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We present results on a series of two-dimensional atomistic computer simulations of amorphous systems
subjected to simple shear in the athermal, quasistatic limit. The athermal quasistatic trajectories are shown to
separate into smooth, reversible elastic branches which are intermittently broken by discrete catastrophic
plastic events. The onset of a typical plastic event is studied with precision, and it is shown that the mode of
the system which is responsible for the loss of stability has structure in real space which is consistent with a
quadrupolar source acting on an elastic matrix. The plastic events themselves are shown to be composed of
localized shear transformations which organize into lines of slip which span the length of the simulation cell,
and a mechanism for the organization is discussed. Although within a single event there are strong spatial
correlations in the deformation, we find little correlation from one event to the next, and these transient lines
of slip are not to be confounded with the persistent regions of localized shear—so-called “shear bands”—found
in related studies. The slip lines give rise to particular scalings with system length of various measures of event
size. Strikingly, data obtained using three differing interaction potentials can be brought into quantitative
agreement after a simple rescaling, emphasizing the insensitivity of the emergent plastic behavior in these
disordered systems to the precise details of the underlying interactions. The results should be relevant to
understanding plastic deformation in systems such as metallic glasses well below their glass temperature, soft
glassy systems �such as dense emulsions�, or compressed granular materials.

DOI: 10.1103/PhysRevE.74.016118 PACS number�s�: 62.20.Dc, 62.20.Fe, 62.25.�g, 72.80.Ng

I. INTRODUCTION

In crystalline materials it is generally accepted that the
microstructural objects which govern deformation and flow
are a class of topological defects known as dislocations.
Most work in the field of crystalline plasticity focuses on
describing deformation in terms of the underlying dislocation
dynamics. In the case of noncrystalline systems the situation
is not so clear, even though a broad category of systems—
including metallic glasses, clays and soils, pastes, foams,
gels, and other so-called “soft” materials—seem to share a
few hallmark traits. In the past several decades much work
regarding the underlying microscopic processes of amor-
phous plastic flow, has left many unanswered questions and
much controversy. Perhaps the most important of these ques-
tions is whether or not there exist some sort of microstruc-
tural defects in the materials which, roughly speaking, play
the role of the dislocations in crystals �1–5�.

Some of the earliest computer simulations of metallic
glasses by Maeda and Takeuchi and co-workers �6,7� and
experiments on rafts of soap bubbles by Argon and Kuo �8�
and Argon and Shi �9� revealed that the atomic motions dur-
ing plastic shear were confined to clusters of particles with a
size of several particle diameters across. These observations
inspired Argon to propose a theoretical scheme based on a
mean-field treatment of transitions in local regions of space,
“shear transformation zones” �STZs�, where each transfor-
mation contributes a quantum of plastic shear strain �10�.

Drawing on Argon’s works, Falk and Langer �11� introduced
mean-field equations of motion for the number density of
STZs and showed that such a theory could account qualita-
tively for many aspects of the phenomenology of sheared
metallic glasses such as strain hardening, the Bauschinger
effect, and the emergence of a yield stress. The basic picture
of an STZ may not be limited in utility to metallic glasses
and could play an important part in the physics of other
amorphous materials under shear such as foams, pastes,
granular materials, and the like �12–20�.

These initial treatments all neglected spatial interactions
of STZs. However, one might expect that the rearrangement
of an STZ should induce quadrupolar elastic displacements
at long range, in analogy with the transformation of an Es-
helby inclusion �21,22� or the nucleation of a dislocation
loop. Schematic mesoscopic models constructed to account
for such elastic interactions, first proposed by Bulatov and
Argon, and later extended by others �22–28� have been
shown to predict various sorts of localization of deformation.
This mechanism might provide a physical explanation for an
important technological problem: shear banding, that is the
localization of deformation to narrow bands, which is ob-
served in many systems, including metallic glasses �29–31�,
sheared rafts of bubbles �9�, sheared foams confined between
glass plates �32�, dry foams �33�, and granular materials
�34–36�.

Despite these successes, theories of plasticity in amor-
phous materials remain controversial because they rely on
many assumptions which are difficult to check in precise
ways. In particular, these elusive STZs—unlike
dislocations—cannot be identified a priori as any sort of
topological defect �37�. The athermal, quasistatic simulations
we present here provide us a starting point to perform such
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observations since they allow for the isolation and identifi-
cation of elementary transitions between mechanically stable
states �38,39�. On these grounds, one might expect that an
individual, elementary, quadrupolar, Eshelby-like rearrange-
ment might be associated with any particular single transi-
tion between mechanically stable states, but as we will see,
the reality is more complex. Our work is a first attempt to
simultaneously identify elementary shear induced rearrange-
ments in simulations of amorphous solids from both the per-
spective of the energy landscape and real space.

This paper is organized as follows. We first, in Sec. II,
outline our athermal quasistatic �AQS� algorithm and pro-
vide a physical rationale for its use, discussing the types of
physical systems to which we expect our treatment to apply
and its limitations. Section III deals with the nature of the
smooth elastic segments of AQS trajectories, and in particu-
lar how the trajectories break down at the onset of individual
catastrophic events. The nucleation of one particular plastic
event in a moderately sized system will be used as a case
study. Section IV deals with the nature of the individual plas-
tic cascades themselves and their spatial structure. Again, a
typical event will be used as a case study. Finally, in Sec. V,
we will show how the nature of the plastic events discussed
in Sec. IV dictates particular scalings with the system size of
the stress and energy relaxation during the plastic events and
the strain interval between successive events.

II. THE ATHERMAL, QUASISTATIC LIMIT

A. Time scales

Athermal, quasistatic �AQS� simulations have been used
in several recent studies �38–43� of plasticity in amorphous
solids. The AQS algorithm simply consists of repeated alter-
nating steps of �1� minimization of the potential energy of all
the particles in the simulation cell �44–46� and �2� applica-
tion of a small, homogeneous strain to all particles and simu-
lation cell boundaries. This simulation technique was intro-
duced by Kobayashi, Maeda, and Takeuchi �6,7,47� as a way
to bypass intrisic limitations of molecular dynamics �MD�
simulations to reach long timescales, and therefore low shear
rates. Such limitations remain even with modern computers.

The AQS algorithm relies on the idea that in the absence
of external drive, amorphous solids remain close to a me-
chanically stable state in a complex potential energy land-
scape. For molecular or metallic glasses, this assumption is
reasonable as soon as the bath temperature is low compared
to the glass transition temperature Tg. A more precise bound
can be obtained when these solids are submitted to some
constant deformation rate �̇, considering that the thermal re-
laxation should be compared to �̇. The athermal limit corre-
spond to the situation when �̇�1/�relax, where �relax charac-
terizes the thermally activated escape of the system from a
local minimum. In this limit, escape from local minima is
primarily induced by strain and not by thermal activation
�48,49�. Because a low-temperature limit is taken, this situ-
ation is likely to be relevant to different systems than metal-
lic or molecular glasses. Foams, granular materials close to
jamming, and several instances of soft glassy systems are
intrinsically athermal and would likewise remain in a me-

chanically stable configuration in the absence of any external
drive.

When these amorphous solids are submitted to small
amounts of deformation, they smoothly follow deformation-
induced continuous changes of a local minimum. This pro-
cess is illustrated in Fig. 1. Strain induces a bias on the
potential energy landscape, and the material configuration
tracks the location of a single energy minimum as it moves
smoothly through configuration space. This kind of motion is
completely reversible in that if we reverse the sense of the
imposed strain, the system returns to its original configura-
tion. As we will see, it is possible to solve analytically for the
trajectories of the system during this smooth motion, and
these trajectories determine the elastic constants of the ma-
terial �50–52�. Of course, reversibility holds only for small
enough amounts of strain such that the minimum remains
stable. For increasing strains, this smooth behavior must
eventually break down, as the energy minimum in which the
system resides flattens out and collides with a saddle point
�38,49,53,54�.

From the preceeding picture, we understand that as a
small strain rate is applied to such an athermal system, its
response involves two types of behavior. Usually, the system
smoothly and reversibly follows the continuous shear-
induced changes of a single minimum as described above.
Occasionaly, the occupied minimum vanishes, and the sys-
tem has to relax toward an entirely new minimum in con-
figuration space. This intermittent behavior shows up clearly
when energy or stress is plotted against strain as in Fig. 2. On
this figure, smooth segments correspond to reversible, elastic
changes of a particular energy minimum in configuration
space; they are interrupted by discontinuous jumps, which
corresponding to the shear induced annihilation of that mini-
mum with a barrier. It is only during these jumps that energy
is dissipated and across the jumps that irreversiblity may
enter.

The energy dissipation which occurs during these discrete
events will take some finite time �dissip, and in order for the
system to track the changes in the potential energy land-
scape, it must be driven at a slow enough rate such that these
discrete events have sufficient time to complete: �̇

FIG. 1. �Color online� A schematic representation of
deformation-induced changes of a local minimum in the potential
energy landscape. The shape of the landscape varies continuously
as the strain is increased going from left to right with both the
location and height of the minimum changing.
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�1/�dissip. Although the mechanisms of energy dissipation
are system specific, it is reasonable to expect that material
response in the quasistatic limit is largely determined by the
existence of a potential energy landscape and not by the de-
tailed mechanisms of energy dissipation �55–58�. We will
see, however, that in the AQS limit, the energy dissipation is
strongly intermittent, and plastic jumps seen on Fig. 2 exhibit
a broad range of amplitudes. As we will see, the typical
amount of dissipation in an event, and accordingly the time
scales which would be associated with that energy dissipa-
tion, show strong finite size effects. We should thus keep in
mind that since �dissip might depend on the system size, it is
probably only justified to speak of the quasistatic limit as a
formal �̇→0 limit, for a fixed finite system size.

We see that the AQS limit entails three limits: zero tem-
perature, zero strain limit, and the large size, thermodynamic
limit. From the preceeding discussion it appears that the
AQS limit holds when these limits are taken in the order T
→0, then �̇→0, then L→� �59�. Of course, when one
implements such AQS dynamics in a scheme with discrete
strain steps, the size of the discrete strain step must also be
small enough that it does not affect the outcome of the simu-
lation. This criterion is more akin to making sure that one is
using a small enough timestep in the velocity Verlet algo-
rithm for conventional MD simulations, and it is not really a
statement about any physical timescales. We will have more
to say about the choice of strain step size below.

As long as the system remains in a convex region sur-
rounding a minimum of the potential energy landscape, as it
does along the continuous elastic branches, the precise form
of the energy minimization method should have no impact
and the system will return to the local energy minimum after
it is perturbed by the externally imposed deformation. On the
other hand, when the system is driven past a limit of stability,
as in the third frame of Fig. 1, the precise method of energy
minimization could, in principle, have an impact on the se-
lection of a new minimum in which to reside as the system
“rolls downhill” away from the minimum which was just
destroyed.

The physical mechanisms for energy dissipation are mod-
eled differently for different systems. In Durian’s bubble
model �60,61�, bubbles exert drag forces on each other pro-
portional to their relative velocities; in Cundall and Strack’s
model for granular materials �62�, grains dissipate energy via
a viscous dashpot connected in parallel with the springs
which repel the particles; in simulations of molecular or me-
tallic glasses �63�, one generally uses some sort of fictitious
viscous thermostat to control the temperature in the system.
Historically the AQS procedure has been implemented using
some efficient energy minimization scheme, such as the non-
linear conjugate gradient method, and we proceed along
these lines. However, one may hope that the details of the
minimization technique, in particular, the nature of the vis-
cosity and the existence of finite inertia, do not change the
general picture that can be drawn from AQS simulations; a
point of view we tentatively adopt here.

This point of view finds some support in comparative
studies of MD and AQS simulations �58�. Lacks has shown
that the effective viscosity and diffusivity of the MD simu-
lations extrapolates to the AQS results in the zero tempera-
ture limit for a low strain rate. In related work, Yamamoto
and Onuki �48,64� have shown that the viscosity and diffu-
sivity in similar simulations can be understood in terms of
spatially heterogeneous dynamics which themselves are con-
trolled by a critical point at T=0, �̇=0. As we will see, these
observation seem to be in agreement with ours and provide
further indication that AQS simulation are a valid limit of
MD simulations. To the best of our knowledge, however, no
such explicit connection between MD and AQS has been
shown for foam or granular models, but we consider it likely
that analogous results would be obtained in these models in
the limit of vanishing strain rate. We will therefore assume
that the AQS procedure is equally applicable to the wet
foams and frictionless granular systems, in addition to the
metallic glasses for which it has traditionally been consid-
ered to apply.

B. Numerical details

In this work we deal exclusively with 2D systems. Bidis-
perse mixtures are used to inhibit crystallization. The mix-
tures used throughout have particles with radii rL=0.5 and
rS=0.3 �65� and a number ratio of NL=NS

1+�5
4 . The mixture

is similar to that used by Falk and Langer and was found
sufficient to inhibit crystallization. The systems are prepared
via a zero temperature quench from an initially random state
as in Refs. �66,67�. We suppose that the systems lose
memory of their initial preparation before a strain of unity
and use the strain of unity as a starting point for tabulating
statistical properties of the steady flow. No segregation is
detectable within the 200% window over which the systems
are strained, but it would be difficult to rule out effects which
occur on very long strain scales. Lees-Edwards boundary
conditions are used throughout �63�. The athermal quasistatic
dynamics algorithm described above is implemented using
strain steps of size 10−4 which, as will be discussed below, is
small enough such that all loading curves have well resolved
elastic segments even for the largest samples simulated.

FIG. 2. Stress vs strain curve for a 200�200 system of har-
monic discs. The event at �=0.1631 will be discussed further below
in Sec. IV. Note the smooth, roughly linear elastic segments inter-
rupted by the discrete plastic events.
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Two different minimization algorithms from the conjugate
gradient family were employed �68�: the nonlinear Pollak-
Riberi conjugate gradient minimizer and the truncated New-
ton linearized conjugate gradient minimizer. For the nonlin-
ear Pollak-Riberi conjugate gradient minimizer, we used the
routine as implemented in the GNU Science Library �69�.
For the truncated Newton linearized conjugate gradient mini-
mizer, we used an Armijo backtracking algorithm �68� with a
sufficient decrease parameter of 0.1 and the linear conjugate
gradient routine as implemented in the Iterative Template
Library �70� adapted by us to perform truncation �68� upon
encountering curvatures less than 10−12. We found the latter
procedure to be more robust and efficient. The simulations of
the single 50�50 system of Lennard-Jones particles dis-
cussed in Sec. III and the 200�200 system of harmonically
interacting particles discussed in Sec. IV utilized the former
minimization algorithm, while the data runs which were used
for the analysis in Sec. V utilized the latter. Both algorithms
gave statistically identical results when run on an ensemble
of 50�50 harmonic systems.

The potential energy functions were pairwise additive
central force laws. Three different force laws were em-
ployed: a standard 6-12 Lennard-Jones interaction, a har-
monic, repulsive spring force, and a nonlinear Hertzian re-
pulsive spring force �71�. The Lennard-Jones energy was
truncated at a distance of two particle diameters, and linear
and quadratic terms were added to ensure continuity up
through second derivatives at the cutoff to avoid pathologies
in the minimization routine.

The pair interactions read

Uharm�rij� = �1 − sij�2��1 − sij� ,

UHertz�rij� = �1 − sij�5/2��1 − sij� ,

ULJ�rij� = �sij
−12 − 2sij

−6 + Asij + Bsij
2 ���2 − sij� ,

where � is the unit step, and A and B are the coefficients
which force continuity of the first and second derivatives at
the cutoff in the Lennard-Jones potential. sij is the dimen-
sionless separation between particles i and j,

sij =
rij

Ri + Rj
,

where Ri is the radius of particle i.

III. ELASTIC BREAKDOWN AND PLASTIC NUCLEATION

As described above, trajectories in AQS are composed of
smooth, reversible elastic segments which are separated by
discontinuous, irreversible plastic events. The smoothness of
the elastic segments allows us to obtain analytical results
regarding the singularity at the onset of a plastic event. In
our previous work �72�, we �i� presented a very short over-
view of the nonaffine linear response formalism, �ii� used
this framework to explain the occurrence of particular scal-
ings of the stress and shear modulus near the onset of the
plastic event, and �iii� showed that the subsequent deforma-
tion incurred during the ensuing plastic cascade could not be

well understood on the basis of the normal modes of the
system at the onset. Here we offer a greatly expanded pre-
sentation on the nonaffine linear response formalism �with
detailed calculations appearing in the Appendix� and the
scalings which occur at the transition. We will also study, in
detail, the real-space structure of the critical mode of the
system which is responsible for nucleating the subsequent
plastic event and finally offer some discussion as to how the
point of view we develop here on the nucleation of plastic
events differs from some of those put forward in the past.

A. Nonaffine linear response

Consider the sequence of states shown in the cartoon in
Fig. 3. One starts with a random packing of particles in some
mechanical equilibrium state. Next, the boundary of the sys-
tem and all the particles inside are homogeneously deformed
to make some small shear deformation. Note that we are
discussing a linear response theory, so the deformation is
supposed to be arbitrarily small, but is grossly exaggerated in
the figure. If the system happens to have started as Bravais
crystal, then after this shear step, by symmetry, all of the
forces on the particles should still be zero. On the other hand,
if the system did not start out as a Bravais crystal, as is the
case for the systems we are interested in here, then the forces
will not be zero after we make the small shear step. If the
system is to remain in mechanical equilibrium, then we need
to make a correction to the tentative homogeneous shear in
order to return to a configuration of zero force. In the last
frame of the cartoon, we simply subtract off the homoge-
neous piece of the displacement field.

The precise mathematical expression this process is de-
rived in the Appendix. It is precisely the same scenario one
must consider when computing the shear modulus of a lattice
with more than one particle in the basis, and the expressions
were known long ago �73�, but only relatively recently has
their relevance to disordered systems been appreciated
�52,72,74–77�.

Greek indices are used for Cartesian components and latin
indices identify particles. The forces which are incurred after
the small shear strain d� are denoted as 	i
. Again, 	i
 must
be identically zero for particles whose neighborhood is a
Bravais crystal. The inhomogeneous, or “nonaffine,” portion
of the displacement is denoted as dr̊i
, where our notation
with the ring over the r is to remind us that we have sub-
tracted off the homogeneous piece �see the Appendix for
more details�. The derivatives of the forces with respect to
particle positions �at some fixed configuration on the bound-
aries� are given by the so-called “Hessian” matrix �Hi
j�

=�2U /�ri
�rj��. 	i
 may be derived from Hi
j�, but it is
useful in our case to consider it an object in its own right.

The resulting equations governing the trajectory of the
particles were found to be

v̊i
 �
dr̊i


d�
= − Hi
j�

−1 	 j�. �1�

The stress is defined as the total derivative of the energy with
respect to � while enforcing mechanical equilibrium of the
particles via Eq. �1�.
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� �
dU

d�
=

�U

�r̊i


dr̊i


d�
+

�U

��
=

�U

��
, �2�

where the final equality holds because of mechanical equi-
librium. So we see that the fact that the particles do not
follow affine trajectories does not give rise to any corrections
to the stress. This is not true, however, for the shear modulus.

To find the shear modulus, we simply differentiate yet one
more time, again with a total derivative which should be
understood to be taken while enforcing the corrections given
in Eq. �1�.


 �
d�

d�
=

�2U

��2 − 	i
Hi
j�
−1 	 j� = 
a − 
na. �3�

In Eq. �3�, 
a�
�2U
��2 is the term which arises from the Born

expression for pure affine deformation �78�, and 
na
�	i
Hi
j�

−1 	 j� is the term which comes from considering the
nonaffine corrections. The Born term may be thought of as
the stress increase the system has incurred in going from
frame �a� to frame �b� in Fig. 3, while the nonaffine correc-
tion corresponds to the stress which is shed as the system
relaxes back to its new mechanical equilibrium configuration
in frame �c�. Note that the corrected modulus is always less
than the naive Born expression.

So what is the structure in real space of the response
during the continuous elastic segments? To illustrate, we now
focus on a typical elastic segment in one particular 50�50
Lennard-Jones sample. For any particular configuration, we
can efficiently solve Eq. �1� via some iterative method. We
use the conjugate gradient algorithm exactly as implemented
in the Iterative Template Library �70� with a relative toler-
ance of 10−8. This method, utilizing the analytical form for
the elastic response, should be preferred over the alternate
method of explicitly shearing the system by a small, finite
amount then reminimizing the energy. The latter method es-
sentially amounts to using a finite difference in lieu of a
derivative whose analytical form we know. In Ref. �51�, it
was found using the alternate method of explicit shear that
when taking a small enough strain step to remain in the
linear regime, the energy had to be computed to quadruple
precision. No such special measures should be necessary in
directly solving Eq. �1�.

Figure 4 shows the fields 	i
 and v̊i
 at a value of the
strain which is roughly a distance of 10−4 from the next
catastrophic event. Note that the 	 field appears essentially
random, as expected, based on its role as a measure of local
configurational disorder. v̊i
, on the other hand, should de-
pend strongly on the low modes in the spectrum of H, as can
be seen directly from Eq. �1�. It exhibits striking correlations
in both compression and shear.

The strongly spatially correlated behavior apparent in this
elastic response field �and accordingly �
na�� should be con-

FIG. 3. �Color online� Sche-
matic representation of the non-
affine linear response of the sys-
tem. �a� Particles start in a
mechanical equilibrium configura-
tion. �b� A homogeneous shear is
applied to the boundaries and all
the particles. Old particle posi-
tions are denoted by the thin
�black� discs and are connected
via heavy lines to their new posi-
tions which are denoted by heavy
�red� discs. At this point, forces no
longer balance, and the net force
on each particle is no longer zero.
Note that the magnitude of this
shear is greatly exaggerated in the
figure; it is mathematically infini-
tesimal in the calculations below.
�c� Corrections to the homoge-
neous shear are applied such that
the forces again add to zero on
each particle. �d� The whole pro-
cess is more easily viewed from
the coshearing frame, so it is con-
venient to subtract off the homo-
geneous piece of the displace-
ment. The inhomogeneous piece
of the displacement is now given
via the arrows.
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trasted with the lack of any correlation beyond a length of a
few particle diameters in any of the other mechanical quan-
tities such as 
a, energy, pressure, shear stress, or vonMises
stress �79� The importance of such nonaffine corrections to
elastic behavior has been realized in the context of experi-
ments and simulations on emulsions and foams reported by
Liu and co-workers �80� and Langer and Liu �81�. More
recently, Wittmer, Tanguy, and co-workers have conducted a
comprehensive study of the contribution to elasticity of the
nonaffine rearrangements in a Lennard-Jones system �50,51�.
However, in this work, we will be more interested in the role
of the nonaffine response on approach to the end points of
the elastic segments and its role in nucleating the plastic
cascades rather than its role in renormalizing the elastic
moduli away from the plastic events.

B. Approaching Catastrophes

Equation �1�, which describes the elastic segments, breaks
down precisely when the local minimum vanishes; i.e., when
the potential energy surface develops a direction of zero cur-

vature, along which the minimum collides with a first order
saddle as in the cartoon of Fig. 1. This scenario, with a single
control parameter destabilizing a single degree of freedom, is
the simplest possible type of bifurcation—known as a “fold”
in bifurcation and catastrophe theory or a “tangent bifurca-
tion” in dynamical systems theory �82�—and we will see
how this breakdown dictates the scalings of various quanti-
ties with strain at the onset of the plastic events.

Since 	 depends only on local information about the
near-neighbor particle configurations, we expect that it may
be treated as roughly constant in the neighborhood of one of
these catastrophic events, whence, according to Eq. �1� the
elastic response field will start to diverge along the direction
of the zero curvature. As the low curvature direction gets
flatter and flatter, eventually the nonaffine correction to the
shear modulus dominates the Born term in Eq. �3� and the
net modulus becomes negative. At this point the stress starts
to decrease as a function of strain, and the system is unstable
against any applied stress. These configurations are acces-
sible to us because strain—and not stress—is controlled.
Eventually, the curvature will go to zero, and v̊ and 
na will
diverge.

We now proceed to isolate the singular behavior at the
catastrophic points. In the lowest order nontrivial Taylor ex-
pansion for the energy at the transition point, we must in-
clude a higher order term for the critical direction, as the
quadratic term vanishes. Generically, we expect a cubic term
to remain �82�:

U � As0
3 +

1

2
si
Hi
j�sj� + ���� + 	i
si
� +


a

2
��2. �4�

A, �, Hi
j�, 	i
, and 
a are constants which are evaluated at
the transition. The physical interpretation of all but A are
discussed at length in Ref. �52�. si
 denotes the displacement
of the reference coordinate away from the critical configura-
tion si
� r̊i
���− r̊i
��c�. s0 denotes the projection onto the
critical mode s0�si
�i


0 , where �i

0 is the unit vector which

lies in the �nontranslational� null space of Hi
j�. So we have

− Fi
 �
�U

�si

= 3As0

2�i

0 + Hi
j�sj� + ��	i
, �5�

Hi
j� =
�2U

�si
�sj�
= Hi
j� + 6As0�i


0 � j�
0 . �6�

Requiring Eq. �5� to be zero �which is equivalent to applying
equation �1�� and since �i


0 lies in the null space of Hi
j�, we
have

Hi
j�sj� = − ��	i
 �7�

and

3As0
2 = − ��	0. �8�

We may solve Eq. �7� for si
 up to the d uniform translational
modes and the critical mode. Equation �8� then provides the
solution for the critical mode s0=�−��	0 /3A. The motion
along this critical mode experiences a square root singularity,
characteristic of the simple fold catastrophe, while the mo-

FIG. 4. �Color online� The particular force in response to homo-

geneous shear 	� �top� and the nonaffine velocity �or “displace-
ment”� field v̊i
 �bottom� at a strain configuration �=0.2945 or �c

−��10−4.
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tion along the higher modes is smooth at the level of the
expansion �4�.

This singular behavior for s0 induces singular behavior in
the modulus and stress. Expanding Eq. �2�, we have

� = � − ���	̃i
Hi
j�
−1 	̃ j�� −�− ��	0

3

3A
+ 
a�� , �9�

where 	̃i
 is 	i
 with the critical component projected out:

	̃i
=	i
−�i

0 � j�

0 	 j�. Expanding Eq. �3� or, equivalently,
taking the � derivative of Eq. �9�, we get


 �
d�

d�
= 
a − 
̃na − �− ���−1/2� 	0

3

12A
, �10�

where 
a is the Born contribution to the modulus as in Eq.

�3�, 
̃na=	̃i
Hi
j�
−1 	̃ j� is the nonsingular part of the non-

affine correction, and the remainder is the isolated singular
piece.

To check these predictions, we perform a careful conver-
gence to a particular catastrophic point in the system shown
above in Fig. 4. During the linesearch portion of the minimi-
zation routine, we converged first to a minimum of force and
subsequently to a minimum of energy along the line and
found this procedure to produce robust convergence to the
transition point.

Figure 5 shows the stress and modulus for the same sys-
tem as in Fig. 4 upon approach to the singularity. Zooming in
on the endpoint of the elastic segment, we see that the quali-
tative predictions of the theoretical arguments are borne out;
namely that the stress reaches a maximum precisely as the
modulus becomes negative. We further note that the Born
contribution to the modulus is essentially constant on this
region of � �not shown�. The fact that the Born contribution
does not play a role in the singularity is not a priori clear,

however, it follows immediately from Eq. �A11� in the Ap-
pendix, since the Born contribution depends smoothly on the
system configuration.

In Fig. 6�a�, we plot the several smallest eigenvalues and
the participation of the lowest mode 
���. In agreement with
Malandro and Lacks, we find that a single eigenvalue van-
ishes. In the window of strain shown, the participation of the

FIG. 5. �Color online� Stress �top� and shear modulus �bottom�
for a small strain interval. Left: fixed strain steps of size 10−4 using
the standard energy minimization algorithm. Right: convergence to
the yield point using a decreasing strain step size and the modified
linesearch algorithm described in the Appendix.

FIG. 6. All data shown here for the same trajectories plotted
above in Fig. 5�b�. �a� Relative participation of the lowest normal
mode in the nonaffine elastic displacement field 
*

� ��i

0 v̊i
�2 / �v̊i
v̊i
� �dotted�, lowest eigenvalue of the dynamical

matrix �solid�, next several eigenvalues �dashed�. �b� In log-log
scale �as a guide to the eye, the thick black line is ��c−��: 1 /

�circles�, lowest eigenvalue �squares�, next several eigenvalues mi-
nus their terminal values �diamonds�.
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lowest mode goes linearly from about 0.85 at a distance of
about ���10−4 to nearly unity at a distance of ���10−10.

Figure 6�b� shows the stress, the inverse of the modulus,
and several higher eigenvalues as functions of strain on a
log-log scale. The critical strain is determined to within 10−12

�not shown�, and this terminal value is used to measure ��
��c−� for configurations down to 10−10 �shown�. All quan-
tities exhibit the same ��� behavior at small ��. This was
predicted above for the modulus and critical curvature, how-
ever, the higher curvatures are constants at the order of the
expansion �4�. We can rationalize the ��� behavior for the
higher modes by considering that the total derivative of any
function f�si
� should be dominated by the singular behavior
of s0:

df

d�
�

�f

�s0

ds0

d�
�

�f

�s0
�− ���−1/2.

C. The critical mode

The real space structure of a localized plastic event is a
key input into coarse-grained models of plasticity �22–28�
and different supposed forms could lead to different emer-
gent behavior in these models. A real space analysis of the
incipient failure mode, although it does not correspond to a
complete shear transformation, but rather to the onset of one,
gives some insight into the form of an elementary plastic
event.

In Fig. 7, we show the field v̊i
 at ���10−10, at which
point it is almost entirely aligned with the critical mode. The
geometry is predominantly quadrupolar; a core region with
outward particle velocities along the tensile axis and inward
particle velocities along the compressive axis. We stress that
the eigenmodes themselves have changed little in the win-
dow of strain from ���10−4 to ���10−10 as we have ap-
proached the incipient failure event, and the change in v̊i

comes almost entirely from the change in the relative weight-
ings of the modes, with the quadrupole in the lower right of
Fig. 4�b� becoming dominant at the critical strain.

In constructing Fig. 7 we have performed two transforma-
tions. First, we have applied an inverse affine transformation
to the locations of the particles and their displacement vec-
tors v̊i
:

ry → ry ,

rx → rx − �ry ,

v̊y → v̊y ,

v̊x → v̊x − �v̊y .

In this frame, the system maps onto itself under a purely
vertical or purely horizontal shift by the box length, a prop-
erty one which would be lost in a Lees-Edwards cell at finite
strain. Further, we have moved to a coordinate system �r ,��,
which is centered on the particle with the largest displace-
ment; for simplicity we have taken the center of the core to
be on the particle with largest v̊. Also note that we have

considered separately the radial and tangential projections
and excluded a core region of radius 2.

It is natural to ask whether the eigenmode is analogous to
the displacement field generated in a linear, isotropic, elastic
medium by some disturbance at the core. To map the discrete
vector field onto a continuous field, we divide the system
into annuli of width 2 starting at a radius of 2 outside of the
nominal core. In each annulus, we project onto circular har-
monics by summing

FIG. 7. The radial and tangential projections of the non-affine
displacement field v̊i
 at �c−��10−10 transformed back to the rec-
tilinear frame and centered on the vector with largest magnitude as
described in the text. The center corresponds to the quadrupolar
pattern which is starting to develop in the lower right of Fig. 4 at a
strain of �c−��10−4. A core region of radius 2 is excluded from
the image �and subsequent analysis�. Scale is arbitrary: the field is
normalized to unity. At this strain, v̊i
 is essentially indistinguish-
able from the critical eigenmode �i


0 .
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ṽr�r;n� = �
j�A�r�

vrje
in�j ,

ṽ��r;n� = �
j�A�r�

v�je
in�j

�where j indexes the particles in a given annulus� and nor-
malizing each term by the number of particles in the annulus.

It is found through this decomposition and is obvious
from simple visual inspection of the field, that the n=2
�quadrupole� contribution dominates and has a phase angle
which roughly gives extension along y=x and compression
along y=−x �there is a slight clockwise departure which can
be seen in Fig. 7� while the tangential component is roughly
aligned at y=0, x=0.

If the material behaves as a linear homogeneous isotropic
elastic solid outside of some core region, we would expect,
recalling the form of the quadrupolar space of solutions of
the 2D Navier-Lamé equation, that �83�

vr�r;2� =
2A

r3 +
�1 + ��B

r
, �11�

v��r;2� =
2A

r3 +
�1 − ��B

r
, �12�

where � is the ratio of Lamé constants �= �

2��+
� and the �

dependence of the radial and azimuthal fields should be un-
derstood to have a relative phase of 45°. In Fig. 8, we plot
the magnitude of the quadrupolar sector for vr�r� and v��r�.

The radial field seems to be consistent with a pure r−1

behavior, while the azimuthal field becomes too noisy to de-
termine whether it follows any particular power law. For a
general quadrupole, one would expect a crossover to r−3 be-
havior at small r, and it is evident that this crossover length
is small if the r−3 term is even present at all. Furthermore, we
may attempt to extract a value of �= �vr−v�� / �vr+v��. For
radii less than 10, the azimuthal field is not too noisy, and the

extracted � fluctuates between 0.4 and 0.5 �not shown�, 0.4
being roughly consistent with the value of � averaged over
the elastic segments. At larger radii, the extracted � leaves
the physically allowed regime, becoming larger than 0.5,
which is not surprising given the increased noise in v� at
these radii. The agreement between this catastrophic mode
and an elastic quadrupole is very reasonable.

D. Discussion

There is a subtle distinction between the incipient failure
mode, which we have just measured, and a complete shear
transformation. Ideally, one would like to measure changes
in the particle configurations after the system has been driven
past stability and then completely relaxed. In our atomistic
system, as in the coarse-grained models �22,23,27�, localized
plastic events rarely occur in an isolated way, and most often
the incipient failure event, such as the one measured here,
triggers a subsequent plastic cascade. As we will see below,
although it is possible to make some measurements of the
elementary shear transformations which occur during the
cascades, they cannot be given as precise a meaning as the
measurements of the incipient failure modes such as the one
measured in this section.

Before leaving the subject of plastic onset, we should
clarify the relationship of the picture put forward here to the
earlier numerical studies of Srolovitz and co-workers �84�. In
those athermal simulations of metallic glasses under shear,
the authors reported on stress concentrations which acted as
catalysts for plasticity. These stress concentrations were
shown to vanish upon unloading, and an analogy was made
with the stress fields around the tips of nascent shear cracks.
Although we will, in fact, report on a related mechanism
below, we have not found such stress concentrations at the
onset of plastic events.

In fact, the formalism presented above �and discussed at
length in the Appendix and in Ref. �52�� makes it clear that
the instability is a collective property of the system and
should not necessarily be discernible by looking at strictly
local quantities. By collective we mean that the condition for
instability is in principle a property of the full Hessian ma-
trix, which we cannot translate simply into an instability
property for some elementary subsets of atoms, such as
single atoms or even pairs. For example, at the critical con-
figuration, any given particular particle is in a stable energy
minimum, if all others are held fixed; yet when the restriction
of moving a single particle at a time is lifted, it becomes
clear that the system posesses an unstable mode. The distinc-
tion is not unlike that discussed by Torquato and co-workers
between “locally” jammed and “collectively jammed” sys-
tems �85�. For this reason, it is likely that strictly local quan-
tities such as the Born moduli, and the so-called “site-
symmetry” parameters discussed by Egami et al. �86�, may
never be sensitive to the onset of plastic events.

Of course, this does not rule out the possibility of identi-
fying a mesoscopic cluster of particles which is responsible
for the instability at the onset of plasticity. Recently,
Yoshimoto and co-workers �87� have noticed that small re-
gions in their simulation of a glassy polymer could have a

FIG. 8. �Color online� The magnitudes of the quadrupolar �n
=2� projections of the radial, Ar2 �black circles�, and azimuthal A�2

�red squares�, components of of the critical mode. Solid lines are r−1

and r−3.
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negative shear modulus: it is possible that a collective
property—the local modulus of mesoscopic regions of
space—may provide insight into the onset of plasticity.
Whether or not one can identify some smallest critical core
of particles which is necessary for the unjamming motion
remains a highly interesting, but open, question.

IV. PLASTIC EVENTS

In the previous section, we focused on the behavior of the
elastic segments of the quasistatic trajectories, and in particu-
lar, the behavior on approach to their endpoints at the onset
of the plastic events. We now discuss the processes at work
during these plastic events themselves as the system searches
the potential energy landscape in a fully nonlinear way in
search of a new inherent structure after it is driven past a
threshold of stability. A single typical event in a large system
will be used as a case study. This same plastic event was also
used as a case study in our previous work �54�. We extend
that work here, showing more details regarding the full evo-
lution and discuss how features of the displacement field can
be reconciled with a simple view of dislocationlike defects in
an otherwise intact elastic manifold.

A. The cascade mechanism

Already in the seminal work �8�, Argon emphasized the
analogy between a local shear transformation and the nucle-
ation of a dislocation loop. He cautioned that the analogy
should not be taken too literally; in a crystal, the barrier for
the nucleation of a pair of dislocations is large compared to
the subsequent Peierls barriers, so, once nucleated, the pair is
essentially free to glide apart. In a disordered system, on the
other hand, even if one could topologically identify disloca-
tions, the concept would be of limited utility, as there are no
directions of symmetry along which the pair might glide
apart.

However, the elasticlike fields which are expected to re-
sult in the surroundings of a local shear transformation
should alter the probabilities of observing subsequent shear
transformations in neighboring regions. These elasticlike
fields are expected to have quadrupolar symmetry �i.e., they
represent elementary shear� and resemble the elastic fields
associated with the nucleation of a dislocation pair or the
transformation of an Eshelby inclusion �21�.

Kobayashi, Maeda, and Takeuchi were able to observe
such elasticlike displacements of the particles surrounding
the core of a single shear transformation in their computer
simulations �6,7�. Bulatov and Argon, with this picture of
elastically mediated interactions in mind, constructed a sto-
chastic model of plasticity by embedding potential shear
transformation sites uniformly in a 2D lattice �23–25�.
Within their model, such cascades did emerge to play a role
analogous to that of dislocation glide. Since then, several
others �22,26–28� have constructed coarse-grained models
along similar lines with varying assumptions about the pre-
cise microscopic details of the elastic consequences of a lo-
cal plastic event.

The cascade mechanism is illustrated schematically in the
cartoon in Fig. 9. In frame 1, we have a virgin material with

several potential shear transformation sites indicated by open
circles. As a macroscopic strain is applied, eventually, the
system will become mechanically unstable �as described in
detail in the previous section�, and a shear transformation
will be nucleated at, say, region A. This initial event will
have an associated displacement field with a cos�2�� symme-
try, giving increased �decreased� shear stresses along the
lines y=x and y=−x �along the lines y=0 and x=0�. The
potential shear transformation sites which lie away from the
initially transformed site along the lines of increased stress,
having had their local stress levels increased, may them-

FIG. 9. �Color online� Schematic representation of a banding
scenario. Sample is in tension along y=0 and compression along
x=0. Stage �1� Virgin material. Stage �2� �a� transforms and in-
creases shear stress along red lines, increasing probability for �b� to
transform. Stage �3� Should the transformation at �a� induce a trans-
formation at �b�, the two stress fields are roughly additive.
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selves become mechanically unstable even without further
increment of the macroscopic strain. The process favors lines
of slip generated along the lines of maximal stress �which for
our geometry would be along the vertical and horizontal
axes�; an emergent behavior very similar to the glide of a
pair of dislocations, yet without the presence of any topo-
logically identifiable objects.

B. A typical cascade

To fix these ideas, we recall and elaborate on the single
event which was discussed in Ref. �72�. The system under
consideration is a 200�200 system of harmonically interact-
ing particles, with particle mixtures and preparations as de-
scribed in the previous section. A segment of the stress vs
strain curve is shown in Fig. 2.

We examine the plastic event which occurred at �
=0.1631, and presume that it is representative of the kinds of
events which occur at steady state. At �=0.1631, the system
has just been strained past the edge of an elastic segment—
the local energy minimum has coalesced with a barrier, leav-
ing only an inflection point in its wake—and the system is
poised to undergo a nonlinear, plastic rearrangement upon
energy minimization.

The total potential energy and sum of the squares of the
forces during the energy minimization are shown in Fig. 10.
As we use a conjugate gradient minimization routine, we
have no rigorous notion of time. However, in steepest de-
scent dynamics, where dxi
 /dt=Fi
, the time derivative of
the energy is precisely the sum of the squares of the forces.
We have implemented a steepest descent dynamics and have
checked on a single event that the resulting cascade was
similar to the result of the conjugate gradient algorithm. One
might then hope to interpret the number of minimization
timesteps as some measure of time. However, the steepest
descent algorithm is by far too slow to be used systemati-
cally in this study, and we thus have to rely on conjugate
gradient methods. Systematic comparative studies of differ-
ent dynamics should remain an important direction for future
studies.

As the nonlinear conjugate gradient algorithm progresses,
during the first 100 or so minimization steps, the system
behaves much as if it was making a small correction during
a purely elastic relaxation, operating in an essentially linear
regime. The energy relaxes toward a plateau, and the forces
also decrease �not visible on the scale of the figure� account-
ing for the nonaffine linear elastic corrections �discussed in
detail in the previous section� necessary to return the system,
roughly speaking, to where the minimum “ought to” be. The
forces are very small, and the energy plateau is very flat. It is
almost as if the system is at a mechanical equilibrium state¼
a “quasibasin.” Soon, however, at about the 200-th minimi-
zation step, the forces get large and the energy drops rapidly;
the system exits this quasibasin.

The force curve is intermittent with clusters of sharp
peaks separated by quiescent periods, however, it is difficult
to make precise distinctions; peaks may overlap and quies-
cent periods may be disturbed by small rumblings down by
an order of magnitude from the peaks. We will focus on the

FIG. 11. Close-up of the data shown in Fig. 10�b� during the
first 1150 minimization steps.

FIG. 12. Incremental slip �as defined in the text� at 50 step
intervals during the minimization routine. Sequence starts at step
200 and ends at step 1150. A particle is shaded if it slips by more
than 10−3.

FIG. 10. Energy and sum of the squares of the forces during the
conjugate gradient descent for the single event at �=0.1631.
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cluster of force peaks which occur before minimization step
1150 and replot this segment of the descent on a blown up
scale in Fig. 11. Note the reasonably well defined initial
force peak around step 230 followed by several subsequent
smaller peaks up to step 800. After step 800, there is a period
of relative quiescence which which lasts through step 1100.

The energy descent is broken into intervals of 50 steps
each, starting at 200 and ending at 1150. The slip and energy
dissipation in realspace which occurs during these periods is
shown in the sequence of images in Figs. 12–14. For any
particular particle, we define the slip as the difference be-
tween the displacement of that particle and the average dis-
placement of its neighbors �particles with which it is in con-
tact�; in this sense it is analogous to a discrete Laplace
operation on the displacement field. All real space structures
are transformed back to the rectilinear frame by an inverse
simple shear of magnitude equal to the current strain 0.1631,
such that in the plots shown, the point �x ,y� may be identi-
fied with the points �x+aL ,y+bL� where a and b are arbi-
trary integers.

The incremental slip occurring in each window of 50
minimization steps is shown in Fig. 12, and the cumulative
slip �with incremental slip superimposed in red� is shown in
Fig. 13. Any particle is shaded if it has slipped by more than
10−3. The local incremental energy dissipation is plotted, in
Fig. 14, on a log scale which ranges from 10−6 to 101, with
grey indicating an energy change of less than 10−6 in mag-
nitude, white indicating an energy increase, and black, an
energy decrease.

The pattern which emerges is that each of the peaks in the
squared force in Fig. 11 corresponds to a well localized clus-
ter of particles which undergoes large slipping relative to its

neighbors. As can be seen in Figs. 12 and 13, the new slip-
page does not occur precisely on top of the slippage which
occurred during previous peaks, but instead, new slippage
tends to occur at the extremities of the region which has
already undergone appreciable slip, although one can see that
from the figure that there are exceptions to this rule. Further-
more, the local energy dissipation which occurs concomi-
tantly with each force peak and cluster of slipping particles
can be seen to take the form of a quadrupole which is cen-
tered over the cluster of slipping particles. Note that the qua-
drupoles predominantly have energy increases �white� along
the tensile axis, y=x, and energy decrease �black� along the
compressive axis y=−x. This spatial organization can be un-
derstood in terms of the banding argument outlined above.

One may ask whether taking a smaller strain step might
help to isolate the many peaks which appear in Fig. 11. Un-
fortunately, a smaller strain step would not help. One may
drive the system an arbitrarily small amount past the elastic
threshold—one may even attempt a precise convergence to
the critical point discussed in the previous section—but once
the plastic cascade has been initiated, it makes little differnce
how far past threshold the system has been driven. The initial
shear transformation will trigger other shear transformations
without a subsequent increase in the global strain much as
the burning-out of an initial single fuse may trigger a cascade
of burn-outs without a subsequent increase of the global load

FIG. 14. Local energy dissipation during the same time intervals
as in Figs. 12 and 13. Data is on a log scale which ranges from 10−6

to 101, with grey indicating an energy change of less than 10−6 in
magnitude, white indicating an energy increase, and black, an en-
ergy decrease.

FIG. 13. �Color online� Cumulative slip �incremental slip super-
imposed in red� at the same intervals as in Fig. 12.
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in models of fuse networks. There is nothing which prevents
these subsequent events in the cascade from occuring simul-
taneously.

Figure 15 shows the displacement and slip which occurs
after the energy relaxation is fully complete. The displace-
ment field is plotted such that an arrow of length 0.5 is drawn
at each particle in the direction of its displacement. The
shade of the arrows represents the amplitude of the displace-
ment on a linear scale. This representation allows for better
appreciation of the orientation of the displacement field even
when its magnitude becomes small. Recall from the defini-
tion above that the slip is essentially a type of discrete de-
rivative of the displacement. We prefer to deal directly with

displacements rather than energies or stresses, as the latter
are essentially spatial derivatives of the former and thus
much noisier.

The coherent, elasticlike behavior of the displacement
field is striking. It is consistent with the banding mechanism
described above, and is roughly equivalent to the displace-
ment field resulting from the gliding apart of a pair of dislo-
cations running vertically through the system, leaving behind
a vertically running line of slip. One may obtain analogous
displacement fields by imposing slip boundary conditions on
an elastic manifold, essentially Volterra’s construction for
edge dislocations �83�. We now outline some of the salient
features.

FIG. 15. Particle displacements which occur during the entire plastic event. Individual arrows have a uniform length of 0.5 and a shading
which is linear in the amplitude of the displacement. The reader is encouraged to utilize the zooming features of the pdf document format
to explore the fine scale structure of the displacement field.
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The cascade appears to arrest before it has spanned the
system. There is a large, weak vortex �clockwise� at about
�x=0, y=L /2� between the slip line and its periodic images
and a large, weak hyperbolic flow at about �x=0, y=0�. They
are to be expected from a periodic array of incomplete ver-
tical slip lines. If the slip line had been complete, the result-
ing pattern would have likely been the text book example of
a homogeneous shear with displacements in the y direction, a
gradient along the x direction, translationally invariant along
the y direction, and with a discontinuity along the slip line.
Along the vertical slip itself, one sees small vortexlike
�counterclockwise� displacement fields in which the magni-
tude of the displacements is markedly smaller than the dis-
placements of particles which slip. These smaller vortices
represent regions of the material along the slip line which
have failed to slip and can be thought of as resulting from a
uniform line of slip with a gap. Not surprisingly, these vor-
texlike regions of “unbroken” material which appear in the
displacement field in Fig. 15 correspond to regions which are
absent from the plot of the slip field in Fig. 16.

C. Discussion

In this section, we have examined one particular, typical
�the magnitude of stress relaxation was around the average,
and the event was taken at random from the set of all plastic
events� plastic event in a 200�200 system of harmonically
interacting particles and shown that the behavior was consis-
tent with the picture of a cascade of elastically interacting
localized plastic yielding events organized into a line of slip
along the vertical bravais axis of the simulation cell. We have
observed other such events aligned along either the vertical

or horizontal axis of the simulation cell. Note that although
the local slipping events orgranize into features which are
aligned vertically and horizontally, the orientation of the en-
ergy increase/decrease is at 45° away from the orientation of
the slip. Such organization of local slippage events into lines
of slip was observed long ago in experiments on bubble rafts
by Argon and Kuo �8� and, more recently, in confined films
by Abd el Kader and Earnshaw �32�. Although experimental
observations of these features are limited to studies of soap
bubbles, observation in numerical simulations are quite rich.

In their vertex model for dry foams, Okuzono and Ka-
wasaki �88� observed that in the limit of small strain rate,
their system underwent large events, and the authors pro-
posed an analogy with avalanches in sandpile models. The
displacement fields associated with these events were similar
to the ones we have shown here, with the system exhibiting
two “elasticlike” regions slipping with respect to each other
along a line at 45° to the principle axes of applied strain �c.f.
Fig.5�b� in Ref. �88��. We do not know of any attempts to
observe such displacement fields in models of wet foams
such as Durian’s bubble model �60,61�.

Evidence of such transient, slip bands is also observed in
the simulations of compressed granular materials by Aha-
ronov and Sparks �34� and Kuhn �35,36�. These simulations
took into account the Coulombic friction between particles at
contact and were performed at finite, but small strain rates,
yet the emergent behavior seems, at least qualitatively, insen-
sitive to these details. Note, however, that one might expect
qualitatively different behavior as the truly rigid, hard sphere
limit is approached.

Simulations were performed by Leonforte and co-workers
�89� which were similar to the ones we have described here
but with rigid walls at y=0 and y=L rather than fully peri-
odic boundary conditions. Not surprisingly, the vertical
bands are suppressed, and transient horizontal bands emerge.

V. FINITE SIZE SCALINGS

The cascades discussed in the previous section which
comprise the plastic events will now be shown to give rise to
simple scalings of various measures of the event size with
the length of the simulation cell. In the following, we clas-
sify each strain step taken in the simulation as either elastic
or plastic: if the stress was positive, a strain step was consid-
ered to be plastic if it resulted in an energy decrease; if the
stress was negative, a step was considered to be plastic if it
resulted in an energy increase �90�; otherwise, it was consid-
ered to be elastic. We suppose that this operational definition
corresponds closely to the rigorous definition of a plastic
event in terms of the onset of a catastrophe via the vanishing
of an eigenvalue of the Hessian matrix, but as we empha-
sized above, care must be taken to ensure that we take small
enough strain steps such that we remain in the quasistatic
regime. Note, however, that, in principle, there may always
be small plastic discontinuities whose energy drop would be
masked by the elastic energy increase for a given strain step
size. All the data used for the statistical analysis were gath-
ered from an ensemble of 8 systems at strains between 1 and
2 for each box size and interaction potential. In our previous

FIG. 16. Local slip �as defined in the text� which occurs during
the entire plastic event. Arrow lengths are equal to the magnitude of
the particular slip scaled by a factor of 10. Slips of amplitude less
than 10−3 are not shown for clarity.
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work �54�, we analyzed the system size dependence of the
event size distributions only for the harmonic potential,
whereas here we extend to the differing interaction poten-
tials.

Before we begin our discussion of the statistics of the
plastic events, we first report, in Fig. 17, on the distributions
of the instantaneous shear modulus 
= ��

�� for the various
system sizes and interaction potentials. We normalize the
values by the average flow stress 	�
 and note that the dis-
tributions are essentially unchanged if we include/exclude
the plastic events from the analysis. Note that, since the sys-
tem is in steady state, if one does include the plastic events in
the distribution, the average stress increment is, strictly
speaking, zero; however, the plastic drops have a different
sign than the elastic increments and would be well separated
in such a distribution due to their relative infrequence. The
average flow stresses for all interactions and system sizes are
reported in Table I. For each potential, there is a slight in-
crease with size of the average, 	�
, which is noted in Table
I—this effect seems to saturate for the larger systems.

The distributions of the moduli are all essentially Gauss-
ian in the neighborhood of the most likely value, but with
tails on the soft side, indicative of the nonlinear yielding
upon approach to the catastrophes discussed above. The peak
occurs at a dimensionless modulus of about 28 for the Har-
monic and Lennard-Jones systems and at a slightly higher

value for the Hertzian system. This implies that, generically,
these dense, disordered systems have a flow stress which is
about 0.035 times the characteristic modulus, regardless of
the nature of the interaction potential. This value of the “flow

strain”
	�



 is roughly consistent with simulations of various
models of foams in 2D �60,61,88,91,92� �in the dense limit,
away from the loss of rigidity� and the 3D simulations of
yielding of a Lennard-Jones glass �93–95�, although it is
somewhat higher than Johnson’s recently reported universal
flow strain in 3D glasses �96�. It is not clear precisely how
this flow strain, measured in steady flow, relates to the yield
strain measured by Mason and co-workers in oscillatory
rheological experiments on microemulsions �97�, but the or-
der of magnitude of a few percent is in rough agreement.

We stress that it is our ability to resolve the elastic behav-
ior and measure a well defined modulus which gives us con-
fidence that we have chosen a strain step which is small
enough to properly resolve the quasistatic behavior. For
larger strain steps, the well defined peak disappears, the
stress essentially makes a random increase or decrease at
each step, and the quasistatic behavior—i.e., the separation
of plastic from elastic events—is lost.

For the purposes of this work, the more interesting quan-
tities are the various measures of cascade size. Obvious
choices are the distributions of the stress drops, the energy
drops, and the lengths of the elastic segments. As the patterns
we observed in the 200�200 system of harmonic discs were
clearly 1D features, one might expect that the distributions of
the various quantities which characterize the event size
would be invariant when properly rescaled by the length of
the box.

First consider the distribution of stress drops. Since the
events we observe are predomi nantly organized into lines of
slip which extend across the length of the cell, we expect that
such an event should release an amount of stress equal to
���
���
�a /L�, where a is some measure of the ampli-
tude of the slip at the site of the cascade and L is the length
of the box. Since the system is in steady state, the stress built
up in the strain interval 
�� between these events must be
equal, on average, to the stress released in an event �� so we
must have that ���a /L. Note that the relative frequency of
the plastic events should depend only on the geometric quan-
tities a and L and not on energetic quantities such as 
. The
stress drops can be related to the energy drops if we make the
simple assumption that, on average, the energy release is
elastic; that is

�U � L2 	�
��



� aL	�
 .

We now proceed to plot the various distributions P� �U
L	�
 �,

P(��� L



�), and P�L���, for all three system sizes and all
three interaction potentials. All 27 curves collapse onto a
single master curve which is very well fit by an exponential
�with better collapse for the larger system sizes�. For clarity,
in Fig. 18 we first show the distribution for each of the three
quantities—energy drop, stress drop, strain interval—in its
own plot for all nine systems, then, in Fig. 19, show the nine
curves corresponding to only the largest system size, but for

FIG. 17. �Color online� Distribution of instantaneous modulus
�defined by the finite difference �� /��� normalized by the average
stress during steady flow. Each group of three curves corresponds to
a particular system length �12.5,25,50� arbitrarily shifted vertically
for clarity with increasingly longer lengths shifted upward. Legend
is as follows. Circles with solid line �black�: harmonic; squares with
dotted line �red�: Hertzian; diamonds with dashed line �green�:
Lennard-Jones.

TABLE I. Average stress during steady flow for the three dif-
ferent system sizes and interaction potentials.

12.5 25.0 50.0

Harm 6.5�10−2 6.9�10−2 7.2�10−2

Hertz 5.2�10−3 6.0�10−3 6.0�10−3

LJ 1.5 1.7 1.8
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all three quantities and for all three interaction potentials.
This characteristic value for a which one extracts from the
master curve is a few tenths of a particle diameter, in good
agreement with the discontinuity in the displacement fields
shown above. The precision of the collapse in Fig. 19 is quite
striking and indicates that the nature of the slip which occurs
along the cascade line has little to do with the precise nature
of the interaction potential.

The event rate scalings, in particular, have profound con-
sequences concerning both fundamental and technical issues.
For any arbitrarily small strain step size, there will always be
systems large enough, such that the step size is no longer
small enough to resolve the elastic behavior, many indepen-
dent plastic events will be simultaneously nucleated at every
strain step, and the quasistatic behavior will break down.
Thus, it is technically important, for any quasistatic simula-
tion, to verify that one is properly resolving the elastic be-
havior, independently for each system size. For the present
study, this is evidenced by the peaklike behavior in Fig. 17.
We note that had the elementary relaxation events been un-
correlated, the plastic event rate would have scaled exten-
sively, as L2, so the correlations reduce the frequency of
plastic events relative to what would have been observed for
independent uncorrelated events.

VI. CONCLUSION

In conclusion, we have shown that elementary plastic
events take the from of cascades of shear transformations in
the athermal quasistatic limit for a general class of densely
packed simple amorphous materials. The incremental stress
and displacement fields associated with the cascades are
quite reminiscent of microstructural shear cracks which im-
mediately heal themselves after cracking. These local shear
transformations might be roughly thought of as the elemen-
tary objects responsible for plasticity in amorphous material,
analogous to the dislocations which are thought to be respon-
sible for plasticity in crystals.

The locus of rearrangement shows some spatial correla-
tion from one event to the next, but these correlations decay
quickly after just a few plastic events �although we have not
presented this data here�. We observe no evidence for the
kinds of pronounced persistent shear localization which is
seen in many experiments and simulations of sheared amor-
phous materials where hard walls are employed to drive the
system, and we find it likely that the persistent localization
observed elsewhere is due largely to effects of the boundary.
Future investigations into the role of the boundaries will be

FIG. 18. �Color online� Distribution of �top to bottom�: �U
L	�
 ,

L��

 , and L��, where �U is the energy drop for a plastic event, ��

is the stress drop for a plastic event, and �� is the length of an
elastic segment. Legend is as follows. Solid �black�: L=12.5; dotted
�red�: L=25; dashed �green�: L=50; circles: harmonic; squares:
Hertzian; diamonds: Lennard-Jones.

FIG. 19. �Color online� Probability distributions of �U
L	�
 ,

L��

 ,

and L�� for all three interaction potentials. Only the nine curves
corresponding to the largest systems are shown for clarity.
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crucial in both atomistic studies �93,95,98,99� and mesos-
copic models �22,100�.

The detailed picture of the onset of individual plastic
events which we developed showed that directions of low
curvature on the potential energy surface, when driven to
zero by the strain, are responsible for nucleating the cascades
of shear transformations. These low-lying modes which were
shown to have an essentially “shear-transformation-like”
quadrupolar character, were found to play a dominant role in
the nonaffine elastic displacement fields, even reasonably far
away from the onset of a cascade, and might be observed
experimentally in this way. Strikingly, at least in the systems
studied here, these modes are not observable via looking at
local stresses �e.g., as in Ref. �84��, or local Born values of
the elastic constants, and can only be observed through the
nonaffine elastic response. This is to be contrasted with the
plastic deformation which occurs after a cascade has been
initiated, in which case the deformation occurs preferentially
in the locations which have had their local stresses increased.
The identification of some critical core which can be consid-
ered as essential in nucleating the plastic events remains an
important open issue.

We showed that the organization of the shear transforma-
tions into cascades during the individual plastic events
caused a scaling of the average event size with the length of
the simulation cell regardless of the underlying interaction
potential. These strongly correlated events, which involve
lengths as large as the simulation cell, are in qualitative
agreement with various numerical simulations, both atomis-
tic �48,64� and mesoscopic �22,25�. They induce scalings
with the length of the system for various measures of event
size �energy drop, stress drop, and elastic segment length�
which would have been incorrectly predicted from an under-
lying picture of uncorrelated localized events. Furthermore,
various interaction potentials �Lennard-Jones, harmonic, and
Hertzian springs� were shown to exhibit nearly identical be-
havior upon appropriately adjusting the energy scale for the
given potential.

Although, we were able to measure the properties of the
nucleating modes quite precisely �at least in moderately
sized systems�, once cascades were initiated, the picture be-
came quite complicated with simultaneous and overlapping
shear transformations. In general, our work highlights the
fundamental difficulties involved in decomposing any cas-
cade into constituent elementary events. Thus, important
questions which are relevant to the construction of plasticity
theories, such as the spatial structure of a complete, isolated
shear transformation �26,100�, remain open. Even so, we
were able to demonstrate that the predominant activity dur-
ing the cascades was qualitatively characteristic of local
shear transformations, with incremental displacements and
associated mechanical fields having predominantly quadru-
polar character and the cumulative displacements and me-
chanical fields being reminiscent of narrow lines of slip.

Importantly, our study focused on the 2D case, and we
have not performed any simulations in three dimensions.
One might naively expect that in 3D the slip lines we ob-
serve in 2D would be promoted to slip planes, and analogous
scaling results would be obtained. However, the model of
Baret et al. �27� shows nontrivial self-affine structure of the

deformation patterns in a 2D antiplane geometry. It is an
interesting and open question as to how the simple linear
features we observe in the 2D in-plane atomistic simulations
would compete with the 2D out-of-plane self-affine features.
Recently, Leonforte and co-workers have performed 3D
simulations of similar systems �101�. The main focus of that
work was on the elastic response of the system, but extension
into the plastic regime will prove most interesting.

One of the most important directions for future study will
be extending to finite temperatures and strain rates. The scal-
ing analysis performed by Yamamoto and Onuki �48,64�
showed that in sheared supercooled liquids, the dynamical
correlation length becomes temperature independent at small
enough temperatures—the “strong-shear” regime—whence it
scales similar to the strain rate to some negative power. The
recent athermal mesoscale model of plasticity proposed by
Picard and co-workers �22� also exhibits a diverging length,
but with a stronger divergence than that reported in the 2D
simulations by of Yamamoto and Onuki. Recent work by
Langer, Liu and co-workers and Berthier and Barrat has sug-
gested that imposed strain rate induces an effective tempera-
ture in athermal systems �102,103�, much the same as the
effective temperature in unsheared supercooled liquids
�104–106� defined in terms of effective fluctuation dissipa-
tion relations �107�, and consistent with the picture of Yama-
moto and Onuki of decreasing correlations upon increasing
either strain rate or temperature.

This raises important questions regarding the correlated
motions in both the atomistic and mesoscopic simulations.
What role do shear transformations play at finite temperature
and strain rate both in the strong-shear and thermal �aging�
regimes, and how robust with respect to finite drive is the
cascade mechanism? Is the underlying mechanism for the
heterogeneity in the strong-shear regime different than the
thermal regime? Does the strong-shear scaling relation �
� �̇−1/4 of Yamamoto and Onuki continue to hold below the
glass transition, or is there a crossover to the �� �̇−1/2 behav-
ior observed in the mesoscale model of Picard et al.? More
generally, is there any difference between a supercooled liq-
uid in the strong-shear regime and an amorphous solid?
These are some of the fundamental questions which must be
addressed in order to make progress’ toward a coherent
theory of sheared amorphous material.
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APPENDIX: NONAFFINE LINEAR RESPONSE TO
SIMPLE SHEAR

In this appendix, we derive the equations of motion which
govern the deviations from affine motion for a system sub-
jected to some prescribed mode of deformation. These re-
sults have been derived in various previous works �108,109�
where much formalism needed to be introduced to deal with
the full tensorial nature of the kinematics of arbitrary finite
deformations. Our aim here is for a concise derivation with
explicit specialization to the case of simple shear. The equa-
tions which we now derive are nothing more than the math-
ematical realization of the procedure outlined in the cartoon
in Fig. 3 in the body of the text. The derivation is applicable
to any interaction potential which can be written as a func-
tion of the full set of interparticle distances, and allows one
to compute the nonaffine linear response for any system
�e.g., embedded atom methods �110,111� or potentials for
silicon �112�� as long as one has access to the Hessian ma-
trix. On the other hand, the formalism would need to be
adapted in order to handle potential energy functions with
rotational degrees of freedom.

The system we have in mind is a collection of particles
contained in a 2D parallelogram which is allowed to undergo
volume conserving simple shear with the velocity in the x
direction, and the velocity gradient in the y direction. In the
formalism we present in this appendix, the particles in the
interior of the cell may interact either with boundary par-
ticles which are constrained to move affinely with the cell
walls or with periodic images of other particles in the inte-
rior, but the numerical results presented in the body of the
text were produced with the latter procedure. In either case,
we will refer to either the boundary particles, or periodic
image particles which live outside the primary cell as exte-
rior particles. Latin indices are used to label particles and
greek indices to label cartesian components. Repeated greek
indices are always meant to be summed over and latin indi-
ces should be summed over unless it is stated otherwise.

We start by defining the simple shear affine transforma-
tion A�

A���x,y�� = �x + �y,y�

which transforms points affinely along with changes in the
cell. Once a reference configuration �where we mean both a
set of particle positions and a particular box shape� is given,
then the positions of the particles in any other configuration
may be decomposed into an affine term plus a deviation from
affine motion �x̊ , ẙ�:

�x,y� = A���x0,y0�� + �x̊, ẙ� = ��x̊ + x0 + �y0�,�ẙ + y0�� .

The potential energy of the system in any configuration
U��ri
� ,�� is a function of both the set of the positions of all
the particles within the primary cell �ri
� and the shape of the
cell �, since � determines the location of the exterior par-
ticles. However, once a reference configuration is chosen, it

is often more natural and convenient to consider the energy
to be a function of � and the nonaffine coordinates
U��r̊i
� ,��, rather than the laboratory coordinates.

Forces are derived as usual from this potential energy
function with the caveat that the derivatives of the energy
with respect to particle position should be taken at a fixed
cell shape

f i
 � − 
 �U

�ri




�

= − 
 �U

�r̊i




�

.

Note that since the derivative occurs at fixed �, one may take
derivatives with respect to either the laboratory coordinates
�ri
� or the nonaffine coordinates �r̊i
� defined with respect to
some reference configuration.

Suppose the system starts in an energy minimum �with
respect to variations in position at fixed ��. Then, generically,
we should be able to define a unique, continuous dynamics
for �r̊i
���� along some range of � such that as � is varied,
the condition f i
=0 remains satisfied. One can simply differ-
entiate to derive an equation of motion for �r̊i
���� as a func-
tion of �. Since the forces must remain zero, they should not
change as � changes, so we must have

−
dfi


d�
= � �2U

�r̊i
��
� + � �2U

�r̊i
�r̊ j�
�dr̊j�

d�
�A1�

=� �2U

�r̊i
��
� + � �2U

�ri
�rj�
�dr̊j�

d�
= 0. �A2�

Equation �A2� expresses nothing beyond the simple force
balance represented schematically in the cartoon in Fig. 3. It
can be thought to embody the procedure of first taking a
tentative affine step of magnitude d� of both the cell and the
particles and then subsequently making the correction, dr̊i
,
to move the particles to the new configuration of zero force.
Note that in the second line, we have dropped the rings over
the r’s in the denominator of the second term to emphasize
that since the derivative is taken at fixed �, derivatives with
respect to r and r̊ are equivalent. On the contrarty, in the first
term, we leave the ring over the r, since the mixed derivative
involves a variation in �.

The first term represents the forces which are induced
when the system is subjected to an affine deformation, and
we will refer to these forces as the affine forces. The affine
forces figure so centrally in the approach, we reserve the
symbol 	i
 to represent them:

	i
 �
�2U

�r̊i
��
= − 
 �f i


��



r̊
.

Note that if the configuration of particles surrounding par-
ticle i happens to form a Bravais crystal, then the force on i
remains zero after an affine deformation of its crystalline
neighborhood, and 	i
 must vanish by symmetry. In this
sense, 	i
 is a mechanical measure of the local configura-
tional disorder.

The second term in Eq. �A2�, which we recognize as the
nonaffine displacements, �dr̊i
�, contracted on the Hessian
matrix of the system
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Hi
j� �
�2U

�ri
�rj�
= − 
 �f i


�rj�



�

= − 
 �f j�

�ri




�

,

represents the linear response forces of the system which
must balance the affine forces if the system is to remain at
zero force.

We now rewrite the force balance in Eq. �A2� as

	i
 + Hi
j�
dr̊j�

d�
= 0, �A3�

dr̊i


d�
= − Hi
j�

−1 	 j�. �A4�

For periodic systems, the solution is only defined up to rigid
translations, since the Hessian matrix is translationally in-
variant, and we choose, conventionally, the solution which
has no translational component:

�
i

dr̊i


d�
= 0.

The affine forces −	i
 may be computed directly from the
Hessian matrix Hi
j�:

	i
 = − 
 �f i


��



r̊
= Hi
j�

�rj�

��
= �Hi
j��yj�x�. �A5�

They amount to a simple shear displacement field contracted
on the Hessian matrix. To further simplify, we may use the
local translational invariance of forces to write

	i
 = Hi
jxyji. �A6�

An important note regarding the boundaries. If one is us-
ing periodic boundary conditions, then, of course, the appro-
priate image of j should be used to compute the yji which
appears in Eq. �A6�, and no other special care need be taken,
as the Hessian matrix will already contain the nonzero ele-
ments which couple i and the image of j through the cell
boundary. On the other hand, if one is using boundary par-
ticles which move affinely with the cell in lieu of periodic
boundary conditions, then the sum over the particles j in Eqs.
�A5� and �A6� must be taken over all particles in the primary
cell including i itself and additionally the exterior particles.
This interior/exterior sector of the Hessian matrix is the only
way in which the system is coupled to the imposed boundary
conditions. If one were to neglect these interior/exterior cou-
plings when computing 	i
, then dr̊i
 /d�=−yi�x
 would be
the solution of Eq. �A4�; the interior of the system would
simply remain frozen, failing to be influenced at all by the
boundaries.

At this point, we have completely expressed the equation
of motion for the nonaffine linear response to shear in terms
of Hi
j�, and Eq. �A4� may be practically solved even in
cases where it is difficult to provide analytical expressions
for the Hessian matrix. However, we now specialize to the
case of pairwise interactions and derive explicit expressions
for the elements of the Hessian and the affine forces. In this
case the energy is a sum of terms, each of which is a function
of the distance between the particles in the pair

U =
1

2�
ij

V�rij� .

For the remainder of this section, we refrain from using the
summation convention over latin indices, and will write all
sums over particles explicitly. The force on particle i can
then be written as a sum of bond forces

f i
 = −
�U

�ri

= �

j�i

f ij�r̂ij�
,

where we have defined the bond force

f = −
�V

�r

and r̂ij
 is the unit vector pointing from particle i to j. Of
course the condition that the net force on all particles be zero
does not necessarily imply that the bond forces are zero, only
that their vector sums are zero.

To compute the next order derivatives, it again suffices to
consider individual bonds. For any particular bond, we de-
fine the bond stiffness tensor M
� as

M
� =
�2V

�r
�r�

=
�f


�r�

= �c +
f

r
�n̂
n̂� −

f

r
�
�,

where we have introduced the bond stiffness

c =
�2V

�2r
.

The Hessian matrix is then constructed out of these bond
tensors. A diagonal element of the Hessian matrix is con-
structed out of the sum of all bond tensors of the bonds
which are connected to the particle in question,

Hi
i� = − �
j�i

Mi
j�,

while an off-diagonal element is simply equal to the single
bond tensor which corresponds to the bond between the two
particles:

Hi
j� = Mi
j�.

We can also now expand Eq. �A6� to provide local expres-
sions for the affine forces:

	i
 = �
j�i

Mi
jxyji

= �
j�i
�n̂ij
��cijrij + f ij�

xijyij

rij
2 � − �
x� f ij

yij

rij
�� .

When 
=y, the second term is zero because of the �
x, and
when 
=x, we recognize the term inside the braces as the y
component of the bond force. Since we suppose that the
system is at mechanical equilibrium, these y forces must van-
ish in the sum

�
j�i

� f ij
yij

rij
� = 0

and we may drop the second term altogether
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	i
 = �
j�i

n̂ij
��cijrij + f ij�
xijyij

rij
2 � . �A7�

As a consistency check one may note that, since each term in
the expression is manifestly odd with respect to reflection of
the bond vector through the origin, any particle whose neigh-
borhood has this symmetry will have 	
=0.

Another quantity of interest in addition to the nonaffine
displacements themselves is the stress � defined as the total
derivative of U with respect to �. It is precisely equal to the
rate �per unit strain� at which we are doing reversible work
on the system as we drive it quasistaticaly along the elastic
trajectory:

� �
dU

d�
= 
 �U

��



r̊
+ 
 �U

�r̊i




�

dr̊i


d�
= 
 �U

��



r̊
, �A8�

where the last equality follows from the fact that the system
is at a state of mechanical equilibrium ��U /�r̊i
�=0. The
nonaffine motions make no contribution to the stress
�113,114�.

For pairwise interactions, the stress can be easily evalu-
ated over the bonds as

� = �
ij

f ijrij
xijyij

rij
2 . �A9�

One may then adopt the point of view that each atom makes
a contribution to the total stress equal to half the sum of the
contribution from each of its neighbor bonds

�i =
1

2�
j�i

f ijrij
xijyij

rij
2 . �A10�

The elastic stiffness 
 is defined as the total derivative
�while enforcing the condition that the forces on all particles
remain zero� of � with respect to �:


 �
d�

d�
,

=
��

��
+

��

�r̊i


dr̊i


d�
,

=
��

��
+

�2U

�r̊i
��

dr̊i


d�
,

=
��

��
− 	i
Hi
j�

−1 	 j�. �A11�

We immediately see that, unlike the case of the stress, for the
stiffness the nonaffine motions do play an important role.
The first term gives the change in stress which would arise
after a simple shear without allowing for nonaffine relax-
ations. It was computed long ago for systems with pairwise
interactions by Born and Huang �78�. For Bravais crystals,
since 	i
 vanishes, the stiffness is exactly given by this first
term alone.

The second term gives the corrections due to the non-
affine motion. Since the Hessian matrix is positive definite at
an energy minimum, the nonaffine motions must reduce the
stiffness; an observation which has been made many times in
the past.

Again specializing to pairwise interactions, the Born-
Huang term can be evaluated:

��

��
= �

ij

�

��
� f ijrij

xijyij

rij
2 �

= �
ij

rij�rijcij + f ij�� xij
2 yij

2

rij
4 � + rij f ij� yij

rij
� . �A12�

As with the stress, one may adopt the alternate point of view
that each atom makes a contribution equal to half the sum of
the contribution of each of its bonds.

To summarize, in this Appendix we have shown how to
compute the nonaffine contribution to the linear response and
shear stiffness of an n-body system given its Hessian matrix.
We further specialized to the case of pairwise interactions
and gave explicit expressions in terms of bond stiffnesses
and quenched forces in that case.
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