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Characterization of the domain chaos convection state by the largest Lyapunov exponent
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Using numerical integrations of the Boussinesq equations in rotating cylindrical domains with realistic
boundary conditions, we have computed the value of the largest Lyapunov exponent \; for a variety of aspect
ratios and driving strengths. We study in particular the domain chaos state, which bifurcates supercritically
from the conducting fluid state and involves extended propagating fronts as well as point defects. We compare
our results with those from Egolf et al., [Nature 404, 733 (2000)], who suggested that the value of \; for the
spiral defect chaos state of a convecting fluid was determined primarily by bursts of instability arising from
short-lived, spatially localized dislocation nucleation events. We also show that the quantity A, is not intensive
for aspect ratios I' over the range 20 <I"<40 and that the scaling exponent of \| near onset is consistent with
the value predicted by the amplitude equation formalism.
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I. INTRODUCTION

Spatiotemporal chaotic states remain poorly understood
despite their widespread occurrence in experimental sus-
tained nonequilibrium systems and in mathematical models
of such systems [1-3]. Researchers do not know how to pre-
dict the parameter values for which spatiotemporal chaos oc-
curs, the way a spatiotemporal chaotic state changes as some
parameter is varied, and the values of physically significant
quantities such as transport coefficients of matter and energy
[4]. Also poorly understood is how the chaotic temporal be-
havior is related to the spatial disorder and whether knowl-
edge of, say, the spatial structure may suffice to make pre-
dictions about the temporal dynamics.

In a recent paper [5], Egolf et al. used numerical simula-
tions to study some of these questions in the context of the
spiral defect chaos (SDC) state of an incompressible con-
vecting fluid. Spiral defect chaos is one of the more thor-
oughly investigated spatiotemporal chaotic states by experi-
mentalists [6-12] and has also been studied by many
theorists [13-20]. One of the several interesting results re-
ported in the Egolf et al. paper was that the value of the
largest Lyapunov exponent \; seemed to be determined
mainly by short-lived, spatially localized dislocation nucle-
ation events. This observation suggests a quantitative con-
nection between the strength of the chaotic behavior as mea-
sured by A\; and certain isolated spatial features of the fluid
flow.

In this paper, we investigate the generality of this result
by using numerical simulations to study the domain chaos
state of an incompressible rotating convecting fluid with ex-
perimentally realistic boundary conditions. In contrast, the
simulations by Egolf ef al. studied the SDC case and used
periodic boundary conditions. We do not find a simple rela-
tion between defect statistics and A, contrary to the SDC
results of Egolf et al.
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Domain chaos is a spatiotemporal chaotic state that has
also been studied by experimentalists [21-25] and by theo-
rists [26-31] and that has two features of special interest.
First, domain chaos is one of the few experimentally known
spatiotemporal chaotic states that bifurcates supercritically
from a time-independent, spatially uniform state (here the
motionless conducting state of the fluid). Supercritical bifur-
cations to chaos from simple spatial states provide important
opportunities for theoretical progress because controlled ex-
pansions can be performed in the small parameter € that
measures the closeness to the onset of instability of the uni-
form state. Because the bifurcation to domain chaos is super-
critical, we further expect that as e— 0%, certain quantities
that characterize the temporal and spatial properties of the
domain chaos state should scale as power laws in € with
corresponding critical exponents «. Possible relations be-
tween the temporal and spatial properties of a spatiotemporal
chaotic state can then be tested quantitatively by comparing
their critical exponents. Critical exponents are especially in-
teresting to determine for dynamical invariants such as the
largest Lyapunov exponent A; [5,32-36] and the Lyapunov
fractal dimension D [3,5,37-40] because the critical expo-
nents observed experimentally for the correlation time and
correlation length (derived from two-point correlation func-
tions) do not agree with the values predicted by the ampli-
tude equation formalism [21,26,27,30,31]. This discrepancy
is arguably one of the more important problems to under-
stand in nonequilibrium physics because there are so few
quantitative theoretical predictions concerning spatiotempo-
ral chaos.

A second useful feature of domain chaos is that at least
two kinds of topological defects occur in the convection roll
pattern: localized defects consisting of dislocations or clus-
ters of dislocations, and extended defects in the form of
propagating fronts that separate a patch of rolls with one
orientation from a neighboring patch of rolls with a different
orientation. We note that although there are extended spirals
in spiral defect chaos, these can be considered as driven by
the interaction of two point defects, a focus and a disloca-
tion, and so should not act as an extended defect [14]. The

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.74.016209

JAYARAMAN et al.

presence of extended defects in domain chaos raises the pos-
sibility that the strength of the chaos as defined by the expo-
nent \; may not be understood simply in terms of defect
events because the dynamics no longer consists of spatially
and temporally localized fluid structures.

We also summarize calculations that explore how the ex-
ponent \; scales near the onset of convection and how it
varies with the aspect ratio I'. We show in Sec. III B that the
exponent \; varies linearly with €, a result that is consistent
with the amplitude equation formalism. In Sec. III C, we also
show that the exponent \; does not act as an intensive quan-
tity because it increases with I" over the range 20<1"=<40.
This result is surprising because general arguments [3] sug-
gest that \; should be intensive and hence independent of the
shape or size of a sufficiently large nonequilibrium system.

The rest of this paper is organized as follows. In Sec. II,
we define the largest Lyapunov exponent A and the instan-
taneous Lyapunov exponent A\ and provide some details
about our numerical methods. In Sec. III, we discuss our
results: we compare spatial structure with A" and examine
how A, scales near onset and varies with aspect ratio. In Sec.
IV, we summarize the important points and relate them to
recent work.

II. METHODS

In this section, we discuss the definitions, equations, and
numerical algorithms used to obtain the results discussed in
Sec. III.

A. The instantaneous largest Lyapunov exponent )\iI“St
and the largest Lyapunov exponent A\

Chaotic behavior is often characterized by dynamical in-
variants [41] because these quantities in principle do not de-
pend on the choice of observable. Two dynamical invariants,
the largest Lyapunov exponent \; and the Lyapunov fractal
dimension D, have been especially used to characterize the
temporal dynamics of a spatiotemporal chaotic state. We dis-
cuss these briefly in turn.

The largest Lyapunov exponent \; is the dynamical in-
variant most easily and accurately estimated from experi-
mental time series [42], and its inverse )\Il is widely identi-
fied as the time scale beyond which accurate predictions of a
chaotic system cannot be made. We note that there are
subtleties regarding the physical interpretation and relevance
of the exponent A\ for spatially extended systems, since these
large systems have many positive Lyapunov exponents so
that there is no longer a distinguished time scale of instabil-
ity. One also must keep in mind that the Lyapunov exponents
characterize the growth of infinitesimal perturbations, while
physical systems are often subject to perturbations of a finite
and perhaps sizable magnitude [43].

The Lyapunov fractal dimension D, basically counts the
number of active degrees of freedom and hence is a useful
measure of dynamical complexity [41]. (It has been conjec-
tured for some systems to be the same as the information
dimension D;.) This dimension D, is important for spa-
tiotemporal chaos because it is the only fractal dimension
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whose value can be estimated for high-dimensional, spatially
extended dynamical systems. Even then, this is possible only
if evolution equations and their linearization about some cha-
otic orbit are explicitly known [44]. Tt is still not known how
to estimate the quantity D, from time series [45], so its prop-
erties for experimental systems are known only indirectly by
numerical integrations of quantitatively accurate evolution
equations. Because of the great computational expense to
compute D, in this paper we study only the exponent \; and
its instantaneous version N

For a flow dy/dt=F(y) where y and F are N-dimensional
vectors, the largest Lyapunov exponent \; is defined by the
following limit [44]:

1 lléy(t)ll)
)‘“}merln<||5y(o)ll ’ v

provided that this limit exists. Here the N-dimensional vector
Oy(1) satisfies the linearized evolution equation

d oy
—=J(y(?)) - dy, 2
I (y(1) - oy 2)
with Jacobian J=6F/d8y and initial value dy(0). The orbit
y(7) defines some attractor of interest.
To study how \; varies over short intervals of time, we

define an instantaneous largest Lyapunov exponent N\™\(t) by
[46]

a0l “
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For numerical integrations of the flow and of its linearization
Eq. (2), the derivative in Eq. (3) can be approximated by a
finite difference over a time interval AT that is usually some-
what larger than the constant integration step Af, so that
N*(t) measures the rate at which two nearby states diverge
over the times ¢ and r+AT. The average of N™() over all
time gives the largest Lyapunov exponent A ;.

The above definition of N allows us to study short time
contributions to the Lyapunov exponent. One can, however,
define other quantities that also provide related short-time
information. Since in chaotic systems |8y (z)| grows on aver-
age exponentially with a rate A, a local exponent )\11°° can be
defined as

g d
0= ln<

loc/\ ||5Y(t)|| )
N "I“<||5y<o>|| M @

This quantity shows the local deviations from the average
exponential rate. Note that \; needs to be computed by a
separate calculation first. The three quantities are related in
the following manner:

: d
NS0 =N + Ex{“(:). (5)

We will define one more quantity, one that is more fun-
damental than the others:
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The other Lyapunov diagnostic quantities in Egs. (1), (3),
and (4) can be found from (6).

The quantities in Egs. (3), (4), and (6) will fluctuate along
a given chaotic orbit. For small-dimensional systems, say
D <5, researchers have studied how short-time exponents
vary along the orbit [47,48], how the distribution of the ex-
ponents can be used to characterize the orbit [49], and how
the distributions converge to the infinite-time limit [50].
However, it remains poorly understood which details of these
papers extend to high-dimensional spatially extended sys-
tems (for example, the spiral defect chaos state in a periodic
domain of aspect ratio 64 was estimated to have a Lyapunov
fractal dimension of 80 [5]).

To gain some intuition about the instantaneous largest ex-
ponent A" and the local exponent N\ in a simpler context
than the Boussinesq equations, we show their behavior for a
low-dimensional chaotic attractor of the Lorenz equations

i=o(y—-x), y=rx—-y-xz, z=—-bz+xy, (7)

for the parameter values o=16, b=4, and r=45.92. (These
values were chosen to agree with those used in Ref. [51], for
which other properties of this chaotic attractor have been
calculated.) We integrated Eqgs. (7) and their linearizations
about the chaotic orbit using a standard fourth-order Runge-
Kutta scheme with constant time step Ar= 1073 and used Egs.
(1), (3), and (4) to estimate \;, A", and \!°¢, respectively. A
time interval of AT=4At¢ was used when approximating Eq.
(3) with a finite difference. Figure 1(a) shows how the quan-
tity A; converges noisily to its infinite time value \; = 1.50 as
the integration time 7 increases, while Figure 1(b) shows
how the instantaneous exponent \|™' varies over the same
time range. The dynamics is not uniformly chaotic, and local

values can deviate substantially from the mean value \;
~1.50. Figure 2 shows the relationship between \I™' (dotted
line) and )\IOC (solid line). Note that the regions Where )\IOC i
increasing are correlated with the regions where )\"“t is posi-
tive, as is expected because N\™" is related to the derlvatlve of
)\1‘” as in Eq. (5).

In this paper, we will not use )\ for the analysis because
At directly allows us to pmpomt the events that provide a
maxunal contribution to \;. The quantity AI™" also has a
practical advantage in that it can be computed for short in-
tervals even without the knowledge of the long time average
N

We note, however, that the value of a high peak in A}™ is
not by itself necessarily significant because it is the area
under the peak that contributes toward \;. Hence, significant
dynamical events may be more apparent in the plot of the
quantity S, defined in (6). The quantities A" and S, are
compared in Fig. 6. A

For the Lorenz equations, local maxima of A" corre-
spond to specific regions in phase space, as indicated by the
thick dots in Fig. 3. These are the most unstable regions of
this attractor. It is precisely this kind of relationship between
phase space dynamics and strength of the chaos that we seek
for the rotating convection system.
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FIG. 1. (a) Convergence of the largest Lyapunov exponent, Eq.
(1), to its asymptotic value \;= 1.5 for a chaotic attractor of the
Lorenz equations, Eq. (7), for parameters o=16, b=4, and r
=45.92. (b) The evolution of the instantaneous largest Lyapunov
exponent \™, Eq. (3), for the same chaotic attractor. The chaos
varies substantially in strength over the orbit. The dashed line indi-
cates the asymptotic value of A;=~1.5.

B. Numerical integration of the 3D Boussinesq equations
with rotation

In this section, we briefly describe how we used a parallel
spectral element method to integrate the three-dimensional
Boussinesq equations in large cylindrical domains with
boundary conditions close to those of actual experiments
[21].

Spatiotemporal chaos is perhaps most cleanly studied in
large, homogeneous cells (to reduce the influence of lateral
walls and to approximate the translation invariance that sim-

Exponents

65 615 70 725 75
time

FIG. 2. The instantaneous Lyapunov )\ilns‘ (dotted line) is plotted

along with the local Lyapunov exponent )\11°° (solid line) for the

Lorenz Egs. (7) for the parameter values o=16, b=4, and r
=45.92.
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FIG. 3. (Color online) The Lorenz attractor is shown for Egs. (7)
with the parameters o=16, b=4, and r=45.92. The most chaotic
region of the attractor, where the quantity )\iln“ has a local maximum
larger than 5\, are indicated by the cluster of dots.

plifies theory), over large times (to obtain nontransient be-
havior and good statistics), and close to onset (so that ana-
lytical progress may be possible). This is a difficult regime to
simulate a nonequilibrium system quantitatively because
many spatial modes are then needed to represent the spatial
fields, many integration steps are needed to explore long
times, and critical slowing means that even more time steps
are needed.

The Boussinesq equations in a rotating Rayleigh-Bénard
convection cell are

dqu
o +u-Vu=-Vp+oViu+Ro(T-Tyz-2007 X u,

(®)
JT
— +u- V7=V, 9)
P
V-u=0. (10)

Here u(t,x,y,z)=(u,uy,u;) is the fluid velocity field,
T(t,x,y,z) is the fluid temperature field, and p(¢,x,y,z) is
the fluid pressure field. The x and y coordinates lie in the
horizontal plane, and z lies in the vertical direction, with the
gravitational acceleration in the —Z direction. The field T(z)
is the linearly conducting temperature profile in the absence
of convection (u=0). The equations and parameters have
been nondimensionalized in the usual way [52] by using the
cell height d as the length scale; the thermal vertical diffu-
sion time Tv=d2/ Kk as the time scale, where « is the fluid
thermal diffusivity; and AT, the temperature difference be-
tween the top and bottom plate, as the temperature scale. The
parameters then are (i) the Prandtl number o=v/k, where v
is the kinematic viscosity, (ii) the Rayleigh number R
=agATd?/ kv, where « is the thermal expansion coefficient
and g is the acceleration of gravity, and (iii) the angular
velocity ) in the Z direction (the cylindrical cells are hori-
zontal and rotate about their centers). We use the reduced
Rayleigh number
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FIG. 4. (a) The evolution of the root-mean-square velocity Vi,
of a domain chaos state in a cylinder of aspect ratio 20 for param-
eters R=2500, 0=0.93, and Q=15. (b) Mean square velocity {(V?)
versus R for the same parameters as in panel (a). The dotted line
shows a best fit of the data, which yielded the value R.~2117.
Linear stability theory for an infinite aspect ratio rotating cell pre-
dicts the onset value R.=2110.5.

_ R- RC(F)

=R (1)

to denote the closeness to the onset of convection, where
R.(I") is the empirical onset of convection in a finite aspect
ratio system, as determined by extrapolating the amplitudes
of the nonlinear states just above onset to zero amplitude
(see Fig. 4). For convection, R (I')=R() < I~ for I'>5, so
the finite aspect ratio value R.(I") approaches the infinite
aspect ratio value rather rapidly.

The Boussinesq equations were solved with no-slip
boundary conditions u=0 on all walls of a cylindrical do-
main of aspect ratio I'=L/d, where L is the radius of the
cylinder. The temperature field T took on specified constant
values on the bottom and top plates [T(z=0)=1 and T(z
=1)=0], and we used conducting lateral boundary conditions
T=Ty(z) on the sidewalls, to approximate reasonably well
the experimental lateral conditions [53]. No boundary condi-
tion was needed for the pressure p because that field does not
satisfy a dynamical equation but instead is a Lagrange mul-
tiplier that adjusts its value instantly at each time step so that
the fluid remains incompressible.

The simulations of the full Boussinesq equations and the
corresponding linearized equations were carried out by using
an optimized parallel spectral element code called nek5000,
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which was developed by Tufo and Fischer [54]. The spectral
element method provides an efficient high-order representa-
tion of spatial differential operators and can treat computa-
tional domains with complex geometric shapes and almost
arbitrary boundary conditions with high accuracy. In the con-
vection simulations discussed below, each computational do-
main was divided into topologically cubic elements of ap-
proximately equal size and unit volume (where the unit of
length is the depth of the fluid). Within each element, the
velocity, pressure, and temperature fields and their deriva-
tives were represented as tensor products of 10th- or 12th-
order polynomials, corresponding to about 11 to 13 mesh
points per half-roll in each direction. The integrations were
carried out on a variety of parallel computers and used from
32 to 512 processors at a time. The aspect ratio 20 cells took
typically 80 hours on 128 nodes of the Blue Horizon ma-
chine at SDSC to span one horizontal diffusion time I"%.

A second-order semi-implicit time-integration scheme
was used to evolve the solutions [55,56]. A constant time
step Ar was chosen for each calculation that was just smaller
than the largest value consistent with the Courant-Friedrichs-
Levy (CFL) condition for numerical stability of the advec-
tion terms (which are advanced explicitly and so determine
the smallest upper bound on the step size). The constant time
step had different values for different choices of Rayleigh
number R and angular speed () and were typically in the
range of 0.001-0.005 vertical thermal diffusion times, so
50 000 or more total time steps were needed per simulation
to study dynamics of order one horizontal diffusion time or
longer. The fact that the largest time step is bounded by a
CFL condition that depends on the magnitude of the velocity
field but not on the time scale of the dynamics (e.g., the CFL
condition holds even for time-independent convection) is a
well-known weakness of semi-implicit time-integration algo-
rithms for fluid codes. Despite a recent effort to find more
efficient algorithms that choose a larger time step consistent
with the physical time scale [57], semi-implicit integration
schemes remain the most efficient choice for the spectral-
element method.

This code has been used in several recent calculations
[4,20,31,56,58—60] and has been validated in several ways
for a range of spatial and temporal resolutions and for a
range of physical parameters. As one example, for the space-
time resolutions used in this paper and for the parameter
values I'=20, 0=0.93, and (=15, we were able to repro-
duce to within 0.3% the critical Rayleigh number R_.({))
=2110.5 predicted by linear stability theory [61] in an infi-
nite aspect ratio rotating cell, by extrapolating the RMS ve-
locity of nontransient domain chaos states near onset to zero
velocity in a I'=20 cell (see Fig. 4). The fact that our ex-
trapolated value R.~2117 is slightly larger than the theoret-
ical result is likely a consequence of the finite aspect ratio
rather than insufficient space-time resolutions, since the error
becomes smaller with increasing aspect ratio for a fixed spa-
tial resolution per unit length.

C. Calculation of the exponents A, and A

In order to compute the largest Lyapunov exponent A and
the instantaneous exponent \}*, the Boussinesq equations
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(8)-(10) and their versions linearized about a given orbit
were integrated with a constant time step as described above.
The perturbation vector 8y=(du, 8T), consisting of the three
components of the linearized, nondimensional velocity field
and of the linearized, nondimensional temperature field, was
then used in the definitions (1) and (3) to estimate the values
of the exponents \; and N™(#). One of two Euclidean norms
over the interior volume V was used in the definitions:

6yl = \/1 f (502 + STV)dV. (12)
V \%

1
oyl = \/‘—J (R.6u° + oR26T)dV. (13)
\4

The first norm is conventional, and the second is the one
used by Cross [62] in his analytical work on the Boussinesq
equations. The latter has the advantage that the temperature
perturbation term oR?>6T7 is then of the same order of mag-
nitude as the velocity perturbation term R éu®. Both norms
eventually converge to the same A;, but the second norm
tends to converge faster.

Since the perturbation field is expected to grow exponen-
tially fast in a chaotic system, we rescale its norm to unity
every 20 time steps (typical time steps are from 0.001-0.005
vertical diffusion times) in order to keep the derivatives of
various fields of order unity. Since the evolution equation for
the perturbation is linear, this rescaling does not affect the
dynamics. Serendipitously, the running sum of the logarithm
of the norm used to rescale the perturbation gives us S, (6),
which can then be used to compute \; and \™ from Egs. (1)
and (3), respectively. '

The calculations of the exponents \; and \™" were vali-
dated in several ways. For example, simulations of a noncha-
otic convecting flow confirmed that both exponents con-
verged to a negative value for the leading Lyapunov
exponent. The value of the Lyapunov exponent so obtained
was explicitly checked by performing two full nonlinear
simulations with slightly differing initial conditions. The dif-
ference in the velocity and temperature fields from those two
simulations was found to decay exponentially with an expo-
nent close to that of the leading Lyapunov exponent. Such a
calculation was also repeated for the chaotic case. Results
from the linearized code matched those obtained from two
nonlinear codes with slightly differing initial conditions. We
also repeated the calculations of Egolf ef al. [5] on a periodic
cell of aspect ratio I'=64 with =0, o=1, N=4096 spectral
elements, and time step Ar=2 X 107> Figure 5(a) shows the
evolution of \™ using our code for the SDC state. The re-
sults agree qualitatively with the results of Egolf et al. [63].
This is a strong confirmation of the correctness of our code,
since our code is significantly different from the Egolf et al.
spectral code.

III. RESULTS AND DISCUSSION

In this section, we discuss the relation between the instan-
taneous largest Lyapunov exponent \™ and the spatial struc-
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FIG. 5. (a) Evolution of the instantaneous largest Lyapunov ex-
ponent \™(z) for the spiral-defect chaotic state inside a periodic
square cell of aspect ratio 64, for parameter values R=3100, o=1,
and Q=0. The average value of A" yields the estimate \;=~0.18,
confirming the chaotic nature of this state. (b) The spatial pattern in
the midplane Z-velocity field u,(¢,x,y,z=1/2). Spiral defects are
starting to form in the central third vertical region.

ture of the domain chaos state in rotating convecting cells.
We also discuss how the largest Lyapunov exponent A,
scales near onset and how it varies with the aspect ratio I'.
The convection cells in all our simulations had no-slip walls
with conducting lateral thermal boundary conditions.

A. Relation of the exponent Ai"™'(r) to defect dynamics

We carried out simulations on a rotating cylinder with
aspect ratios in the range 10<<I'<<40, Prandtl number o
=0.93, and angular speeds =15 and 17.6, while varying the
Rayleigh number over the range 2275<<R<3000. Linear
theory predicts that the Kiippers-Lortz instability [64] for
rotating time-independent parallel nonlinear rolls occurs for
rotation rates .= 13 [65], so our values of Q=15 and 17.6
are slightly beyond the onset of the Kiippers-Lortz instabil-
ity. Figure 4 shows that the empirical critical number is R,
~2117 for the aspect ratio I'=20.

For the reduced Rayleigh number €=0.012 [see Eq. (11)]
and for a domain chaos state, Fig. 6 shows how S, and hence
the largest Lyapunov exponent \; (whose value varies with
the total integration time 7 as it converges toward its infinite
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FIG. 6. (a) Evolution of S, (6) as a function of time ¢, for a
domain chaos state for the parameters I'=40, R=2275 (€=0.012),
0=0.93, and (=17.6. The convergence to the infinite time limit is
slow and noisy. The slope of the dotted line gives a Lyapunov
exponent of 0.011. (b) Corresponding instantaneous largest
Lyapunov exponent \™() at time ¢ during the same time period as
panel (a). The dashed line is the average value of )\iI“St(t)=O.012,
which is almost the same as \;.

time limit) as well as the instantaneous Lyapunov exponent
A1), Eq. (3), change with time. Figure 6(a) shows that \,
converges slowly with large fluctuations toward its limit of
N;=0.011; this slow, noisy convergence is typical for high-
dimensional chaotic systems [compare Fig. 1(a)] and is one
reason A\; can be difficult to estimate accurately. The corre-
sponding instantaneous exponent in Fig. 6(b) looks similar to
the curve obtained in Fig. 5(a) for spiral defect chaos. There
are large, brief, positive fluctuations so that the overall dy-
namics is chaotic. There are also brief intervals when the
quantity ™ becomes negative, corresponding to tempo-
rarily increased stability of the dynamics.

The spatial structure that occurs close in time to the peaks
of N/™ can be related to defect creation events. However,
different defects have different effects on \*'(z), and the
situation is less clear than what was observed for spiral de-
fect chaos [5]. Some defects have no effect at all on the
leading A\*'(), as can be seen by looking at the tangent
space of the evolution.

Figure 7 shows the evolution of the z-component of the
velocity field, u,(t,x,y,z=1/2), close in time to the peak in
N™(#) that occurs at =110 in Fig. 8 for the following pa-
rameters, I'=20, R=2800 (€=0.33), 0=0.93. The dynamics
in the tangent space is visualized by plotting the linearized
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FIG. 7. (a) Evolution of the instantaneous largest Lyapunov eigenvector associated with )\ilnSt for a domain chaos state in a rotating
cylinder for parameters I'=20, €=0.33, 0=0.93, and ()=15. Panels (a), (b), and (c) show the evolution of the midplane z component of the
velocity uz(t,x,y,1/2) at times =109.59, t=110.15, and #=110.71. This evolution occurs near the time at which there is a peak in the
short-time Lyapunov exponent graph (Fig. 8). The panel (d) is a visual guide; it is a reproduction of panel (a) with the two black ellipses
indicating where two defects occur. Panel (e) is a density plot of the linearized field du., the tangent space for the field u. at time ¢

=110.15.

field Su (f,x,y,z=1/2). Figure 7(e) shows this evolution.
The lighter and darker regions indicate where the largest
growth of the tangent space vectors occurs and so reveal the
spatial structures that make the biggest contributions to the
largest Lyapunov exponent.

The tangent space density plot [Fig. 7(e)] shows that the
peak in the instantaneous exponent A*'(r) at time T
=110.15 arises from the defect dynamics in the top left-hand
corner of the cell. However, the defect structures developing
in the top right-hand corner of the cell do not contribute

substantially to the Lyapunov eigenvector. After studying nu-
merous such spatial fields, we generally find that not all de-
fect structures contribute equally to the eigenvector associ-
ated with the largest Lyapunov exponent. Possible reasons
include the following: (1) the largest Lyapunov eigenvector
is not along the instantaneous fastest stretching direction but
has some memory of previous stretching; (2) in a large sys-
tem, successive largest Lyapunov eigenvalues are close, and
the defects that do not appear in the eigenvector spatial field
associated with the largest exponent might be picked up by
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FIG. 8. Instantaneous largest Lyapunov exponent }\ilnS‘(t) as a
function of time ¢, for a domain chaos state with I'=20, R=2800
(€=0.33), 0=0.93. The corresponding spatial fields near the peak
that occurs at =110 are shown in Fig. 7.

the other eigenvectors; and (3) although at large enough
times the tangent space vector is expected to converge to the
eigenvector for the largest Lyapunov exponent, the time for
this to happen is not known and may well be long in a large
system. Hence, for a different set of perturbation initial con-
ditions, we may find the defect on the top right-hand corner
contributing more substantially. We plan on investigating
these issues in more detail.

It is useful to contrast the behavior of Fig. 7(e) with re-
sults calculated by Chaté [36] of Lyapunov vectors associ-
ated with one-dimensional spatiotemporal intermittency.
Chaté found that the largest Lyapunov vector was highly
spatially localized along turbulent patches [compare panels
(a) and (b) of Fig. 1 of Ref. [36]], although a similar issue
compared to our domain chaos calculation arises in that
Chatés largest Lyapunov vector [his Fig. 1(b)] does not fol-
low closely all the chaotic regions observed in his Fig. 1(a)
[e.g., the chaotic patches on the far right-hand side of his Fig.
1(a) do not show up in his Fig. 1(b)] and we still do not
understand under what conditions the spatial structure of the
largest Lyapunov vector reflects the spatial structure of the
chaotic state. Another difference is that the largest Lyapunov
exponent \; for one-dimensional (1D) spatiotemporal inter-
mittency approaches a positive constant in the limit of ap-
proaching the onset of intermittency from above, while the
exponent vanishes near the onset of domain chaos. Unlike
spatiotemporal intermittency, domain chaos cannot be under-
stood as a spatial union of laminar patches mixed with cha-
otic patches. Neither the extended defects (domain walls) nor
the localized dislocations are intrinsically chaotic in their
motion, it is their coupling to each other, and possibly driv-
ing by the lateral walls, that causes sustained chaotic dynam-
ics. A more detailed study of the first 10 or more Lyapunov
vectors along the lines of Ref. [36] and how they are local-
ized would likely give a better insight into the domain chaos,
but goes beyond the intent of this paper. ‘

We also studied the correlations between \|™ and another
diagnostic quantity, the reduced Nusselt number N. The Nus-
selt number is defined as the ratio of the total heat trans-
ported across the cell in the vertical direction divided by the
heat transported via conduction only. Hence, if the Nusselt
number is 1, there is only conduction, and if the Nusselt
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FIG. 9. (a) Reduced Nusselt number N (thick curve) and instan-
taneous Lyapunov exponent ™" (thin curve) as a function of time
for the following parameters: I'=40, 0=0.93, =17.6, R=2275
(e=0.012). Note that the mean was subtracted from each of the
dependent quantities, and their amplitudes have been rescaled for
ease of comparison. (b) Correlation function between the reduced
Nusselt number N and the instantaneous Lyapunov exponent )\iln“.

number is greater than 1, there is convection as well. To
allow for a simpler comparison, we studied the reduced Nus-
selt number N; this is the Nusselt number —1, which goes
through zero at the onset of convection.

The reduced Nusselt number is a positive constant for a
system of purely straight parallel rolls in its steady state, and
it changes when the dynamics changes [66]. For example,
when a dislocation is created, the quantity N dips below its
straight parallel roll value, since a system with a dislocation
is a less efficient transporter of heat across the cell in the
vertical direction. Conversely, if a dislocation is annihilated,
N will rise. Other changes, such as a local change in wave
number or domain wall formation, will also cause changes in
N. Since we are currently unable to use the Nusselt number
to distinguish between dislocation creation/annihilation and
other changes to the pattern, we will simply use the term
“dynamical event” for any deviation from a straight parallel
roll structure. Changes in N correspond to dynamical events,
and larger values of N indicate regions of more order and
vice versa. ‘

We computed the correlation function between N and \}™
as shown in Fig. 9 for I'=40, 0=0.93, (=17.6, and R
=2275. We see that N is partially anticorrelated with ™"
The largest negative value in the correlation function occurs
for close to zero time delay. We found this for other R values
as well. '

It makes sense that N is anticorrelated with N\ because
N™ peaks when the system becomes more disordered,
whereas an increase in disorder is associated with a dip in N.
This anticorrelation indicates that dynamical events contrib-
ute to )\‘1““, including but not exclusively, the dislocation-
nucleation events. This has also been seen in systems with
smaller aspect ratio [67]. We note that while the value of the
anticorrelation near zero lag in Fig. 9 is significant, it is not
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FIG. 10. (a) Defect density p, (thick curve) and instantaneous
Lyapunov exponent )\iI“St (thin curve) as a function of time for the
following parameters: I'=40, ¢=0.93, Q=17.6, R=2275 (e
=0.012). Note that the mean was subtracted from each of the de-
pendent quantities, and their amplitudes were independently res-
caled for ease of comparison. (b) Correlation function between the
defect density p, and the instantaneous Lyapunov exponent )\il"“.

perfect, indicating that other factors may contribute to
changes in \™ that cannot be detected by looking at N.
Because the Nusselt number N is anticorrelated with N|™
and N is itself related to the pattern of defects, we also stud-
ied directly the correlation between \™' and the defect den-
sity p, for the parameter values I'=40, 0=0.93, Q=17.6, and
R=2275. We computed an area of the flow associated with
defects as described in Ref. [68], by identifying regions of
large local curvature in the computed local unit wave vector.
The defect density p,; was then calculated as the ratio of the
total area of defects to the total area of the cell. We then
computed the correlation function between p; and A\ as
shown in Fig. 10. We see that p, is partially correlated with
A since there is a relatively large peak near zero time
delay. However, the correlation is not perfect. Figure 10(b)
provides quantitative evidence of our previously qualitative
observation that some, but not all, defects contribute to NI
Just as with the Nusselt number N, our method of counting
defects is unable to distinguish between dislocations and do-
main walls, so we were unable to compare and contrast the
correlations between ™ and specific types of defects.

B. Scaling of the largest Lyapunov exponent \; near onset

The domain chaos state in the rotating convection system
emerges continuously from a homogeneous state. To the ex-
tent that the dynamics is described by the amplitude equation
formalism, we then expect the Lyapunov exponent \; to go
continuously to zero as onset is approached. The amplitude
equation formalism predicts that, sufficiently close to onset,
all time scales and so \; should scale with € with a scaling
exponent of —1 [27,30]. In this section, we test this predic-
tion using our spectral element code to simulate large rotat-
ing convecting flows near onset.

PHYSICAL REVIEW E 74, 016209 (2006)

T ] T T T T T

2 OBr — R=3000]

2 ]

2

j=9

3

° 02 .

=]

=)

= 4

(o

<

ey

2 0151 .

E

Z ]

E

oo i
H ' | L L ' 1 L | I L B
40 60 80 100 120 140

time

FIG. 11. Convergence of the largest Lyapunov exponent \(z)
toward its asymptotic value for an aspect ratio '=10 system (e
=0.39, Q=15, and 0=0.93).

A serious problem when computing Lyapunov exponents,
especially for systems with many degrees of freedom, is that
the convergence is slow. It has been conjectured that these
systems converge to their asymptotic values as ¢, and nu-
merical experiments in finite-dimensional systems have
found values of a between 0.5 and 1 depending on the nature
of the system [51]. Typical convergence behavior of the lead-
ing Lyapunov exponent in the I'=10 system is shown in Fig.
11. The convergence is slower for I'=20 and 40. As we ap-
proach onset, it could take up to 500 to 1000 vertical diffu-
sion times to obtain a reliable value for \; leading to costly
calculations. To overcome this issue, we computed \; for
I'=20 systems by running three separate simulations with
different initial conditions and then averaging the Lyapunov
exponent estimates from those simulations. For the I'=40
case, we simply ran each simulation out to at least 800 ver-
tical diffusion times.

Figure 12 shows that \; approaches zero linearly as we
approach onset for each aspect ratio. We note that the best-fit
line shows that A\; reaches zero at a nonzero value of ¢,
which decreases with aspect ratio. The x intercept is 0.03 for
I'=10,20 and decreases to 0.007 for I'=40. This indicates
that the linear scaling is not valid close to onset for smaller
aspect ratios.

We performed a linear fit to the data from Fig. 12(b) on a
log-log plot. The slope of this line also gives us the scaling
with e. We found the slope to be 1.1, in good agreement with
a linear dependence of \; on €.

C. The dependence of the Lyapunov exponent A,
on aspect ratio

The rigid lateral walls of the convection cell impose
strong restrictions on the dynamics inside the cell, since the
fluid velocity is forced to be zero at the cell wall. Another
related effect of the rigid boundary is that the rolls are forced
to intersect the wall transversely. This restriction implies that
the strength of chaos in the cell depends on the surface to
volume ratio for moderate values of I'. Figure 13 confirms
this dependence. For a given €, the dynamics in the larger
aspect ratio cell has higher value of \;. One would expect
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FIG. 12. (Color online) Largest Lyapunov exponent \; vs the
reduced Rayleigh number e for aspect ratios I'=10 and 20 in (a)
and aspect ratio I'=40 in (b). The solid lines are linear-least-squares
fits to calculated points and intercept the e axis at the value e
=0.03 for (a) and €=0.007 for (b). The slopes of the fitted lines are
0.45, 0.63, and 1.21 for I'=10, 20, and 40, respectively. The
amplitude-equation formalism predicts a linear scaling for the vari-
ous time scales with respect to € [26].

that for very large aspect ratio cells the boundary effects
would be minimal and hence \; would not show an aspect
ratio dependence. We do not see any flattening of the curve
for 20<I'<<40. We note that this aspect ratio dependence
does appear to flatten out as I' becomes smaller (compare
I'=20 to I'=10). For small aspect ratio systems, the bound-
ary more completely dominates the dynamics.

Given that the dependence of A\ in Fig. 13 is contrary to
that expected of an intensive quantity in a large-aspect-ratio
cell, we also examined how the standard deviation o (root-
mean-square time average) of \™ depended on I'. This too
had a surprising dependence as shown in Fig. 14, in that o
decreases with increasing aspect ratio. This indicates that the
fluctuations in A" get smaller with aspect ratio.

IV. CONCLUSIONS

For the first time, we have computed the largest Lyapunov
exponent \; and its behavior near onset for the domain chaos
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FIG. 13. The largest Lyapunov exponent A; versus the aspect
ratio I" for the domain chaos state of a convecting fluid in a rotating
cylindrical cell with conducting lateral walls. The approximately
linear dependence (for 20<I'<40) shows that the exponent \;
does not act as an intensive quantity, which would be expected for
localized sources of chaos. For these runs, the Rayleigh number,
rotation rate, and Prandtl number had the values R=2400 (e
=0.064), Q=17.6, and ¢=0.93.

state of a convecting fluid with experimentally realistic
boundary conditions. We have shown that A\, scales linearly
with respect to €, in agreement with the predictions of am-
plitude equation theory that time scales near onset should
diverge as €!. This result is in disagreement with experi-
ments, which find a smaller exponent. We do, however, find
that the linear scaling of \; does not extend all the way to
onset for smaller aspect ratio [as the nonzero intercept in Fig.
12(a) indicates].

In Ref. [39], Egolf suggested that the value of \; for the
SDC state was determined primarily by short-lived, spatially
localized dislocation nucleation events. In this paper we have
shown that although there is a correlation between defect
generation and contributions to A\, not all defects contribute
to the leading Lyapunov exponent. It is, however, possible
that some of the defects that do not contribute to the leading
exponent could contribute to the higher-order Lyapunov ex-
ponents. We also have seen that the reduced Nusselt number
N is somewhat anticorrelated with \{™, indicating that both
quantities are a good measure of the occurrence of dynamical
events in the system.

0.12 %
0.08 ¥
© ]
0.04
%o 20 30 40
r

FIG. 14. Plot of the root-mean-square time average o of the
instantaneous Lyapunov exponent )\11““ versus the aspect ratio I" for
the same parameters as in Fig. 13. The fluctuations about \; de-
crease with I'.
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Computations of A\; in some of the mathematical model
systems [36,38—40,69] show that A; is largely independent
of system size. Egolf’s calculation for the SDC state (with
periodic boundary conditions) also shows that system size
does not change \. Our computations of the SDC state con-
firm Egolf’s results. For the domain chaos state, however, we
find an unexpected nonintensive behavior of \; for 20<T
=<40. The expectation of intensive behavior of \; comes
from the arguments originally given by Ruelle [70] that for
large systems distant regions will be dynamically indepen-
dent. The observed nonintensive behavior is possibly a con-
sequence of the extended fronts, which can grow in size with
increasing I". This nonintensive behavior of \; might there-
fore imply that for the domain chaos state, long-range corre-
lations affect the dynamics in distant regions [27]. Computa-
tional experiments in larger domains (which are currently too
expensive) are required to understand this phenomenon.
Since SDC has a A; independent of aspect ratio and since
domain chaos shows an aspect ratio dependence, it would
also be interesting to study the transition as a function of
rotation rate from SDC to domain chaos. '

We have emphasized the local properties A" of the larg-
est Lyapunov exponent A\ in this paper. Egolf has speculated
[39] that the Kaplan-Yorke conjecture that relates the spec-
trum of exponents \; to the Lyapunov fractal dimension D,
may also hold locally in time. One can then estimate local

PHYSICAL REVIEW E 74, 016209 (2006)

exponents )\i“St and a local (in time) fractal dimension
D™(7). It would be interesting to calculate this local dimen-
sion for representative physical examples of spatiotemporal
chaos such as spiral defect chaos and domain chaos.
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