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Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to
the self-organization of the glass network resulting from the tendency to minimize its internal stress. However,
the exact nature of this experimentally measured phase remains unclear. We modified a previously proposed
model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on
a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks
have a chance to occur, a result also observed in a related model on a Bethe lattice by Barré et al. �Phys. Rev.
Lett. 94, 208701 �2005��. Our results for the bond-configurational entropy of self-organized networks, which
turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate
phase could be common in systems near the rigidity percolation threshold.
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I. INTRODUCTION

Rigidity theory �1–5� has improved considerably our un-
derstanding of the structural, elastic, and dynamical proper-
ties of systems such as chalcogenide glasses �1,5,6�, inter-
faces �7� and proteins �8�, as a function of their connectivity.
In its classical version, it introduces the concept of a rigidity
transition, separating soft �or floppy� and rigid phases char-
acterized by a mean coordination number. In many systems,
optima or thresholds of various physical quantities are often
observed at the rigidity transition. Some time ago, for ex-
ample, Phillips �9� noted that among chalcogenides, the best
glassformers have a mean coordination such that the number
of degrees of freedom is equal to the number of covalent
�bond-stretching and bond-bending� constraints. At this
point, corresponding to the rigidity transition, networks are
largely rigid but stress-free. This prevents crystallization for
both kinetic and thermodynamic reasons: being stress-free,
the glassy state is not too energetically unfavorable com-
pared to the crystal; being rigid, the networks lack the flex-
ibility to efficiently explore the phase space and reach the
crystalline state fast. Similarly, in the last five years, it has
become clear that most proteins in their native state sit al-
most exactly at the rigidity transition, which could be neces-
sary to have enough flexibility to fulfill their function while
retaining their overall structure �8�.

Recently, a series of experiments on chalcogenide and ox-
ide glasses �10–25� have demonstrated the existence of a
number of interesting and surprising behaviors. For instance,
glasses with nearly optimal properties, such as the absence of
aging �18,20,22� and vanishing nonreversing enthalpy of the
glass transition �10–13,15,16,18,20–22� are observed not just
at a particular mean coordination, but in some range of co-
ordinations, suggesting the presence of an intermediate
phase between the floppy and the rigid phases. While the

details and exact origin of this intermediate phase are still a
matter of debate �see, for example, the recent experimental
paper by Golovchak et al. �26��, it appears that it is due to
the self-organization of the network minimizing the internal
stress. If, according to Phillips’ argument, we expect “opti-
mal” glasses to be rigid but stress-free, we should now ex-
pect to find this property everywhere in the intermediate
phase rather than only at a single critical point, as in the
standard phase diagram of rigidity percolation; there is now
some direct evidence for this �17,23�.

A few models were proposed to explain this self-
organization. Thorpe and co-workers �27,28� have shown in
an out-of-equilibrium model that it is possible to generate a
stress-free intermediate phase. Barré et al. �29� have shown
in addition that such a phase was thermodynamically stable
on a ring-free Bethe lattice, where each site has three degrees
of freedom, but the whole network is embedded in an
infinite-dimensional space. Taking a different approach, Mi-
coulaut �30� demonstrated that one could recover an interme-
diate phase by concentrating all the strain in local structures.

The goal of this paper is to assess whether or not a self-
organized network with a finite-dimensional topology is also
thermodynamically possible. This verification is important
on two counts: �1� the Bethe lattice is a loopless structure
producing a first-order rigidity transition �5,31,32� while
two- and three-dimensional regular networks undergo a
second-order phase transition �3,5�; �2� the original model of
Thorpe et al. is an out-of-equilibrium model which could
lead to highly atypical networks.

For simplicity, we study two-dimensional central-force
�2D CF� networks. This allows us to consider networks of
much bigger linear dimensions than is possible in 3D, limit-
ing the finite-size effects. Moreover, in all cases studied until
now, rigidity results for 2D CF networks have been qualita-
tively very similar to those obtained for 3D glass networks.
Our results should therefore also apply to glass networks.

In the next section, we review the basic facts about rigid-
ity and the intermediate phase. We then explain the model
used here and present our results for a bond-diluted two-
dimensional triangular network. We first discuss an unusual
property of our model: a network in the intermediate phase
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can be either rigid or floppy with a finite probability. We then
focus on the calculation of the entropy of self-organized net-
works.

II. THE INTERMEDIATE PHASE
IN THE RIGIDITY PHASE DIAGRAM

In rigidity theory, an elastic network is characterized by
the number of motions, called floppy modes, that do not dis-
tort any constraints. In a system with no constraints, all de-
grees of freedom are floppy modes and thus their number is
dN, where N is the number of atoms and d is the dimension-
ality of space. In an approximation due to Maxwell �33� and
known as Maxwell counting, it is assumed that each addi-
tional constraint removes a floppy mode, so that the number
of floppy modes for a given number of constraints Nc can be
written as

F = dN − Nc. �1�

When the number of constraints becomes equal to the num-
ber of degrees of freedom, F=0 and the network undergoes a
rigidity percolation transition, going from floppy to rigid. In
a 2D CF network, the number of constraints per atom is
�r� /2, where �r� is the mean coordination �the average num-
ber of connections of a site�; the critical coordination is
therefore �r�=4. In chalcogenide glasses, characterized by
the chemical formula AxByC1−x−y, where A is an atom of
valence 4 �usually Ge or Si�, B is an atom of valence 3 �As or
P�, and C is a chalcogen �Se, S or Te�, counting both cova-
lent bonds and their related angular constraints, the critical
coordination is �r�=2.4 �1�.

Since Maxwell counting is a mean-field theory, it ignores
fluctuations and correlations that can be built in the network.
An overall rigid network can have some internal localized
floppy modes. Also, a constraint inserted into a piece of the
network that is already rigid does not remove floppy modes.
Such constraints, known as redundant, are obviously present
in the rigid phase, where Eq. �1� gives a negative number of
floppy modes, since this number cannot be lower than d�d
+1� /2 �6 in 3D, 3 in 2D�, to account for rigid body transla-
tions and rotations; but redundant constraints can also be
present, of course, in an overall floppy network. In generic
networks, such as glasses, where the bond lengths vary, these
constraints create an internal stress and increase the elastic
energy, since at least some part of the network has to be
deformed to accommodate them.

If the number of redundant constraints, NR, is known, then
the Maxwell counting formula can be corrected:

F = dN − Nc + NR. �2�

This result is exact—the problem lies in calculating NR. A
theorem by Laman �34� makes this possible. Consider all
possible subnetworks of a system. If the number of degrees
of freedom minus the number of constraints is less than
d�d+1� /2 for at least one subnetwork, there must be redun-
dant constraints. Laman showed that this is the only way
redundant constraints can occur: for them to be present, the
above must be satisfied for at least one subnetwork. This is

strictly true in 2D; although there are known counterex-
amples for general networks in 3D, it is assumed true �there
is no rigorous mathematical proof, but no known counterex-
amples either� for glassy networks with covalent bonding
including angular constraints �35,36�.

Laman’s theorem is used in a computer algorithm for ri-
gidity analysis, known as the pebble game �3,37–40�. The
pebble game starts with an empty network and then one con-
straint is added at a time and each added constraint is
checked for redundancy. Thus at every stage in the network-
building process the number of redundant constraints, NR,
and, according to Eq. �2�, F, are known exactly. Independent
constraints are matched to pebbles that are assigned to sites
and whose total number is equal to the number of degrees of
freedom; thus the number of free pebbles �not matched to
any constraint� gives the number of floppy modes. The
pebble game, in addition, identifies stressed regions in the
network and also offers rigid cluster decomposition that
identifies all rigid clusters in the network. The analysis pro-
vided by the pebble game is purely topological, the details of
the geometry are not taken into account, nor is the exact
expression for the forces. The downside is that the pebble
game �as well as Laman’s theorem itself� is only applicable
to generic networks: networks special in some way �having
parallel bonds, for instance� may have rigidity properties that
are different from those of the vast majority of networks of a
given topology. The fraction of such special �or nongeneric�
networks among all networks of a given topology is, how-
ever, zero, and so a covalent glass network, being disordered,
can be safely assumed to be generic.

Recently, a series of experiments �10–18,20–23,25� have
suggested that there could be not one but two phase transi-
tions near �r�=2.4, with the opening of an intermediate
phase between the phases already known. The properties of
this phase suggest that the intermediate phase is rigid but
stress-free. To explain the presence of two transitions and the
intermediate phase between them within the framework of
rigidity theory, it has been proposed �27� that the glass net-
works self-organize in some way. Broadly speaking, any re-
duction in the amount of disorder in the network as it tries to
minimize its free energy can be referred to as self-
organization; chemical order, especially strong in oxide
glasses such as silica, would be one example. Thorpe and
co-workers �27,28� considered a particular kind of self-
organization: glass networks minimizing their elastic stress
energy. As a proof of principle, they constructed the follow-
ing model. Starting with a low-coordination stress-free net-
work, bonds are added one at a time with the restriction that
they cannot be redundant and thus add stress to the network,
using the pebble game for constructing and analyzing the
network at each step. This process is repeated until it is no
longer possible to add a bond without introducing stress to
the network. After that, bond insertion continues at random.
The maximum coordination at which no stress is present,
according to Eq. �2�, cannot exceed the rigidity threshold
according to Maxwell counting ��r�=4 for 2D CF networks
and �r�=2.4 for covalent glass networks�. In fact, in the
model of Thorpe et al., the Maxwell counting threshold
value is reached without stress for 2D CF networks, but not

CHUBYNSKY, BRIÈRE, AND MOUSSEAU PHYSICAL REVIEW E 74, 016116 �2006�

016116-2



for the 3D glass network �28�. In this model, once the stress
appears, it immediately percolates, corresponding to the up-
per boundary of the intermediate phase. In general, this need
not be the case, since a network can have finite stressed
regions without stress percolating �this is the case in the
model of Micoulaut and Phillips�30,41��.

To observe the rigidity transition in a two-dimensional
diluted regular lattice, one needs a lattice with coordination
bigger than 4, and so the triangular lattice is a natural choice.
Since the pebble game algorithm can only be applied to ge-
neric networks, one has to assume that the triangular lattice
is distorted �for example, by having some disorder in bond
lengths�. Once this assumption is made, the detailed charac-
teristics of the disorder, such as the distribution of bond
lengths, will not matter and, in fact, never enter the analysis,
as the pebble game uses only network topology as its input.
Previous numerical studies for the randomly diluted triangu-
lar lattice without self-organization �3� indicate a single ri-
gidity and stress transition at �r�=3.961±0.002 �see Fig.
6�a��, very close to the Maxwell counting prediction. Note
that the rigidity and stress transitions coincide in this case.

In the self-organization model of Thorpe and co-workers,
a numerical simulation reveals instead two phase transitions
�see Fig. 6�b��. As the coordination is increased from the
floppy phase, a percolating rigid cluster appears at �r�
�3.905. At this point, by construction, the network is still
stress-free. This is the lower boundary of the rigid but stress-
free intermediate phase—the rigidity percolation transition.
As the mean coordination continues to grow, keeping the
network stress-free becomes impossible. At this point,
which, as mentioned above, is at �r�=4, the stress appears
and immediately percolates. This is the stress percolation
transition, which is the upper boundary of the intermediate
phase.

The probability of a percolating cluster in the model of
Thorpe and co-workers is zero below the rigidity percolation
threshold and one above in the thermodynamic limit, as nor-
mally is the case for percolation transitions. This is illus-
trated in Fig. 1, where the probability of having a percolating
cluster is shown for different network sizes. As expected, the
dependence gets closer to a step function as the size in-
creases.

III. A SELF-ORGANIZATION MODEL
WITH EQUILIBRATION

The self-organization model of Thorpe and co-workers is
peculiar in that bonds are only added to the network and
never removed. While one can imagine a very rapid quench
process in which indeed bond formation dominates, this pro-
cess does not lead to a formation of good glasses. Therefore
a way of building equilibrated stress-free networks is needed.
As the elastic energy of a stress-free network is zero, any
such networks should occur with equal probability.

A similar issue arose before in the case of conventional
�or connectivity� percolation. In the rigidity case, self-
organization proceeds by avoiding stress or redundancy, i.e.,
bonds that connect already mutually rigid sites. The connec-
tivity analog consists in avoiding connections between sites

that are already connected, i.e., creating loops. Straley �42�
proposed a model directly analogous to the one by Thorpe
and co-workers, i.e., with bonds inserted one at a time and
those forming loops rejected; connectivity percolation occurs
at some point, and then there is an “intermediate phase” �al-
though it was not referred to as such in the connectivity
percolation context� that is connected but without any loops,
until a point is reached at which avoiding loops is no longer
possible �at this point the network is a spanning tree�. It was
realized later on that this model does not produce a uniform
ensemble, in which every loopless network would occur with
equal probability. Several authors, using a variety of methods
�43–45�, claimed then that in the equilibrated uniform en-
semble, connectivity percolation does not occur until the
spanning tree limit is reached, i.e., there is no intermediate
phase. This shows that the results may change significantly
depending on the ensemble of self-organized networks that is
considered.

Braswell et al. �44�, in particular, used the following al-
gorithm to generate equiprobable loopless networks: take an
arbitrary loopless network, choose a bond at random, delete
it and then reinsert at an arbitrary place where it would not
form a loop, with this place chosen equiprobably among all
such places. They showed that after equilibration has taken
place, this method would indeed generate the uniform en-
semble of networks, by proving the detailed balance condi-
tion, i.e., that given some loopless network 1, the probability
that in a single step of the algorithm some other network 2
would be produced is the same as the probability of going in
the opposite direction, i.e., from network 2 to network 1.
Their arguments fully apply to the rigidity case as well.

In view of the above, we consider a variety of the self-
organization model by Thorpe and co-workers, adding
equilibration that produces equiprobable stress-free net-
works. Like in the previous model, we start with the “empty”
network without bonds and start inserting bonds one by one
without creating stress. After every bond insertion, we equili-
brate by doing bond swaps following the procedure de-
scribed above, i.e., choose a bond at random, delete it, and

FIG. 1. The fraction of networks in which the percolating rigid
cluster is present as a function of �r� for the model of self-
organization without equilibration. Each curve is obtained from 100
separate runs on a bond-diluted triangular lattice; the lattice sizes
are indicated in the legend.
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then insert a bond elsewhere choosing at random among the
places where that new bond would not create stress. It is
worth noting that, in general, it is rather difficult to handle
removal of constraints within the pebble game; but it is easy
to remove an unstressed constraint, as this simply involves
releasing the associated pebble with no additional pebble re-
arrangement. Since in our case all constraints are unstressed
by construction, no problem arises. In this paper we focus on
the intermediate phase and do not investigate the stressed
phase, so we stop at the point at which further stressless
insertion becomes impossible.

A very similar model has been proposed recently by Barré
et al. �29� using a Bethe lattice and, as an added sophistica-
tion, an energy-cost function linear in the number of redun-
dant constraints. While this energy is somewhat unrealistic, it
provides a thermodynamic justification for the existence of
the intermediate phase. However, Bethe lattices are particular
constructions, leading to a first-order rigidity phase transition
while 2D central-force and 3D bond-bending networks show
a second-order rigidity transition. By comparison, our model
in essence assigns an infinite cost to redundant bonds and
corresponds therefore to the T→0 limit of the model of
Barré et al. but on a regular lattice with a second-order ri-
gidity transition.

IV. RIGIDITY PERCOLATION
IN THE INTERMEDIATE PHASE

Our simulations for the new model with equilibration are
done for 2D CF bond-diluted triangular lattices. Periodic
boundary conditions were used with the supercell consisting
of the same number of unit cells in both directions. We have
chosen the duration of equilibration equal to 100 steps above
�r�=3.5 and 10 steps below �where even in random networks
there are very few redundant constraints, so the self-
organized networks are almost completely random anyway
and long equilibration is not needed�. This is sufficient for
convergence as shown in Fig. 2 for a 100�100 lattice; we
also checked that 100 steps was sufficient by comparing the
result with that of a very long equilibration run at a single
point �r�=3.95 for the largest lattice used here �not shown�.

The result we get is quite different from that obtained
without equilibration. Figure 3, just as Fig. 1, shows the
probability of rigidity percolation as a function of �r� for
several different sizes, but now for the model with equilibra-
tion. The self-organization still opens an intermediate phase
around the critical point found at �r��3.961 in the standard
rigidity phase diagram. But rather than approaching a step
function as the size increases, the result for the probability of
percolation is now a gradual increase from 0 at �r��3.94 to
1 at �r�=4. This is similar to the result on a Bethe lattice in
the model of Barré et al., even though the rigidity percola-
tion transition is of a different order. The dependence of the
percolation probability on �r� is close to linear and this lin-
earity may, in fact, be exact, although a very small nonlinear
region near the lower boundary of the intermediate phase
cannot be ruled out. One difference between our result and
that presented by Barré et al. is that since their consideration

is at a nonzero temperature, there is always a possibility of
having a small number of redundant constraints; since add-
ing very few �perhaps O�1�� redundant constraints to an un-
stressed network is often enough for stress percolation, it is
not surprising that they have found a finite probability of
both rigidity and stress percolation in the intermediate phase,
whereas in our case, the stress percolation probability is, of
course, zero by construction.

When obtaining the above results, a network was deemed
percolating, if there was a rigid cluster spanning it in a par-
ticular direction; whether this cluster spanned the network in
the perpendicular direction did not matter. While the particu-
lar way of defining percolation clearly does not matter �in the
thermodynamic limit� in the usual case, when the percolation
probability is always either zero or one, this is less obvious
in our case. However, a test done for the largest network

FIG. 2. Same as in Fig. 1, but now for the model with equili-
bration, for triangular networks of 10 000 sites, and for several dif-
ferent equilibration times indicated in the legend as the number of
equilibration steps per each inserted bond above �r�=3.5; below
�r�=3.5, there are 10 equilibration steps per bond in all cases. The
data are likewise from 100 separate runs, but in addition, from each
run all networks obtained during the equilibration procedure at the
given mean coordination are taken into account.

FIG. 3. Same as in Fig. 2, but for different network sizes indi-
cated in the legend, always using 10 equilibration steps per inserted
bond below �r�=3.5 and 100 equilibration steps above.
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used in this study and 100 equilibration steps per bond indi-
cates that requiring a presence of a cluster spanning the net-
work in both directions simultaneously does not affect the
results.

V. ENTROPY COST
OF SELF-ORGANIZATION

Although we do not include a potential energy explicitly,
the self-organization models discussed here are constructed
to prevent the build-up of stress, implicitly minimizing the
potential energy of the system. At a finite temperature, how-
ever, we are interested in minimizing the free energy. As
glasses are formed at a nonzero temperature, the thermody-
namical state will be influenced by the balance between the
entropic cost associated with generating a self-organized net-
work and the energetic cost of creating internal stress: if the
entropy of the random network is large compared with that
of the self-organized one, then it is likely that very little
self-organization will take place and the problem discussed
here becomes irrelevant.

The entropy of a covalent network can be viewed as con-
sisting of two parts. The first part, the topological entropy, is
proportional to the logarithm of the number of different pos-
sible bond topologies or bond configurations. The second
part, which can be called, somewhat simplistically, the flex-
ibility entropy, depends on the phase space available to each
such bond configuration. This division of the total entropy is
similar, but not identical, to the traditional division into the
configurational and vibrational entropy in the inherent struc-
ture formalism �46�. In particular, flexible networks exhibit a
wide range of motions and would generally correspond to
more than one inherent structure, when a potential energy
function is defined. For this reason, the flexibility entropy
includes both harmonic and anharmonic contributions asso-
ciated with a given topology of the covalent network; its
exact evaluation is difficult and goes beyond the scope of
this paper. However, since the flexibility entropy is expected
to be roughly proportional to the number of floppy modes
�47–49�, and, according to Eq. �2�, the number of floppy
modes in a self-organized network �with NR=0� is smaller
than in a random network �NR�0� with the same number of
constraints Nc, the flexibility entropy of the self-organized
network is likely to be smaller than that of the random net-
work. This difference is probably not very large, especially
in real systems where long-range forces reduce significantly
the available configuration space even in the floppy phase.

The topological entropy is, in general, difficult to calcu-
late as well, although methods, such as that by Vink and
Barkema �50�, exist. It is much simpler for a lattice-based
model like ours, as it requires only counting the number of
possible bond configurations on a lattice. In this case, the
topological entropy �which we can also call the bond-
configurational entropy� is simply

Sbc��r�� = ln Nbc��r�� , �3�

where Nbc��r�� is the number of stress-free configurations
with mean coordination �r� and the Boltzmann constant kB is
put equal to 1. To calculate Nbc, we use the following ap-

proach. Suppose the number of stress-free networks having
NB bonds, Nbc�NB�, is known. From a stress-free network
having NB bonds, it is possible to produce a stress-free net-
work having NB+1 bonds by adding a bond in one of those
places where this added bond would not create stress. Sup-
pose on average there are n+�NB� such places or ways to
create a stress-free network with NB+1 bonds. On the other
hand, for any stress-free network with NB+1 bonds, there are
always exactly n−�NB+1�=NB+1 ways of creating a stress-
free network with NB bonds by removing any one of the
NB+1 bonds. Moreover, if a network with NB+1 bonds can
be created from a network with NB bonds by adding a bond,
then the latter network can always be obtained from the
former by removing that same bond and vice versa, so the
process is reversible. Then the number of stress-free net-
works with NB+1 bonds is

Nbc�NB + 1� = Nbc�NB�
n+�NB�

n−�NB + 1�
= Nbc�NB�

n+�NB�
NB + 1

. �4�

If n+�NB� is known for all NB, then, using Nbc�0�=1 as the
initial condition, Eq. �4� can be iterated to yield all Nbc�NB�.
In practice, n+�NB� are obtained numerically, by a sort of
Monte Carlo procedure, where some of the places in the
network where a bond is missing �compared to the full un-
diluted lattice� are tried and it is found in what fraction of
such places addition of a bond would not create stress. In our
simulations, we use 100 such attempts per network. The re-
sult is then averaged over the networks with a given number
of bonds obtained during the equilibration procedure.

Note that the same procedure can be repeated for the ran-
dom case �without any self-organization�. In this case,
n+�NB� should count all ways to create a new network of
NB+1 bonds �no matter stress-free or not� out of a network
of NB bonds, and there are as many ways to do that as there
are places where a bond is missing �compared to the full
lattice�; thus for a random network, n+

r �NB�=NBf −NB, where
NBf is the number of bonds in the full lattice. On the other
hand, the analog of quantity n−�NB+1�, which we denote
n−

r �NB+1�, is still NB+1. Therefore, for the random network,

Nbc
r �NB + 1� = Nbc

r �NB�
n+

r �NB�
n−

r �NB + 1�
= Nbc

r �NB�
NBf − NB

NB + 1
.

�5�

This can, of course, be used to obtain the analytical result for
any NB, which is simply a binomial coefficient. If we are
interested in the difference �S between the entropies of the
random and self-organized networks, this is simply

�S�NB� = ln
Nbc

r �NB�
Nbc�NB�

. �6�

The change of this difference when a bond is added is
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�S�NB + 1� − �S�NB� = ln�Nbc
r �NB + 1�
Nbc

r �NB�
Nbc�NB�

Nbc�NB + 1�	
= ln�n+

r �NB�
NB + 1

NB + 1

n+�NB�
	 = − ln ��NB� ,

�7�

where ��NB�=n+�NB� /n+
r �NB� is the average fraction among

all missing bonds in the network of bonds whose insertion
would not create stress. Note that ��NB� is what is calculated
directly by the Monte Carlo procedure described above.

The entropy S is, of course, an extensive quantity, i.e., it is
proportional to the network size �for big sizes�. We can in-
troduce the entropy per bond of the full lattice, s=S /NBf. In
the thermodynamic limit

d��s�
d�r�

=
�S�NB + 1� − �S�NB�
NBf�
�r�
NB+1 −
�r�
NB

�
= −

ln �

NBf�
�r�
NB+1 −
�r�
NB
�

,

�8�

where �r�
NB
is the mean coordination of a network with NB

bonds, and since �r�
NB
=2NB /N,

d��s�
d�r�

= −
N

2NBf
ln � . �9�

In the full triangular lattice, the number of bonds NBf is three
times the number of sites N, so we get

d��s�
d�r�

= −
1

6
ln � . �10�

The quantity � obtained numerically is plotted in Fig. 4.
From this plot, it seems to go to zero as �=4− �r�→0+ and
appears to change linearly as a function of � in this limit. In
general, if in this limit ��� m, then, according to Eq. �10�,

s��� =
m

6
� ln � + regular part. �11�

Figure 5 shows the entropy difference �s calculated by
iterating Eq. �7�, with � obtained numerically after every
bond addition. Since the simulations are done for networks
of a finite size and with finite equilibration time, an extrapo-
lation to the infinite size and equilibration time was done by
fitting the simulation results to the function

�s��r�;N,�� =
A��r��

N
+

B��r��
�

+ C��r�� , �12�

where � is the equilibration time �in equilibration steps per
added bond� used above �r�=3.5 �below 3.5, we always use
just 10 steps, for reasons explained above�. As in different
runs for different sizes the data were taken at slightly differ-
ent points, linear interpolation was sometimes done to obtain
the values at the same �r� in all cases. In total, data for 182
�N ,�� combinations were used, with N between 5476 and
50 176 sites and � between 20 and 1000 steps �up to 10 000
steps for 10 000 sites�. Data for higher N and � were assigned
higher weights in the fit, since increasing N and � decreases

FIG. 4. The fraction � of “allowed bonds” �places where a bond
can be inserted without creating stress� as a function of the mean
coordination �r�, for a triangular network of 50 176 sites, with an
equilibration time of 1000 steps per inserted bond above �r�=3.5
and 10 steps below. The result is obtained by a Monte Carlo proce-
dure described in the text; at each mean coordination, it is averaged
over the networks obtained during equilibration.

FIG. 5. The difference in the bond-configurational entropy be-
tween random and self-organized triangular networks, �s, as a
function of the mean coordination �r�, shown for several network
sizes and equilibration times, as well as the asymptotic value �i.e.,
the extrapolation to the infinite size and equilibration time, as de-
scribed in the text�. Quantity � used to calculate �s is obtained by
the Monte Carlo procedure described in the text and then averaged
over networks obtained during equilibration at the given �r�. In the
main plot, all thin lines are results for 50 176 sites; the equilibration
times are, from top to bottom: 10 steps, 30 steps, 100 steps, and 300
steps per added bond. The thick line is the asymptotic. In the inset,
all thin lines are results for 1000 equilibration steps per added bond.
The sizes are, from top to bottom: 5476 sites, 15 376 sites, and
50 176 sites. The thick line is again the asymptotic. The asymptotics
are themselves extrapolated to �r�=4, as described in the text. All
equilibration times listed are for �r��3.5; for �r��3.5, 10 equili-
bration steps per added bond are always used.
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the amount of noise in the data �the latter because the results
for � are averaged over all equilibration steps, and thus the
more equilibration steps there are the smaller the error in ��.
Function C��r�� representing the asymptotic value of the en-
tropy difference is also shown in Fig. 5.

For a finite-size network, it is only possible to reach a
point three bonds short of �r�=4 without creating stress. For
this reason, our simulations were stopped somewhere around
�r�=3.999. Taking into account Eq. �11�, we have fitted the
asymptotic entropy difference C��� between �r�=3.97 and
3.999 using the following function:

C��� = a0 + a1� ln � + a2� + a3�2. �13�

The fit is essentially perfect, and the obtained value of a1

=0.1636 is consistent with the value of 1
6 expected for m

=1, according to Eq. �11�. The fit is used to complete the
curve in Fig. 5 up to �r�=4. The value of the entropy differ-
ence at �r�=4 is a0=0.0146. This is the biggest value of the
entropy difference, but it is still small, only about 2% of the
bond-configurational entropy of the random network �which
at �r�=4, when 2

3 of the bonds are present, is −�� 2
3

�ln� 2
3

�
+ � 1

3
�ln� 1

3
��=0.6365. . .�.

In the above calculation of the entropy we explicitly use
the fact that all stress-free networks with a given number of
bonds are equiprobable in our new model. A similar consid-
eration for the old self-organization model without equilibra-
tion would be much more difficult.

We note, finally, that according to Eq. �11�, there is a
nonanalyticity in the behavior of the entropy when �r�→4−,
i.e., at the stress transition. We should also expect some very
weak nonanalyticity �perhaps a break or a cusp in a higher
derivative� at the lower boundary of the intermediate phase
�the rigidity transition� at �r��3.94, but it is too weak to be
seen in our simulation results.

VI. CONCLUSION

We have considered a model of self-organization in elastic
networks, adding an equilibration feature to the model pre-
viously considered by Thorpe and co-workers �27,28�. In our
model, we find an intermediate phase in the rigidity phase
diagram, in which the fraction of networks in which rigidity
percolates is between 0 and 1 in the range of mean coordi-
nation between 3.94 and 4.0 for the bond-diluted triangular
lattice �Fig. 6�c��, a result qualitatively similar to that ob-
tained by Barré et al. �29� in a closely related model on a
Bethe lattice. This should be contrasted with results obtained
previously �3� in the randomly bond-diluted case without
self-organization, where rigidity and stress percolate at the
same point and no intermediate phase is observed �Fig. 6�a��,
as well as with the results in the model without equilibration
by Thorpe and co-workers �28�, where the probability of
rigidity percolation is 1 throughout the intermediate phase in
the thermodynamic limit �Fig. 6�b��.

Calculating the bond-configurational entropy of these
self-organized networks, we find that it is only about 2%
smaller than that of randomly connected networks. Provided
that the flexibility entropy, which should reduce the stability

of the intermediate phase, is not so sensitive to the self-
organization, the intermediate phase is likely to be present in
most systems in the right range of mean coordination.

Our results support the current explanation of the interme-
diate phase in chalcogenide glasses. Self-organization might
also be important in the dynamics of proteins as they have a

FIG. 6. A summary of results for different models of rigidity
percolation on the bond-diluted triangular lattice. In the case of
random bond dilution without self-organization �panel �a��, there is
a single rigidity and stress transition, at which the rigidity and stress
percolation probabilities jump simultaneously from 0 to 1 in the
thermodynamic limit �this is shown by the solid line�; there is no
intermediate phase. In the case of the model of self-organization
without equilibration by Thorpe et al. �panel �b��, the probabilities
of rigidity percolation �solid line� and stress percolation �dashed
line� also jump from 0 to 1, but at different �r�, and there is an
intermediate phase in between, which is rigid but stress-free. Fi-
nally, in our model of self-organization with equilibration �panel
�c��, there is also an intermediate phase, but the probability of ri-
gidity percolation changes continuously between 0 and 1 �solid
line� within this phase, with the dependence on the distance from
the lower boundary of the intermediate phase being either exactly
linear or very close to linear in the thermodynamic limit. The net-
work is still stress-free in the intermediate phase; the stress will
have to appear inevitably above �r�=4, but we do not specify how
to handle stress in our model, so it cannot be extended beyond �r�
=4, and the stress percolation probability is not shown in panel �c�.
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coordination near the critical value. In a real material, it is
likely that the intermediate phase is not perfectly stress-free.
A most likely structure will therefore be mostly unstressed
with overconstrained local regions, in a mixture of the model
presented here and that introduced recently by Micoulaut et
al. �30,41�.

The fact that there is now a possibility of having nonrigid
networks in the intermediate phase does not invalidate the
concept of this phase as lacking both excessive flexibility
and stress. Indeed, even though the network may technically
be floppy, say, because of a single floppy mode or a very
small number of such modes spanning the whole network,
for any practical purposes, there would be no difference be-
tween such a network and a fully rigid and unstressed one,
especially when the existence of the neglected weaker inter-
actions is taken into account.

Knowing that self-organization can exist from a thermo-
dynamical point of view, there is still considerable work to
do in order to fully understand the intermediate phase.
Among the obvious future directions of this work we can
mention: repeating the simulations described here for 3D
bond-bending glass networks; getting a better idea of the
geometry of self-organized networks, in particular, possible
long-range correlations in them; evaluating the flexibility en-

tropy effects using a particular potential energy function.
Finally, there is a suspicious discrepancy between our re-

sults reported here and those obtained for a similar model in
connectivity percolation �43–45�. Even though it is, in prin-
ciple, possible that there is an intermediate phase in the ri-
gidity case but not in the connectivity case, this seems very
unlikely. Perhaps the time has come to re-evaluate these old
results—we certainly have the benefit of the much increased
computational power.
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