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Time-delayed feedback is applied to the motions associated with the nonlinear periodic regime generated
due to current-driven ion acoustic instability; this is a typical instability in a laboratory plasma, and the
dynamical behavior is experimentally investigated using delayed feedback. A time-delayed autosynchroniza-
tion method is applied. When delayed feedback is applied to the nonlinear periodic orbit, the periodic state
changes to various motions depending on the control parameters, namely, the arbitrary time delay and the
proportionality constant. Lyapunov exponents are calculated in order to examine the dynamical behavior.
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I. INTRODUCTION

In dissipative physical systems, such as those that occur in
plasmas, fluids, lasers, etc., it is often observed that the sys-
tem is described by a state of sustained chaotic motion. Fur-
thermore, the problem of controlling chaos has recently at-
tracted great interest �1–6�. In particular, time-delayed
feedback �2� plays a prominent role in controlling chaos; this
is one of the successful applications that knowledge acquired
in nonlinear science has provided to plasma physics beyond
its own specialized area of study. Currently, applications
such as controlling chaos have attracted considerable atten-
tion in plasma physics for understanding “turbulence.” The
crucial role of turbulence in fusion-oriented plasmas has led
to a special interest in controlling chaos. Turbulence is often
a problematic phenomenon that may have harmful conse-
quences. Chaos in high density and magnetized plasmas such
as fusion-oriented plasmas, which requires stabilization, will
evolve into a fully developed turbulence. Several systems
reach turbulence via chaos. Therefore, the investigation of
chaos control should contribute to understanding plasma
turbulence.

There are some methods of controlling chaos wherein the
main idea is to convert chaotic behavior to periodic behavior
by inducing a small perturbation in the system. Time-delayed
feedback is frequently used as an effective method of con-
trolling chaos. Pyragas �2� has proposed the time-delayed
feedback technique, which is based on feedback perturbation
in the form of the difference between a delayed output signal
and the output signal itself; this is appropriate for laboratory
experiments conducted in real time. This method is robust to
noise and does not require real-time computer processing to
calculate a target unstable periodic orbit �UPO�; therefore, it
can act on the experimental system continuously over time.
The feedback perturbation signal F�t� that is applied to the
nonlinear system is proportionally adjusted to the difference
between the two successive values of an arbitrary dynamic
variable x�t�, F�t�=k�x�t−��−x�t��. Here, � is the time delay,

which agrees with the period of a UPO embedded in the
chaotic attractor while controlling chaos, and k is its propor-
tionality constant. Since a plasma is a typical nonlinear
dynamical system with a large number of degrees of spa-
tiotemporal freedom, various unexpected phenomena are ob-
served when time-delayed feedback is applied in a plasma. A
system in which the time-delayed feedback is applied has
infinite dimensions; therefore, � and k should be carefully
selected while controlling chaos. Recently, control of chaos
generated due to the current-driven ion acoustic instability
�IAI� has been reported �7–9�. It has been reported that chaos
can be effectively controlled by using the time-delayed feed-
back method. In this study, delayed feedback is applied to the
motions associated with the nonlinear periodic regime �NPR�
before it develops chaotic motion. This is because the range
of a nonlinear periodic orbit can be attributed to a wide va-
riety of physical mechanisms. When information propagates,
spatially extended systems such as plasmas and fluids them-
selves have a time delay. The occurrence of the time delay is
an unavoidable problem with regard to controlling chaos.
Therefore, investigations into the behavior of nonlinear sys-
tems with regard to time delay are currently required.

In this paper, the dynamical behavior in a laboratory
plasma is reported in detail in this regard. In Sec. II, the
experimental setup is described. In Sec. III, the behavior of
the system is described on changing � and k when time-
delayed feedback is applied to the motions associated with
the NPR. Lyapunov exponents are shown in order to exam-
ine the dynamical behavior with the time-delayed feedback.
In Sec. IV, the findings are summarized.

II. EXPERIMENTAL SETUP

The experiments are performed using a double-plasma de-
vice �10� with a diameter of 70 cm and a length of 120 cm.
The chamber of the device contains two cages made of mul-
tipole permanent magnets for surface plasma confinement;
they also have tungsten filaments around the chamber wall
that act as cathodes. The chamber is divided at the center into
a driver region and a target region by a separation grid that is
kept at a floating potential. In this experiment, the plasma is*Electronic address: fukuyama@ed.ehime-u.ac.jp
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generated only in the target region, which is the experimental
region. The chamber is evacuated to 4.0�10−7 Torr, and ar-
gon gas is then introduced into the chamber at a pressure of
4.0�10−4 Torr. Typical plasma parameters are as follows:
electron density ne�108 cm−3; and electron and ion tem-
peratures Te�0.5–1.0 eV and Ti�Te / �10–15�, respectively.
The current-driven IAI is excited by two parallel mesh grids
G1 and G2 with the following dimensions: diameter 6 cm;
grid 50 mesh/ in.; and interval L 2.5 cm �11�. A dc potential
Vm is applied to G1 in order to excite the instability, and G2
is kept at a floating potential. For analysis, time series signals
x�t� are obtained from the fluctuating components of the cur-
rents on the Vm-biased mesh grids, and the signals are
sampled using a digital oscilloscope. In order to incorporate
a time delay in the experiments, the feedback signal F�x� is
applied to the floating mesh grid G2; this gives rise to a
perturbation in the system. The feedback signal F�x� is gen-
erated from x�t� by using an electronic circuit based on the
time-delayed feedback method. The experimental setup is
schematically shown in Fig. 1.

III. RESULTS AND DISCUSSION

A. Current-driven ion acoustic instability

The current-driven IAI is caused by the interaction be-
tween electron streaming, i.e., the electron current, and the
background ion acoustic waves in the plasma �12–17�. When
Vm is applied to G1 and G2 is kept at floating potential, an
electric field is obviously applied between the two mesh
grids. The electrons are accelerated from G1 toward G2 by
the applied electric field and the electron current flows be-
tween the two mesh grids. The current-driven IAI occurs due
to the interaction between this electron current and the back-
ground ion acoustic wave in the plasma. When the grid po-
tential Vm exceeds a threshold, a current-driven IAI is excited
�8,9,11�. The behavior of the system as a function of the
control parameter Vm is illustrated in Fig. 2, which shows
the time series signal x�t�. Here, the sampling time �t is
1.0�10−6 s. The instability, including burst waves, appears
for 23�Vm�66 V. When the instability grows, the waves
become turbulent. When Vm exceeds 23 V, which corre-
sponds to the threshold, a limit cycle appears and persists for
23�Vm�35 V, as shown in Fig. 2�b�. The amplitude of the
limit cycle switches stochastically between two values for

36�Vm�39 V, as shown in Fig. 2�c�, and a larger limit
cycle appears for 40�Vm�45 V, as shown in Fig. 2�d�.
Subsequently, as Vm increases, the system gradually falls
into disorder. Figures 2�e� and 2�f� show the chaotic state
�Vm=47 V� and the typical chaotic state when the system
is completely disturbed �Vm=54 V�, respectively. When
Vm�67 V, the instability disappears with a decrease in the
noise level. In previous work �9�, it has been reported that
the chaotic state caused by the current-driven IAI is effec-
tively controlled when time-delayed feedback is applied to a
typical chaotic state, and control is achieved when the time
delay is chosen near the particular period of the UPO ap-
proximately corresponding to the fundamental mode of the
chaotic system. In this study, delayed feedback is applied to
the motions associated with the NPR and its dynamical be-
havior is shown. Here, the system has a nonlinear periodic
orbit when 40�Vm�45 V—corresponding to Fig. 2�d�—
before exhibiting chaotic motion. A nonlinear periodic orbit
with delayed feedback can be attributed to a wide variety of
physical mechanisms �18–20�. Time-delayed feedback is ap-
plied to the motions associated with the NPR when the
parameter Vm is 40 V.

B. Experimental results

Figure 3 shows the behavior of the system versus the time
delay �. The proportionality constant k is fixed at 2.06. Left

FIG. 1. Schematic representation of the experimental setup.
Time series signals x�t� for analysis are obtained from the fluctuat-
ing components of currents on the biased mesh grids.

FIG. 2. Behavior of the system as a function of the control
parameter Vm: �a� before excitation of instability �Vm=23 V�, �b� a
smaller limit cycle oscillation �Vm=26 V�, �c� stochastic oscillation
between two values �Vm=38 V�, �d� a larger limit cycle oscillation
�Vm=40 V�, �e� chaos �Vm=47 V�, and �f� chaos when the system is
completely disturbed �Vm=54 V�. The time series signals x�t� are
illustrated.
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and right traces correspond to the time series signal x�t� and
power spectra, respectively. Figure 3�a� shows the state of
the system before the application of the time-delayed feed-
back, which corresponds to Fig. 2�d�. After the application,
the behavior of the system is investigated by changing �.
Figure 3�b� shows the state when �=11.25 �s ��0.65 pe-
riod�. Here, the fundamental frequency shifts to 2/3 the
value of the peak of the system before the application of the
time-delayed feedback. As � increases, the system passes
through an intermittent phase as shown in Fig. 3�c�, and it
exhibits periodic oscillation with another fundamental fre-
quency, as shown in Fig. 3�d�. This figure shows the state
when �=15.0 �s ��0.87 period�. Here, the frequency ap-
proaches the fundamental frequency before the application of

the time-delayed feedback, which is determined by the
boundary condition between the two mesh grids. It is shown
that synchronization occurs when the time delay is chosen
near the particular period that corresponds to the fundamen-
tal mode of the system before the time-delayed feedback is
applied. Two limit cycles coexist in Fig. 3�c� because the
limit cycle at 43 kHz gradually changes to the one at 66 kHz.
Figure 3�c� shows the state when �=13.75 �s ��0.8 period�.
Since it oscillates between two regular states, the system has
an intermittent feature as shown in Fig. 3�c�. On further in-
creasing �, the system settles into an unstable period-3 orbit,
as shown in Fig. 3�e�. The figure shows the state when
�=17.5 �s ��1.02 period�. The time delay � and proportion-
ality constant k are not known a priori, and their appropriate

FIG. 3. Behavior of the system versus time
delay �. The proportionality constant k is fixed
at 2.06. Left and right traces correspond to the
time series signal x�t� and power spectra, respec-
tively. �a� Before application, �b� �=11.25 �s, �c�
�=13.75 �s, �d� �=15.0 �s, and �e� �=17.5 �s.
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values are determined by trial and error. Thus far, it has been
experimentally demonstrated that synchronization is
achieved only when � is chosen near the particular period
that corresponds to the fundamental mode of the original
system. However, it is also observed that the system is syn-
chronized when � is selected as 11.25 �s, which corresponds
to 2/3 the value of the peak of the system before the

application of the time-delayed feedback, and the intensity
of the peak is considerably low as compared to the funda-
mental one. Stabilization is achieved when a feedback signal
is applied at a subharmonic frequency.

Figure 4 shows the behavior of the system versus the
proportionality constant k. The time delay � is fixed at
13.75 �s. The left and right traces correspond to the time

FIG. 4. Behavior of the system versus propor-
tionality constant k. The time delay � is fixed at
13.75 �s. Left and right traces correspond to the
time series signal x�t� and power spectra, respec-
tively. �a� Before application, �b� k=0.64, �c�
k=0.86, �d� k=1.30, �e� k=1.48, and �f� k=3.0.
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series signal x�t� and power spectra, respectively. Figure 4�a�
shows the state of the system before the application of the
time-delayed feedback, which corresponds to Fig. 2�d�. After
the application, the behavior of the system is investigated
by changing k. For 0.05�k�0.85, the system exhibits a
chaotic feature. Figure 4�b� shows the state when k=0.64.
For 0.85�k�1.14, the system shows a periodic oscillation.
Figure 4�c� shows the state when k=0.86. Here, the funda-
mental frequency shifts to 2/3 the value of the peak of the
system before the application of the time-delayed feedback.
For 1.14�k�1.48, the system exhibits a chaotic feature.
Figure 4�d� shows the state when k=1.30. Chaotic oscillation
is suppressed gradually as k increases. For 1.48�k�2.10,
the system again shows periodic oscillation. Figure 4�e�
shows the state when k=1.48. For k�2.10, the system settles
into a turbulent state as k increases further. Figure 4�f� shows
the state of the system when k=3.0.

C. Lyapunov exponents

In order to quantitatively examine the influence of time-
delayed feedback when the arbitrary time delay � and the

proportionality constant k are varied, the Lyapunov expo-
nents �21� are calculated based on chaotic analysis. The larg-
est Lyapunov exponents calculated from the time series in
Figs. 3 and 4 are shown in Figs. 5 and 6, respectively. In a
chaotic system, the value of the largest Lyapunov exponent is
positive; this value is higher for a more chaotic system. Fur-
ther, this value is zero for a system with complete periodic
oscillation. Figures 5�a�–5�e� correspond to the largest
Lyapunov exponents calculated from the time series in Figs.
3�a�–3�e�, respectively. In Fig. 5�a�, the value of the largest
Lyapunov exponent is 0.31. This implies that a limit cycle
does not exhibit complete periodic oscillation but weak
chaos although the oscillation appears periodic. In Fig. 5�b�
and 5�d�, the values of the largest Lyapunov exponents are
0.33 and 0.36, respectively, which are close to �a� 0.31. This
is because the system is synchronized by time-delayed feed-
back. In Fig. 5�c�, its value is 0.73, which is greater than or
equal to two times that of Fig. 5�a�. This is because the
system is further disturbed by time-delayed feedback. In Fig.
5�e�, its value is 0.42, which is marginally greater than in
Fig. 5�a�, 0.31. This is because the time-delayed feedback to
the system causes it to transition to an unstable period-3
orbit. Figures 6�a�–6�f� correspond to the largest Lyapunov
exponents that are calculated from the time series in Figs.
4�a�–4�f�, respectively. In Fig. 6�a�, the value of the largest
Lyapunov exponent is 0.31, as shown in Fig. 5�a�. In Figs.
6�b�, 6�d�, and 6�f�, their values are 0.78, 0.93, and 0.71,
respectively. On the other hand, in Figs. 6�c� and 6�e�, their
values are 0.23 and 0.27, respectively. In the former cases,
the system is further disturbed by time-delayed feedback. In
the latter cases, the system is stabilized because the values
decrease to below that of Fig. 6�a�, 0.31, due to synchroni-
zation. This particularly depends on whether the system be-
comes more orderly or disorderly with the choice of the pro-
portionality constant k. Depending on � and k, the motion
associated with the NPR varies with time-delayed feedback.
In certain regions, the system cannot be synchronized despite
the application of time-delayed feedback. Therefore, � and k
should be carefully selected in order to achieve synchroniza-
tion, or the system will be further disturbed by time-delayed
feedback.

IV. CONCLUSION

In conclusion, time-delayed feedback is applied to the
motions associated with the NPR generated by the current-
driven IAI and the dynamical behavior subject to delayed
feedback is experimentally investigated. When a control pa-
rameter of the system, Vm, is increased, current-driven IAI is
excited, and the system then demonstrates a nonlinear peri-
odic orbit around Vm=40 V. The behavior of the system is
investigated by changing � and k when time-delayed feed-
back is applied to the motions associated with the NPR. Dy-
namical behavior such as intermittency and chaos is ob-
served by changing � and k. Furthermore, the largest
Lyapunov exponents are calculated when, depending on �
and k, the motion associated with the NPR varies with time-
delayed feedback. It is clarified that suitable values of � and
k should be chosen in order to achieve synchronization by
using time-delayed feedback.

FIG. 5. The largest Lyapunov exponents calculated from the
time series in Fig. 3. �a� 0.31 �before application�, �b� 0.33
��=11.25 �s�, �c� 0.73 ��=13.75 �s�, �d� 0.36 ��=15.0 �s�, and
�e� 0.42 ��=17.5 �s�.

FIG. 6. The largest Lyapunov exponents calculated from the
time series in Fig. 4. �a� 0.31 �before application�, �b� 0.78
�k=0.64�, �c� 0.23 �k=0.86�, �d� 0.93 �k=1.30�, �e� 0.27 �k=1.48�,
and �f� 0.71 �k=3.0�.
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