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Subdiffractive light pulses in photonic crystals

K. Staliunas,1 C. Serrat,2 R. Herrero,3 C. Cojocaru,2 and J. Trull®
Unstitucié Catalana de Reserca i Estudis Avangats (ICREA), Departament de Fisica i Enginyeria Nuclear,
Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona, Spain

2Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona, Spain
3Deparmment de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Comte Urgell 187,
E-08036 Barcelona, Spain
(Received 16 March 2006; published 18 July 2006)

We investigate propagation of light pulses in photonic crystals in the vicinity of the zero diffraction point.
We show that Gaussian pulses due to nonzero width of their temporal spectrum spread weakly in space and
time during the propagation. We also find the family of nonspreading pulses, propagating invariantly in the
vicinity of the zero diffraction point of photonic crystals.
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I. INTRODUCTION

Since the initial proposal of the concept of photonic crys-
tals (PCs) in 1987 [1], a number of studies revealed that
these materials with a periodic modulation of the refraction
index on a spatial scale of the order of the wavelength of
light, are powerful tools to control and modify the propaga-
tion of electromagnetic fields. PCs offer the possibility of
engineering the dispersion properties of light to yield photo-
nic band gaps in the transmission and reflection spectra; thus,
they can be designed to act as light conductors or insulators
[2]. PCs also modify (in particular, reduce strongly) the
phase and group velocities of light [3]. Recently it became
apparent that PCs can also modify the diffraction of light, in
that the diffraction can become negative if the refractive in-
dex is modulated in a direction perpendicular to the propa-
gation of the light (one-dimensional PCs) [4]. Negative dif-
fraction was also predicted for acoustic [5] and matter waves
[6,7] in one-dimensional periodic materials.

If the diffraction is positive at one edge of the propagation
band and is negative at the other edge, an inflection point
inside of the phonic band can be expected, characterized by
the vanishing diffraction. The vanishing of the diffraction has
been shown for the arrays of waveguides [8] and in the reso-
nators with periodic modulation of refractive index in one
transverse direction [9]. The vanishing of diffraction means
that at some particular point of parameter space and for a
given frequency, the curvature of the spatial dispersion curve
1/2(Pky/ k> ) becomes zero (here k; is the longitudinal and
k, is the transverse component of the wave vector). The
nondiffractive propagation of the monochromatic light
beams in two-dimensional photonic crystals has been shown
analytically [10], numerically [11], and experimentally [12]
until now.

All the above studies consider diffraction management of
monochromatic light beams. For pulses of nonzero width of
the spectra, the diffraction, in the leading order, can disap-
pear for a particular frequency only. The other frequency
components, not corresponding exactly to the nondiffractive
point, broaden diffractively in propagation. This can result in
a complicated shaping of the pulse, propagating in the vicin-
ity of the zero diffraction point. Also, the periodic modula-
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tion of refraction index introduces an additional group veloc-
ity dispersion [3], causing the temporal broadening of the
pulses. Having in mind these two ingredients caused by PCs
(strong dependence of diffraction on frequency and appear-
ance of the group velocity dispersion), the pulse propagation
can become very complicated.

Theoretically the pulse propagation in two-dimensional
PCs has been studied in [13], where the general formalism of
the nonmonochromatic beam propagation has been devel-
oped. The propagation invariant wave packages were also
suggested in [14], in the regimes of anomalous diffraction,
i.e., at minima and maxima of the frequency surface (corre-
sponding to the band edges) and at the saddle points. The
present article is devoted to the study of the pulse propaga-
tion in the vicinity of the zero diffraction point, i.e., at the
inflection points of the frequency surface. First we analyze
the pulse propagation close to the zero diffraction point for
PCs and develop the normal form description close to this
point (Sec. IIT). Next, basing on the normal form description,
we derive the amplitude equations for the evolution of the
macroscopic spatiotemporal shapes of the pulses (Sec. IV).
The spatiotemporal shapes in this macroscopic description
are defined on the large spatiotemporal scales: the small spa-
tiotemporal scales associated with the scale of refraction in-
dex modulation in PCs are eliminated. In Sec. V we calculate
numerically the evolution of the spatiotemporal shape of the
pulse and evaluate the (weak) spatiotemporal broadening
close to the zero diffraction point, basing on the amplitude
equations. In addition, we perform the calculations under
full, microscopic model in order to check the validity of the
amplitude equation approach. Finally, in Sec. VI we propose
the families of the pulses with particular spatiotemporal
form, which do not broaden in space and time during the
propagation. Such nondiffractive pulses in PCs are similar to
the X pulses in homogeneous dispersive and diffractive ma-
terials [15], and to the recently studied X waves in periodic
materials [7,14]. The X pulses have particular envelopes of
spatiotemporal spectra, such that the dephasing of the differ-
ent spatial components due to diffraction and dispersion mu-
tually compensates and the pulses propagate without broad-
ening. Analogously, the nonspreading pulses, as suggested by
us, have specific envelopes of the spatiotemporal spectra in
the vicinity of the zero diffraction point, which mutually
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compensate dispersion and (weak) diffraction in propagation
through PCs.

II. MODEL

We consider two-dimensional PCs, consisting of
superposition of two periodic, harmonic (i.e., sinusoidal)
lamellae-like refraction index gratings: An(r)=2m[cos(q;r)
+cos(qor)] with |q;|=|q,|=¢ at angles +a to the optical
axis. This resulting refraction index profile is An(x,z)
=4m cos(q  x)cos(gyz), with gj=q cos(a) and g, =¢ sin(a).
The crystallographic axes of such PCs are 7 (x1/q,,1/q),
and the reciprocal lattice vectors are q; and q,. We describe
the light propagation under approximation of slowly varying
(in space and time) envelopes [16]:

1o 9 i &

Z;t+o_'—z—2—kog—iAn(x,z)ko Alx,z,1)=0. (1)
Here A(x,z,1) is the complex envelope of the electromag-
netic field [E(x,z,0)=A(x,z,0)e*07@0"]  with a wave
number ky=wy/c defined in two-dimensional space (x,z) and
propagating along the z direction.

We consider next the reference frame moving with the
velocity of light; thus, the first term of Eq. (1) disappears,
and the refraction index becomes a function periodic in space
and time, An(x,z) — An(x,z—ct).

III. MONOCHROMATIC CASE: BLOCH MODE
EXPANSION

First we perform an analytical study of the propagation of
the plane monochromatic waves [time independent limit of
(1)] by expanding the electromagnetic field into a set of spa-
tially harmonic modes, in a similar way as, e.g., described in
[17,10],

Ax,z) = E Aj,leikl-vfx”k”flz, (2)

il
where kj =k j. ki )=k +jq. . k+lg), Jl=..,
—-1,0,1,.... The expansion results in a coupled system for

the amplitudes of harmonics,

(= 2koky ;= ki,j)Aj,l +2mky 2, A,,=0 (3)

u=jxl,v=jxl1

Solvability of (3) results in transverse dispersion relation (the
dependence of the longitudinal component k; on the trans-
verse component k, of the wave vector of the Bloch mode),
which, as calculated numerically, is given in Fig. 1(a). In the
limit of the vanishing refractive index modulation m — 0, the
formal solution of (3) consists of a set of parabolas (dashed
curves in Fig. 1) shifted one with respect to another by the
reciprocal vectors of the PC lattice q;,. They represent the
transverse dispersion curves for the uncoupled harmonic
components of the expansion (2). In full (nonparaxial) de-
scription of the light propagation, these parabolas are to be
substituted by corresponding circles. The modulation of the
refractive index m # 0 lifts the degeneracy at the crossing
points and gives rise to the band gaps in spatial wave number
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FIG. 1. The transverse dispersion curve as obtained by numeri-
cal solution of (3) using the expansion in five harmonics: (a) all five
dispersion curves (corresponding to five families of eigenmodes),
for f=0 (dashed) and f=0.15 (solid); (b) upper dispersion curve for
different values of the frequency dw=-0.2,-0.1,0,0.1,0.2 from
the bottom to the upper curve for f=0.2. PC geometry parameter
0,=0.479.

domain [Fig. 1(a)]. For particular amplitude of the modula-
tion given by m, for a particular geometry of PC given by
q;, and for a particular frequency wy=kyc, the plateaus on
the transverse dispersion curves appear, indicating the van-
ishing of diffraction. Figure 1(b) indicates the vicinity of the
zero diffraction point curve at k| =0.

We perform an asymptotic analytical description of
the diffraction curves at the zero diffraction point by consid-
ering only the three most relevant expansion modes in
(2), those with (j,1)=(0,0),(-1,-1),(1,1). The three mode
description is valid in the limit of small modulation, as
shown in [10]. Also, Fig. 1 shows that the deformation of
spatial dispersion curve and the appearance of straight
segments occurs essentially due to intersection (and the
lift of degeneracy) between the three modes (three dispersion
curves). The presence of the other ones becomes sensible
in case of strong interaction (large values of m), which is
not the case studied in the present paper. We introduce a
set of adimensional parameters by the following normaliza-
tion for the wave numbers of lightt K, =k, /q,,
K =2kko/q’ . The space coordinates are then rescaled as
Z:zqi/ 2ky and X=xq . Two significant parameters remain
after the normalization: f=2mkj/q>, which represents the
modulation depth of the Bloch mode in the PC, and
0=2q,ky/ qi, which is proportional to the angle between the
crystallographic axes of the PC (geometry parameter). The
asymptotic solution of (3) in terms of normalized parameters
is (see also [10])

2 2( 8/ )
KH_(l—QH)-‘-KL (1—Q||)3_1 ’ “)

The following smallness conditions are to be fulfilled for
the parameters: 1-Q,=0(g) and f=0(&¥?) for the validity
of (4). The smallness condition for K, can be chosen at this
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stage as K| =0(&%) (with a>1) in order to consider (4) as
the truncation of asymptotic expansion. However, seeking
for a consistence with the subsequent expansions we fix the
smallness condition K | =0(&?), which results in the higher
order terms in (4) of O(&®). The first neglected term in (4)
reads K% 32f2/(1-Q))° (see [10]), i.e., it is associated with
the second order diffraction.

The expression for the zero diffraction curve follows di-
rectly from (4) as eliminating the dependence of K on trans-
verse wave vector K |,

82=(1-0)° (5)

In general, the zero diffraction curve exists as the
single valued function Q,(f) for all values of 0<f<0 in
the plane (f,Q)), as can be obtained by numerical solution of
(3) by using a sufficiently large number of expansion modes
[10].

IV. NONMONOCHROMATIC CASE

The zero diffraction relation (5) in terms of initial
variables reads 8(2mky/q”)?=(1-2qko/q%)%, ie., relates
the parameters of the PC (m,q;,q,), and the frequency
of monochromatic wave wy=kqc. Obviously, the zero diffrac-
tion condition for a fixed parameter PC holds for a given
frequency only. We consider next a small variation of
the carrier frequency w=wq(1 + dw), resulting in the variation
of the normalized variables in (4): Q=0 o(1+dw), and
f—fo(1+68w)? (the values Q¢ and f, here correspond to
the zero diffraction). Retaining smallness conditions for
1-0Q,, f, and K| as in (4), imposing the following smallness
condition for the width of spectral width of the pulse
Sdw=0(&?) and collecting the terms in (4) up to order O(g>),
we obtain

2

K=K o+ ow + ow” + o[ 60K’ + O(£°)]. (6)

Vo 4
Here K o=(1-Q,0)%/4, 1/Vy=(1-0,0)(3-0()/2, and
a=3/(1-Q ). The smallness parameter & is a measure of
the pulse duration (normalized to the period of longitudinal
modulation of the refraction index) and of the width of the
beam (normalized to the period of transverse modulation of
the refraction index), and is specified by particular scalings,
as given above. The different (right-hand side) rhs terms of
(6) mimic the different ingredients of light propagation in the
PC: a constant shift of the longitudinal wave number (term
1) of order of O(&?), a change (decrease) of the group veloc-
ity (term 2) of order of O(&?), the PC induced group velocity
dispersion of the “normal” sign (term 3) of order of O(g*),
and the diffraction dependence on the frequency in the vicin-
ity of the zero diffraction point (term 4) of order of O(&>),
which is an exceptional ingredient of the materials with van-
ishing diffraction (PCs in this case) close to the inflection
point. The next term, which we neglect in (6), is of the order
of O(&°) and is associated with the second order diffraction,

i.e., it is proportional to K‘i
The different scaling for dw and K, corresponds to dif-
ferent durations of pulse and the width of beam and gener-
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ates a different dispersion relation (6). We chose the particu-
lar scalings in order to derive Eq. (6) in a systematic way,
with the terms following from normal form analysis at the
vicinity of the inflection point. We note that (6) [and subse-
quently (7)] can be derived phenomenologically by inspect-
ing the zero diffraction (inflection) point. One then can ex-
pand formally the longitudinal wave vector K in power
series of K| and dw, using particular smallness assumptions,
and keeping the terms of the leading order. This results in an
equation with the same structure as (6), however, with unde-
fined coefficients of the rhs terms. One more possibility to
arrive at (6) is to adapt the general formalism developed in
[13] to our specific case, i.e., to perform the expansions
around the zero diffraction point of the PCs.

Next, rewriting Eq. (6) in terms of time and space vari-
ables (9/dZ« iK,, d/ X iK |, I/ IT > —iSw, where the adi-
mensional space variables are as normalized above and the
adimensional time is T=wyf), we obtain

J &

_ 19 id
——iKg+t——+-—s—a——5]A=0  (7)
az VU VodT 49T T X

which is the central equation for our analysis. Under the
approximations used to derive (6) and (7), the function
A(X,Z,T) can be considered as the slow (in space and time)
envelope of the Bloch function at zero diffraction point.
Strictly speaking, A(X,Z,T) is the envelope of Wannier func-
tions, as could be proved by applying the analysis in [14];
however, in approximations used by us, the envelopes of
corresponding Wannier functions and of Bloch function
coincide.

V. GAUSSIAN PULSES

Next we analyze the propagation of the Gaussian pulses
solving numerically Eq. (7). In fact, due to the linear
character of (7) we calculated the shape of the pulse in
spatiotemporal Fourier domain, solved analytically (6),
and recovered numerically the shape in space-time domain
of the propagated pulse. The typical evolution of initially
Gaussian pulse is given in Fig. 2. In general, we obtain
an expected result that the initially Gaussian beam pulse dis-
torts during the propagation due to the dependence of
diffraction coefficient on the frequency [term 4 in the rhs of
(6) and (7)].

The overall temporal (spatial) broadening of the pulsed
beam can be estimated by analyzing the propagation of
the separate frequency components of the radiation indepen-
dently and by averaging over spatial (temporal) frequency.
The result is that the spatiotemporal broadening is character-
ized by two PC induced dispersion/diffraction lengths:
(i) dispersion length: Ld,‘SI,,1=4T§ depending on pulse
duration only and responsible for the symmetric broadening
of the pulse in time and (ii) the mixed dispersion
and/or diffraction length Ldl-sp@:X(z)To/ a, resulting in a
spatiotemporal broadening and distortion of the pulse.
We note that the diffraction (Rayleigh) length of the beam in
free propagation (absence of refraction index modulation) is
LRayleigh=X% under normalizations used. This estimate leads
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FIG. 2. Propagation of the Gaussian pulse centered around the
zero diffraction point, as obtained by numerical integration of (7)
with 0;=0.44 (a=5.4), f=0.15. The initial Gaussian shape is on the
left and the pulse propagated over Z=120 is on the right. The half-
width of the initial Gaussian pulse in Fourier spatial and temporal
domain is AK | =Adw=0.2, resulting in the half-width in the nor-
malized space-time domain of Xy=T7(=6.2.

to the conclusion that the short pulses of duration 7)<«
diffract stronger (at this zero diffraction point) than the cor-
responding monochromatic Gaussian beam propagating in
the homogeneous space.

Figure 3 shows the evolution of the width and the
duration of the pulse as obtained by numerical integration
of (7). The calculated spatial and temporal broadening of the
pulse is in accordance with the above estimates. For ex-
ample, the mixed dispersion and/or diffraction length
is Lgy,»=~40 and essentially determines the spatial and
temporal broadening of the pulse as being significantly
shorter than the PC induced dispersion length Ly, ;=160
under the conditions used.

In order to justify the validity of the above results of the
Gaussian pulse evolution based on the integration of the am-
plitude equation (7), we also performed the corresponding
calculations by numerically integrating the initial micro-
scopic model (1). We used the split-step integration tech-
nique by calculating the diffraction operator in the spatiotem-
poral Fourier domain and calculating the phase evolution due
to refraction index modulation in space-time domain on the
grid of (256 X 256) points. The integration results are given
in Fig. 4, where the misshaping of the spatiotemporal pulse

12 | I |

pulse half-width

0 30 60 90 120

FIG. 3. The evolution of the width and the duration of initially
Gaussian pulse. Parameters and conditions as in Fig. 2.
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FIG. 4. Propagation of the Gaussian pulse centered around
the zero diffraction point, as obtained by numerical integration
of (1). The same conditions as in Fig. 2, with 0;=0.57, f=0.15: (a)
initial Gaussian shape (the half-widths of the pulse are Xy=6
and T,=4.5), (b) spatiotemporal envelope of the pulse propagated
over the distance Z=240; and (c) Fourier filtered envelope of the
final pulse (with the high spatiotemporal Fourier components
removed).

profile is evident and is in qualitative accordance with Fig. 2.
Both figures agree in demonstrating the following features:
(i) that (small) diffraction occurs for short pulses, in spite of
nondiffractive behavior, for monochromatic waves under the
same parameters; (ii) that this (the unusual) diffraction gives
rise to fringes, whereas the normal diffraction would just
result in a broadening; and (iii) that these fringes are placed
asymmetrically along the pulse in time, which means that
their appearance (i.e., the diffraction) is related with the tem-
poral operators (the derivation with respect to time). The
broadening of the envelope also quantitatively agrees with
the above calculated mixed dispersion and/or diffraction
lengths. We note that the calculations in both cases have been
compared with f=0.15, which is beyond the smallness
conditions as used to obtain the envelope expansions (6) and
(7). The longitudinal coordinate, instead of retarded time,
was used in Fig. 4, which relates to retarded time as
T=27k}!q",.

One set of the real-world parameters to a particular set of
normalized parameters used in Fig. 2 and in Fig. 4 is
the following: A=0.5 um, ¢, =0.5ky, ¢;=0.08k, (\ | =1 um
and N\y=6.3 um, respectively), m=0.0185. Then the param-
eters of the pulses are xo=~6 um, 7=~ 17 fs, and the propa-
gation distance is z=90 um for Fig. 2 and z=180 um
for Fig. 4.

VI. NONDIFFRACTIVE PULSES

We searched for particular spatiotemporal shapes of the
pulses which are invariant under the propagation described
by (7). We note that in the frames of the full model (1) the
invariant pulses are in fact oscillatory on the small space-
time scale (i.e., they move through periodic potential); there-
fore, the direct search of the invariant structures is compli-
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0 K,

FIG. 5. Isolines K =const as calculated from (8) for given val-
ues of the velocity: AV=(1/V,—1/V;)=-10 (a), and AV=+10 (b),
for 0 ¢p=0.9. The bold isolines are used for preparation of propa-
gation invariant pulses in subsequent figures.

cated. The pulse propagating invariantly with the group
velocity V, is obtained directly from (6),

ow ow Odw )
K“1+—=KH0+—+—+a'5wKJ_. (8)
TV TV 4

Here K| is a free parameter (having a sense of longitudinal
wave number) spanning the one-parameter family of the
pulses propagating with a given group velocity V. Figure 5
shows the families of the isolines of Kj; in the plane of
(6w,K ) obtained for two different group velocities. The
radiation modes within a given isoline propagate with the
same wave vector K| ; therefore, the field formations be-
longing to each separate isoline propagate without
dispersive/diffractive broadening.

We note that so called X pulses are propagation invariant
structures residing on hyperbolas in the space-time Fourier
domain [15]. We also obtain a big variety of invariant
structures that are mostly of bell shape in space-time Fourier
domain (Fig. 5). We generate several typical invariant
structures. For this purpose we fix the desired frequency
in (8), select a particular isoline K =const (i.e., one isoline
from Fig. 5), and generate a spatiotemporal spectrum of
the pulse around a selected isoline. The selection of the infi-
nitely narrow spectra OJK;—0 results in tails of the
pulse expanding to infinity, i.e., to so called algebraically
localized pulses. Therefore, we generated the spatiotemporal
spectrum of the finite 6K| centered around a particular iso-
line. We perform the inverse Fourier transformation and ob-
tain the spatiotemporal shapes of such propagation invariant
pulses as shown in Fig. 6(a) and 6(b). The finite spatiotem-
poral spectrum, on one hand, results in finite in space and
time pulses (i.e., with exponential localization) and, on the
other hand, results in weak spreading of the pulses (more
precisely, in the spreading of the exponentially localized part
of the pulses) during the propagation. The distance at which
the exponentially truncated tails of the pulses spread sensibly
(an analog of the Rayleigh length) can be evaluated by as-
suming that the spectral components dephase during that
propagation, 6K;Z=~1, and for pulses shown in Fig. 6 is
Zre1=T0. We note that this is related to the spreading of the
cutoff radius of the tails; the central peak propagates without
the broadening.
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FIG. 6. Two invariant pulses as constructed by selecting radia-
tion around the bold isolines from Fig. 5: (a) V=10, K;=8.01; and
(b) V=-10, K;=5.81. The “thickness” of the isoline is 6K;=0.015.

We calculate numerically the (invariant) propagation
of the algebraically and exponentially localized pulses.
We prepare the pulses as described above and integrate the
evolution equation (7) numerically. The invariant propaga-
tion of algebraically localized pulses is trivial. The exponen-
tially localized pulses propagate without a visible distortion
for the propagation distances Z< Zy.;. For longer propaga-
tion the tails show distortion; however, the central peak
remains narrow, as expected.

VII. SUMMARY AND CONCLUSIONS

We investigate the propagation of ultrashort light pulses
in PCs in the vicinity of the zero diffraction point by deriving
the amplitude equation for the evolution of the spatiotempo-
ral envelope of the corresponding Bloch mode and by
solving the derived equation. The first conclusion is that the
spatiotemporal envelope of the initially Gaussian pulses
might experience sensible distortion. This means that the
use of ultrashort pulses in nondiffractive information transfer
lines should be problematic: the short pulses not only spread
in time due to PC induced dispersion, but also experience
distortion of spatial profile of the beam on the propagation
length of the order of Ldisp,2=X%T0/ a. This also means
that the application of ultrashort pulses to transfer the spatial
light patterns through PC nondiffractive lines results in
smearing of the patterns. The critical length of the pulse for
nondiffractive propagation is 7y= «. This conclusion has
also been justified by the integration of the full microscopic
model (1).

The second conclusion is that the above problem can be
solved to some extent by using specially prepared X-like
pulses. Such pulses with the algebraic localization propagate
without any distortion along PCs, and the pulses with the
exponential localization propagate with a weak distortion.
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This distortion affects only the weak tails of the exponen-
tially localized x-like pulses but not the central peak, which
remains well localized over distances significantly larger
than the Rayleigh lengths.

Nonlinear generalizations are also possible. The weak
nonlinearity in PCs could play a twofold role: stabilizing the
X pulses by ensuring their exponential localization, analo-
gous to stabilization of conventional X waves [18], and spon-
taneous generation of the X pulse in photonic crystals, in

PHYSICAL REVIEW E 74, 016605 (2006)

analogy to the nonlinear X pulse generation in homogeneous
nonlinear materials [19,20].

ACKNOWLEDGMENT

The work was financially supported by the Spanish Min-
isterio de Educacién y Ciencia through projects FIS2004-
02587 and FIS2005-07931-C03-03.

[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John,
ibid. 58, 2486 (1987).

[2] See, e.g., Photonic Band Gaps and Localization, edited by C.
M. Soukoulis, NATO Advanced Studies Institute, Series B:
Physics, Vol. 308 (Plenum, New York, 1993).

[3] M. Scalora et al., Phys. Rev. E 54, R1078 (1996); Arnout
Imhof, W. L. Vos, R. Sprik, and A. Lagendijk, Phys. Rev. Lett.
83, 2942 (1999); K. Sakoda, Opt. Express 4, 167 (1999).

[4] R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J.
S. Aitchison, Phys. Rev. Lett. 86, 3296 (2001); M. J. Ablowitz
and Z. H. Musslimani, Phys. Rev. Lett. 87, 254102 (2001).

[5] Suxia Yang, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and
J. S. Aitchison, Phys. Rev. Lett. 85, 1863 (2000); M. Torres
and F. R. Montero de Espinosa, Ultrasonics 42, 787 (2004).

[6] E. A. Ostrovskaya and Yu. S. Kivshar, Phys. Rev. Lett. 90,
160407 (2003).

[7] C. Conti and S. Trillo, Phys. Rev. Lett. 92, 120404 (2004).

[8] H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchi-
son, Phys. Rev. Lett. 85, 1863 (2000); T. Pertsch, T. Zentgraf,
U. Peschel, A. Brauer, and F. Lederer, Phys. Rev. Lett. 88,
093901 (2002).

[9] K. Staliunas, Phys. Rev. Lett. 91, 053901 (2003).

[10] K. Staliunas and R. Herrero, Phys. Rev. E 73, 016601 (2006).

[11] H. Kosaka et al., Appl. Phys. Lett. 74, 1212 (1999); D. N.
Chigrin et al., Opt. Express 11, 1203 (2003).

[12] R. Illiew et al., Appl. Phys. Lett. 85, 5854 (2004); D. W.
Prather er al., Opt. Lett. 29, 50 (2004).

[13] S. Longhi, Phys. Rev. E 71, 016603 (2005).

[14] S. Longhi and D. Janner, Phys. Rev. B 70, 235123 (2004).

[15] C. Conti, S. Trillo, P. DiTrapani, G. Valiulis, A. Piskarskas, O.
Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003);
M. A. Porras and P. Di Trapani, Phys. Rev. E 69, 066606
(2004); S. A. Ponomarenko and G. P. Agrawal, Opt. Commun.
261, 1 (2006).

[16] The above analysis, strictly speaking, is legitimate when the
spatial period of refraction index modulation is by order of
magnitude larger than the wavelength of the light radiation.

[17] See, e.g., P. Yeh, Optical Waves in Layered Media (Wiley, New
York, 1988); J. M. Cowley, Diffraction Physics, 3rd revised
ed. (Elsevier Science B.V., Amsterdam, 1995).

[18] C. Conti, Phys. Rev. E 68, 016606 (2003).

[19] P. DiTrapani, G. Valiulis, A. Piskaraskas, O. Jedrkiewicz, J.
Trull, C. Conti, and S. Trillo, Phys. Rev. Lett. 91, 093904
(2003).

[20] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt.
B: Quantum Semiclassical Opt. 7, R53 (2005).

016605-6



