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Delayed feedback control of noise-induced patterns in excitable media

A. G. Balanov,l’2 V. Beato,1 N. B. Janson,3 H. Engel,1 and E. Scholl!

Unstitut fiir Theoretische Physik, Technische Universitiit Berlin, Hardenbergstrafie 36, D-10623 Berlin, Germany
2School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
3Departmenl of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE1l 3TU, United Kingdom
(Received 28 November 2005; published 31 July 2006)

We show that characteristic features of noise-induced spatiotemporal patterns in excitable media can be
effectively controlled by applying delayed feedback. Actually, by variation of the time delay and of the strength
of the feedback one can deliberately change both spatial and temporal coherence, as well as adjust the

characteristic time scales.
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Noise-induced pattern formation in excitable media has
been attracting increasing attention, also for its potential im-
portance for, and applicability in, neuroscience and cardiac
dynamics [1].

It has been found that in such media external fluctuations
are able to induce quite coherent spatiotemporal patterns
[2,3], to maintain the existing patterns [4], and even to sup-
port wave propagation [5]. With respect to heart dynamics,
for instance, it was suggested that chronic atrial fibrillation in
heart tissue with pathologically decreased conductance might
be due to the influence of fluctuations of the membrane volt-
age in heart cells [6].

In neurodynamics, Ca>* waves triggered by noise were
found in a network of glial cells (cells maintaining and sup-
porting neurons) [7,8]. These waves can be important in gen-
erating correlated neural activity, while their patterns are pro-
posed to be different in healthy and in pathological neural
dynamics [8].

Under this perspective, in a broad area of science and
technology it would be hugely appreciated to create instru-
ments to manipulate the features of noise-induced patterns.
Usually, control of dynamical systems means an adjustment
of their essential dynamical properties like stability, coher-
ence, timescales, etc., in a desirable manner imposing small
perturbations. With this, the vast majority of methods for the
control of complex motion developed so far are suitable for
deterministic dynamics [9]. Examples include the control of
pattern formation in catalytic CO oxidation on Pt(110) by
global delayed feedback [10], feedback-mediated control of
spiral waves in excitable media [11,12], or the recently pro-
posed spatiotemporal delayed feedback method [13]. While
the development of tools for control of noise-induced oscil-
lation in simple finite-dimensional systems is in progress at
the moment [14,15], not much is known yet about the control
of spatiotemporal patterns generated by external fluctuations
in spatially extended systems.

In this paper we study how delayed feedback affects the
coherence of noise-induced spatiotemporal patterns in an ex-
citable system. As a model we choose the Oregonator equa-
tions that describe the Belousov-Zhabotinsky (BZ) reaction:
a famous paradigm of an excitable medium which is rela-
tively easily accessible for an experiment. We simulate a
realistic situation that reproduces the conditions of a real
experiment that can be performed with this reaction.
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We show that a feedback of the form F(r)=g(v(r—17)
—v(r)), where v(r) is the signal coming from the system and
g is a scalar function, can be effectively used for the manipu-
lation of essential properties of noise-induced spatiotemporal
patterns. This feedback form was earlier proposed for the
control of deterministic chaos [16] (including chaotic spa-
tiotemporal patterns [17,18]).

We consider the photosensitive version of the Belousov-
Zhabotinsky (BZ) reaction, which has become a prototype
system for experimental studies of noise-induced phenomena
in spatially extended excitable media (see, e.g., Refs.
[3,5,19]). The photosensitive BZ reaction can be described
by the modified Oregonator equations which have the fol-
lowing form [20]:

1
du=—[u—-u*-wu-q)]+ Duﬁiu,
€
dv=u-v, (1)
1
dw=—fo+d-wu+q)]+ D, w.
€

Here, variables u, v, w are concentrations of bromous acid,
the oxidized form of the catalyst, and bromide, respectively.
We fix ¢=0.002, f=1.4, 1/e=11.7, 1/€'=1059, D,=1, D,,
=1.12 [21]. Then, the kinetics (D,=D,,=0) of the system is
governed by the intensity of light incident on the medium,
linked to the parameter ¢ in the model (1). With the increase
of ¢ self-sustained oscillations in the system are suppressed,
and for ¢p>4.24 X 1073 the system is excitable: The kinetics
exhibits a unique stable steady state.

To model a photosensitive BZ medium subjected to fluc-
tuating light intensity we introduce a stochastic component
7(x,1) into the parameter ¢ as

¢()C,t) = ¢0(1 + 7]()6,1))- (2)

We fix the parameter ¢, at 0.005, for which the system is
excitable. To be close to what is accessible in experiments
with a photosensitive BZ medium, where the applied fluctua-
tions of light are essentially the same within a certain small
portion of the medium, we divide the spatial domain of
length L (fixed and equal to 19.2) into N cells of equal size
A=L/N. To each cell number i, i=1,2,...,N, correlated
noise 7,(f) with zero mean is applied according to
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d d 1
— 060 ee-ning = (0 = —[= 7+ &), (3
dt’l(x Mrer-nnin dt”() T,m[ m+&0],  (3)

where () is Gaussian white noise. The correlation function
of #(r) is (#(t)#,(s))=6,0%exp(~|t-s|/7,,). Here &; de-
notes the Kronecker delta (0 if i # j and 1 if i=j), 7,, is the
correlation time of the Ornstein-Uhlenbeck (OU) process de-
scribed by Eq. (3) and o?=(7?) is its intensity which is cho-
sen the same for all cells. There is no spatial correlation
between fluctuations in different cells, so N\ is a measure of
the spatial correlation length.

Importantly, because ¢ is proportional to the applied illu-
mination it cannot be negative. Therefore in the following we
eliminate values of ¢ that are less than zero and larger than
2 ¢, in order to preserve symmetry in the noise distribution.
Numerically, this is done as follows: we integrate Eq. (3) and
at each time step we check if for all i the values of 7,(z) fall
within the interval [—1;1]. If for some i this condition is not
satisfied, we continue integration of Eq. (3) for the given i
until a suitable value of 7,(¢) occurs. When all 7,(¢) are as
required, we feed them into Eq. (1). Obviously, the stochastic
process obtained in this way is no longer of OU type. How-
ever, we checked that correlation time and noise intensity of
the stochastic process we used in our calculations deviate by
less than 10% from the corresponding values of an OU pro-
cess.

As noise is applied to the given point x of the medium, it
takes on average ¢, time units to excite the medium locally. 7,
can thus be called activation time. After the point x of the
medium achieves its excited state, it returns to its rest state
during a “refractory period” t,. During ¢, no new nucleations
are possible at the given position x. In the presence of spatial
diffusion (D, # 0, D,,# 0), at the excited point x of the me-
dium a pair of pulse waves nucleate and then propagate in
the opposite directions with the same constant velocity. In
order to prevent nucleations on the border of the medium, for
our study we adopt periodic boundary conditions, therefore
the initiated waves eventually collide and annihilate.

In our work we fix the parameters of noise at the values
that provide a maximally coherent spatiotemporal dynamics:
L=19.2, 0=0.5, 7,,=0.5, and A=1.2 [22]. At these param-
eters t, is negligibly small.

A typical noise-induced pattern corresponding to the cho-
sen set of noise parameters is shown in Fig. 1(a), where the
values of u(x,t) are shown by grey shading in logarithmic
scale: larger values are marked by the darker shading.

In order to characterize the coherence of these spatiotem-
poral patterns, we introduce the space-averaged activator
concentration of u(x,?) [23,24],

1 (L
ﬁ(t):zf u(x',t)dx’'. (4)

0

Figure 1(b) shows a realization of & corresponding to the
space-time plot displayed in Fig. 1(a). This realization exhib-
its pronounced spikes. For each spike number i, interspike
intervals 7; can be introduced as the intervals between the
successive crossings by the variable () of a threshold 0.03
from above to below [see Fig. 1(b)]. Each spike number i
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FIG. 1. (Color online) (a),(c) Space-time plots of u(x,) in loga-
rithmic scale, (b),(d) spatially averaged inhibitor concentration i(z)
(shaded), for the Oregonator model Egs. (1). (a), (b) No delayed
feedback. (c), (d) Delayed feedback force F(r) as in Eq. (7) with
K=0.3 and 7=5.25 is applied to the whole medium [see white ver-
tical stripes in (c)]. In (d) the control force F(r) is also plotted
(dashed line, red online).

persists within a certain time interval, A; [25], during which
the perturbation generated by the random input is propagated
across the medium.

The basic time scale of the noise-induced pattern can be
characterized by the mean interspike interval (T};) of i, where
(-) denote the average over all spikes. The more temporally
coherent the pattern is, the more periodically the quantity it
spikes, i.e., the less the 7;’s change from one spike to an-
other. We characterize temporal coherence by the normalized
variance of the interspike intervals

Ry=\{(T; = (T)T). (5)

The smaller the R, the more temporally coherent the oscil-
lations are.

The average duration (A;) of the spikes in u characterizes
the spatial homogeneity (coherence) of the patterns. If the
pattern is close to being spatially homogeneous, at any time
the values of concentration at different points in space are
almost the same. Hence the spatially averaged concentration
will behave almost as the local concentration at a single
point: namely, it will exhibit large, pronounced spikes and
quiescent periods between them. If the pattern is not spatially
homogeneous, the spatially averaged concentration will be-
come a smeared-out version of the concentration at a single
point: the spikes will become lower and wider. The less ho-
mogeneous the pattern is, the wider and lower the spikes are
in . Physically, homogeneity depends on the number of
pulses nucleated in the medium at the same time. The more
pulse pairs are nucleated almost simultaneously, the sooner
they meet and annihilate, the narrower the spikes are in i,
and the smaller is (A;) [22]. Note that (A;) cannot be smaller
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FIG. 2. (a) (Color online) Average interspike time (T;), found
numerically (black circles) and estimated analytically (grey-green
online dashed line). (b) Normalized fluctuation Ry of the interspike
intervals. (c) Mean duration of spikes (A;). Feedback strength is
fixed at K=0.2.

than the duration of a pulse at a single point of the medium.

We now add time-delayed feedback to our system. Be-
cause in experiments with the photosensitive BZ medium the
feedback is realized via the applied illumination, we intro-
duce it into the parameter ¢ which then becomes

P(x,1) = ol 1 + n(x,0)] + F(1), (6)
where

F(t) = KsH(s), s=uv(xqt—7) —v(xp1). (7)

Here H(s) is the Heaviside function (0 for s<<0 and 1 for s
=0), K denotes the feedback strength, 7is the time delay and
xo=L/2=9.6 is the detection point chosen arbitrarily. This
form of the feedback force assures positive values for ¢,
which means that the control force can only suppress the
activity in the system. Note that delayed feedback is nonlin-
ear here. It is important to notice that the feedback signal is
determined from the v field that is actually monitored in real
experiments with the BZ medium.

The effect of delayed feedback on the noise-induced pat-
terns is illustrated in Fig. 1(c). Here, u(x,?) is shown in loga-
rithmic scale by grey shading. White vertical stripes mark the
areas to which the nonzero feedback force was applied with
7=5.25 and K=0.3: these are the areas where the activity is
suppressed by the feedback. Already from the space-time
plots it is clear that the feedback can produce a remarkable
effect on the system: the patterns are noticeably more regular
than without control, the waves arriving at more equal time
intervals. Moreover, it becomes more probable that more
than one wave are initiated almost simultaneously, they col-
lide sooner and thus result in patterns more homogeneous in
space.

In order to gain a deeper insight into the effect of the
feedback, we fix the feedback strength K=0.2 and study how
the variation of the time delay 7 influences the properties of
noise-induced motion.

The three characteristics (T;), Ry and (A;) of this motion
depending on 7are given in Fig. 2. All the quantities display
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FIG. 3. (Color online) Bottom graph: a schematic space-time
plot of noise-induced patterns: black areas indicate the excited state,
grey (green online) areas the refractory state, and hatched areas
indicate where the positive feedback is applied. Top graph: the re-
spective profiles of v(x,) and of feedback force F.

a pronounced oscillatory behavior, with a characteristic time
scale close to the mean interspike interval (T,) =38 without
feedback.

Mean interspike interval (T;). This dependence contains
almost linear segments [Fig. 2(a)], which can be associated
with the entrainment of time scales by delayed feedback as
recently discussed in Refs. [14,15] for systems without spa-
tial degree of freedom. (T;) > (T,) holds for all plotted values
of 7. This is because the feedback force is nonlinear and can
only suppress the activity.

Temporal coherence Ry. Delayed feedback increases the
temporal coherence of the noise induced patterns for 7.55.
Ry has a global minimum at 7=35 [Fig. 2(b)]. Note that this
minimum occurs at a value of 7 close to the refractory period
t. (see Fig. 3).

Spatial coherence (A;). (A;) is less than (A(), which is the
value without feedback control, for all the plotted values of
the feedback delay 7 [Fig. 2(c)]. The feedback increases the
number of simultaneous nucleations of wave pairs, and
hence increases spatial coherence.

An important finding of this work is that the effect of the
delayed feedback in the excitable medium described here is
different from that of a system close to a Hopf bifurcation
where maximal improvement of coherence was obtained for
7 close to the mean period (T}) of oscillations without feed-
back. This difference between excitable and oscillatory sys-
tems was already noted for simple systems without spatial
degrees of freedom in Refs. [14,15]. The behavior found in
the present work is also markedly different from the linear
delayed feedback control of noise-induced patterns in a glo-
bally coupled reaction-diffusion system used to model a
semiconductor nanostructure [26].

We now focus on the mechanisms underlying the behav-
ior of the system under delayed feedback control. Figure 3
sketches the patterns shown in Figs. 1(a) and 1(c). Here for
simplicity we show single nucleations of counterpropagating
pulses. From the steady state (white areas) an excitation
starts (black stripes), followed by a refractory state (grey-
green online areas) which lasts time ¢, for each element of
the medium. When this time has elapsed, each element re-
covers the steady state and can get excited again. The prob-
ability of a new nucleation is then proportional to the portion
of the medium that has recovered the steady state. With the
chosen noise parameters, a new nucleation occurs with prob-
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ability close to unity immediately after the whole medium
has passed the refractory period, but very often this happens
even before the whole medium has fully recovered.

In the presence of feedback force, a positive light signal is
applied globally, 7 time units after the element at x, gets
excited (hatched area in Fig. 3). This force inhibits activity in
the medium resulting in an effective increase of the refrac-
tory period of the medium and thus of 7;. From this it fol-
lows directly that (T;) depends linearly on 7 when 7=ft,.
When the force vanishes, each element of the medium recov-
ers the steady state simultaneously, so at this time the whole
medium can get excited. This maximizes the probability of a
nucleation and makes possible the emergence of highly spa-
tially coherent patterns. Moreover, more than one nucleation
becomes now more probable, which reduces the value of
4.

Notably, if 7'§ t,, the moment when the medium recovers
globally to the steady state does not depend on the shape of
the fronts of the spatiotemporal pattern. Hence the larger the
7, the stronger the positive feedback force is that suppresses
the nucleation, the more effective the inhibition of activity is
before the force vanishes. Therefore the maximal temporal
and spatial coherence is achieved at 7 close to ¢, [compare
the positions of the first minima of R;(7) and of (A;) in Figs.
2(b) and 2(c), respectively].

As 7 gets closer to the mean period (T) without control,
the feedback is applied when the medium can already nucle-
ate. So the force can suppress the activity even before the
pulses meet and annihilate. This turns out to be the situation
with the worst temporal and spatial coherence [see Fig. 2(a)].

When 7=(T,) the situation described for 7=t, is re-
peated, the coherence improves slightly and (7T;) increases.
Moreover, it can be expected that for each successive linear
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segment in the dependence of the mean interspike interval
(T;) on 7 the relationship

(T)) = (1+1t,)n (8)

holds, where 7 is integer and 7,~ 6.2 is the average duration
of the pulse v(xy,?) (excited state duration plus refractory
period, see Fig. 3). As seen from Fig. 2(a), this expression
can be used for quite an accurate estimate of (7;) (grey-green
dashed lines).

Finally, we checked the effect of feedback strength K,
fixing 7 at two characteristic values corresponding to the
maximum and the minimum coherence. It was found that in
both cases, as K grows, the action of the feedback becomes
more prominent. Namely, if at the given value of 7 the feed-
back increases (decreases) some characteristic quantity, the
increase of K leads to the larger increase (decrease) of it.

In conclusion, by modeling a real experimental situation
with a photosensitive BZ medium we have shown that a
nonlinear time-delayed feedback is able to effectively ma-
nipulate the coherence of noise-induced spatiotemporal pat-
terns. By choosing the appropriate time delay, one can delib-
erately increase or decrease both spatial and temporal
coherence and adjust the time scales of the controlled dy-
namics. The same study was repeated using Neumann
boundary conditions, under which the wave is absorbed by
the boundary. The dependences for (T;), Ry, and (A;) match
those in Fig. 2 with high accuracy. An experimental verifi-
cation of the predicted effect of delayed feedback control
remains a challenge for future work.

This work was supported by DFG in the framework of
Stb 555. A.B. also acknowledges the support of EPSRC
(UK).

[1] B. Lindner, J. Garcfa-Ojalvo, A. Neiman, and L. Schimansky-
Geier, Phys. Rep. 392, 321 (2004).

[2]J. Garcia-Ojalvo, A. Herndndez-Machado, and J. M. Sancho,
Phys. Rev. Lett. 71, 1542 (1993).

[3] V. Beato, I. Sendifia-Nadal, I. Gerdes, and H. Engel, Phys.
Rev. E 71, 035204(R) (2005).

[4] S. Alonso, I. Sendifia-Nadal, V. Pérez-Mufiuzuri, J. M. Sancho,
and F. Sagués, Phys. Rev. Lett. 87, 078302 (2001).

[5] S. Kadar, J. Wang, and K. Showalter, Nature (London) 391,
770 (1998).

[6] Y. Zhou and P. Jung, Europhys. Lett. 49, 695 (2000).

[7] S. Coombes and Y. Timofeeva, Phys. Rev. E 68, 021915
(2003).

[8] P. Jung, A. Cornell-Bell, K. S. Madden, and F. Moss, J. Neu-
rophysiol. 79, 1098 (1998).

[9] H. G. Schuster, Handbook of Chaos Control: Foundations and
Applications (Wiley-VCH, New York, 1999).

[10] M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S.
Mikhailov, H. H. Rotermund, and G. Ertl, Science 292, 1357
(2001).

[11] V. S. Zykov, G. Bordiougov, H. Brandtstédter, 1. Gerdes, and
H. Engel, Phys. Rev. Lett. 92, 018304 (2004).

[12] V. S. Zykov and H. Engel, Physica D 199, 243 (2004).

[13] N. Baba, A. Amann, E. Scholl, and W. Just, Phys. Rev. Lett.
89, 074101 (2002).

[14] N. B. Janson, A. G. Balanov, and E. Schéll, Phys. Rev. Lett.
93, 010601 (2004).

[15] A. G. Balanov, N. B. Janson, and E. Schéll, Physica D 199, 1
(2004).

[16] K. Pyragas, Phys. Lett. A 170, 421 (1992).

[17] O. Beck, A. Amann, E. Schdll, J. E. S. Socolar, and W. Just,
Phys. Rev. E 66, 016213 (2002).

[18]J. Unkelbach, A. Amann, W. Just, and E. Schéll, Phys. Rev. E
68, 026204 (2003).

[19] 1. Sendina-Nadal et al., Phys. Rev. Lett. 84, 2734 (2000).

[20] H. J. Krug, L. Pohlmann, and L. Kuhnert, J. Phys. Chem. 94,
4862 (1990).

[21] H. Brandtstidter, M. Braune, 1. Schebesch, and H. Engel,
Chem. Phys. Lett. 323, 145 (2000).

[22] V. Beato and H. Engel, Fluct. Noise Lett. 6, L85 (2006).

[23] V. Beato and H. Engel, Proc. SPIE 5114, 353 (2003).

[24] C. Zhou and J. Kurths, Phys. Rev. E 65, 040101(R) (2002).

[25] The peak duration A is given by the time the mean activator
concentration satisfies the relation #=0.03.

[26] G. Stegemann, A. G. Balanov, and E. Schéll, Phys. Rev. E 73,
016203 (2006).

016214-4



