus solutions of (24) are
stable if >0 and

1 +4y,mp° <0, (25)
and solutions of (24) are saddle points if
1 +4y,7p°>0. (26)

In Fig. 2 we show solutions to (24) as a function of v, for
various values of %,. As in the one-dimensional case, in order
to have coexistence of the two phases in equilibrium the
global feedback parameter must be negative. In Fig. 2 we
can also see that in all cases in which we observe coexistence
of two phases in equilibrium, coexistence depends on the
initial radius of the front: Circular fronts whose radii are
below a threshold given by the dashed curves shrink to a
point in finite time. In all cases there is a value of y,<0
below which steady circular fronts can be obtained and
above which no localized solutions are possible. This value
increases as h, decreases. This is a fundamental difference
between the one-dimensional case and the two-dimensional
case with radial symmetry. In the one-dimensional case, mo-
tion of fronts depends only on %, and v,, while in the two-
dimensional case the curvature plays an important role, re-
quiring values of v, <0 in order to overcome the shrinking
effect exerted by the front curvature (the tendency of one
phase to grow at the expense of the other due to curvature
effects). We can also see that the steady state radii depend on
the value of v,. In the three panels of Fig. 2 we see that as &,
decreases, even for small absolute values of the global feed-
back parameter y, we get two coexisting phases. The values
of the steady state radii are almost constant when the inhibi-
tory coupling is strong, but increase rapidly for small
negative values of v,.
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FIG. 3. Evolution of circular Q2D fronts for various values of 7,
h,, and 7,. (a) =0 and 7,=0. The values of A, (from top to bottom
curves) are =3, =2.5, =2, —1, =0.5, 1, and 2, respectively. For grow-
ing fronts (h,=-2.5,-3 in the graph), p grows beyond the maxi-
mum values shown. (b) =0 and 4,=0. (c) y,=—1 and h,=-4.

In Fig. 3 we illustrate the evolution of circular fronts for
various values of %, h,, and 7,. Figure 3(a) corresponds to
the system with no global feedback and is presented for com-
parison. (The simulations for the growing fronts were ended
at s=1.1, but the front grows unboundedly.) In Fig. 3(b) we
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illustrate the nondamped case (7=0). In this case circular
fronts oscillate with an amplitude and frequency that both
depend on and decrease with the absolute value of v,. In Fig.
3(c) we demonstrate that with positive 7 these oscillations
are damped and converge to a steady (and stable) circular
front.

V. DYNAMICS OF TWO-DIMENSIONAL FRONTS
WITHOUT RADIAL SYMMETRY: STABILITY OF
CIRCULAR FRONTS

In order to investigate the stability of steady circular
fronts satisfying (25) we expand p in an asymptotic series in
€, assuming that p depends weakly on 6(p,~0),

p(t,0) = Ro(t) + Ry(1,6). (27)

Substituting (27) into (16), and we get the leading order term
and first order correction respectively,

1
RO,tt + ( 77RO,t + _)(1 - R%,t)
Ry

+(hy+ Y, =27, 7RY)(1 - R§ )**=0 (28)

and

I_Rgt 2 Rl 2
Rl,n:(Rl,ae—Rl) ) —ﬂRl,;(l—Ro,;)+2_2(1—Ro,,)
Ry Ry

Ry + 7R2R
+2 0 7720 0.,
I?O
+3[h, + (1 = 27R)) IRy R, (1 -RG )"

RoRy,

2
+29,Ro(1 - R; ) f R,(t,6)d6. (29)
0

Equation (28) is the same as (22), which we have already
analyzed. When R, reaches its stable steady state, R, ,=0 and

1 +4y,7R; <0. (30)
Thus, Eq. (29) reduces to

Rl 19(9+R

2
Ry,+mR,= Tl + Z'VeROf R(t,0)d6. (31)
0

0

Equation (31) is a linear integro-PDE that can be solved by
expanding R; in a Fourier series

Aolt) > [A,(t)cos n6+ B, (t)sin nd],

n=0

Rl(t, 0) =

where the Fourier coefficients must satisfy
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Af+ Ay =Ag(= 1 +4my,R)IRG,
A+ pAl == A, (1 -n?)IR;,

B!+ 7B, =-B,(1-n?)/R}, (32)

for n=1,... . From (30) we can easily see that A,(r) — 0. It is
also clear that A,(r)—0 and B,(1)—0 for n=2,
A(t)—const and B,(r) —const; i.e., the mode n=1 is not
asymptotically stable but rather neutrally stable. Thus, circu-
lar fronts described by (22) are stable to small perturbations.

VI. DISCUSSION

In this paper we have derived an Eq. (8) governing the
evolution of a fully developed front in a singularly perturbed
nonlinear wave equation with global inhibitory feedback (5).
This equation generalizes the damped version of the Born-
Infield equation (6) to include global feedback effects on the
motion of fronts. The motion of interfaces according to (8) is
qualitatively different from and much richer than that of its
counterpart with no global coupling (y=0). This difference
arises primarily from the fact that the presence of inhibitory
global feedback allows the existence of localized solutions
(or fronts) in which one phase is stabilized inside the other.
In the absence of dissipation (7=0), fronts are oscillatory.
When dissipation effects are present (7>0), the oscillations
decay, spirally or not, depending on the value of vy,. The final
result is the stabilization of a domain of one phase inside the
other phase. In the two-dimensional case the inhibitory feed-
back necessary to produce a localized solution must be
strong enough to overcome the shrinking effect exerted by
curvature.

The evolution of two-dimensional noncircular fronts calls
for further research. In this paper we addressed the case of
perturbed circular fronts, showing that these perturbations
decay; i.e., localized solutions are possible for these cases.
We hope to address more general cases in a forthcoming

paper.
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